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KINETIC THEORY OF PLASMAS: TRANSLATIONAL ENERGY

BENJAMIN GRAILLE, THIERRY E. MAGIN⋆, AND MARC MASSOT

Abstract. In the present contribution, we derive from kinetic theory a unified
fluid model for multicomponent plasmas by accounting for the electromagnetic
field influence. We deal with a possible thermal nonequilibrium of the transla-
tional energy of the particles, neglecting their internal energy and the reactive
collisions. Given the strong disparity of mass between the electrons and heavy
particles, such as molecules, atoms, and ions, we conduct a dimensional anal-
ysis of the Boltzmann equation and introduce a scaling based on the square
root of the ratio of the electron mass to a characteristic heavy-particle mass.
We then generalize the Chapman-Enskog method, emphasizing the role of a
multiscale perturbation parameter on the collisional operator, the streaming
operator, and the collisional invariants of the Boltzmann equation. The system
is examined at successive orders of approximation, each of which corresponding
to a physical time scale. The multicomponent Navier-Stokes regime is reached
for the heavy particles, which follow a hyperbolic scaling, and is coupled to
first order drift-diffusion equations for the electrons, which follow a parabolic
scaling. The transport coefficients are then calculated in terms of bracket op-
erators whose mathematical structure allows for positivity properties to be
determined. They exhibit an anisotropic behavior when the magnetic field is
strong enough. We also give a complete description of the Kolesnikov effect,
i.e., the crossed contributions to the mass and energy transport fluxes coupling
the electrons and heavy particles. Finally, the first and second principles of
thermodynamics are proved to be satisfied by deriving a total energy equation
and an entropy equation. Moreover, the system of equations is shown to be
conservative and the purely convective system hyperbolic, thus leading to a
well defined structure.

1. Introduction

Plasmas are ionized gas mixtures, either magnetized or not, that have many
practical applications. For instance, lightning is a well-known natural plasma and
has been studied for many years [4]. A second application is encountered in hyper-
sonic flows; when a spacecraft enters into a planetary atmosphere at hypervelocity,
the gas temperature and pressure strongly rise through a shock wave, consequently,
dissociation and ionization of the gas particles occur in the shock layer. Hypersonic
flow conditions are reproduced in dedicated wind-tunnels such as plasmatrons, arc-
jet facilities, and shock-tubes [44, 48, 52]. A third example was found about two
decades ago, when large-scale electrical discharges were discovered in the meso-
sphere and lower ionosphere above large thunderstorms; these plasmas are now
commonly referred to as sprites [8, 45]. Fourth, discharges at atmospheric pressure
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have received renewed attention in recent years due to their ability to enhance the
reactivity of a variety of gas flows for applications ranging from surface treatment
to flame stabilization and ignition (see [43, 47, 50, 53] and references cited therein).
Fifth, Hall thrusters are being developed to replace chemical systems for many on-
orbit propulsion tasks on communications and exploration spacecraft [3, 9]. Finally,
two important applications of magnetized plasmas are the laboratory thermonuclear
fusion [6, 49] and the magnetic reconnection phenomenom in astrophysics [54].

Depending on the magnitude of the ratio of the reference particle mean free path
to the system characteristic length (Knudsen number), two different approaches are
generally followed to describe the transport of mass, momentum, and energy in a
plasma [5]: either a particle approach at high values of the Knudsen number (solu-
tion to the Boltzmann equation using Monte Carlo methods), or a fluid approach
at low values (solution to macroscopic conservation equations by means of com-
putational fluid dynamics methods). In this work, we study plasmas that can be
described by a fluid approach, thus encompassing most of the above-mentioned
applications. In this case, kinetic theory can be used to obtain the governing con-
servation equations and transport fluxes of plasmas. Hence, closure of the problem
is realized at the microscopic level by determining from experimental measurements
either the potentials of interaction between the gas particles, or the cross-sections.

A complete model of plasmas shall allow for the following physical phenomena
to be described

• Thermal non equilibrium of the translational energy,
• Influence of the electromagnetic field,
• Occurrence of reactive collisions,
• Excitation of internal degrees of freedom.

So far, no such unified model has been derived by means of kinetic theory. Besides, a
derivation of the mathematical structure of the conservation equations also appears
to be crucial in the design of the associated numerical methods. Based on our
previous work, we investigate in the present study the thermal nonequilibrium of the
translational energy [39] and the influence of the magnetic field [27]. We generalize
the Chapman-Enskog method within the context of a dimensional analysis of the
Boltzmann equation, emphasizing the role of a multiscale perturbation parameter
on the collisional operator, the streaming operator, and the collisional invariants of
the Boltzmann equation. Then, we obtain macroscopic equations eventually leading
to a sound entropy structure. Moreover, the system of equations is shown to be
conservative and the purely convective system hyperbolic. Let us now describe in
more detail how these issues are currently addressed in the literature.

First, a multiscale analysis is essential to resolve the Boltzmann equation govern-
ing the velocity distribution functions. We recall that a fluid can be described in the
continuum limit provided that the Knudsen number is small. Besides, in the case
of plasmas, a thermal nonequilibrium may occur between the velocity distribution
functions of the electrons and heavy particles (atoms, molecules, and ions), given
the strong disparity of mass between both types of species. Ergo, the square root of
the ratio of the electron mass to a characteristic heavy-particle mass represents an
additional small parameter to be accounted for in the derivation of an asymptotic
solution to the Boltzmann equation. Literature abounds with expressions of the
scaling for the perturbative solution method. For instance, significant results are
given in references [16, 18, 23, 34, 55]. Yet, Petit and Darrozes [46] have suggested
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that the only sound scaling is obtained by means of a dimensional analysis of the
Boltzmann equation. Subsequently, Degond and Lucquin [19, 20] have established
a formal theory of epochal relaxation based on such a scaling. In their study, the
mean velocity of the electrons is shown to vanish in an inertial frame. Moreover, the
heavy-particle diffusive fluxes were scarcely dealt with since their work is restricted
to a single type of heavy particles, and thus no multicomponent diffusion was to be
found; in such a simplified context, the details of the interaction between the heavy
particles and electrons degenerate and the positivity of the entropy production is
straightforward. We will establish a theory based on a multiscale analysis for a
multicomponent plasma (which includes the single heavy-particle case) where the
mean electron velocity is the mean heavy-particle velocity in absence of external
forces. As an alternative, Magin and Degrez [39] have also proposed a model for a
multicomponent plasma based on a hydrodynamic referential. They have applied
a multiscale analysis to the derivation of the multicomponent transport fluxes and
coefficients. However, the proposed treatment of the collision operators is heuris-
tic. Moreover, since the hydrodynamic velocity is used to define the referential
instead of the mean heavy-particle velocity, the Chapman-Enskog method requires
a transfer of lower order terms in the integral equation for the electron perturbation
function to ensure mass conservation. Finally, we also emphasize that the develop-
ment of models for plasmas in thermal equilibrium shall always be obtained as a
particular case of the general theory.

Second, the magnetic field induces anisotropic transport fluxes when the elec-
tron collision frequency is lower than the electron cyclotron frequency of gyration
around the magnetic lines. Braginskii [10] has studied the case of fully ionized
plasmas composed of one single ion species. Recently, Bobrova et al. have gener-
alized the previous work to multicomponent plasmas. However, the scaling used
in both contributions does not comply with a dimensional analysis of the Boltz-
mann equation. Lucquin [36, 37] has investigated magnetized plasmas in the latter
framework. Nevertheless, the same limitation is found for the diffusive fluxes as in
reference [19, 20]. Finally, Giovangigli and Graille [27] have studied the Enskog ex-
pansion of magnetized plasmas and obtained macroscopic equations together with
expressions of transport fluxes and coefficients. Unfortunately, the difference of
mass between the electrons and heavy particles is not accounted for in their work.

Third, plasmas are strongly reactive gas mixtures. The kinetic mechanism com-
prises numerous reactions [12]: dissociation of molecules by electron and heavy-
particle impact, three body recombination, ionization by electron and heavy-particle
impact, associative ionization, dissociative recombination, radical reactions, charge
exchange. . . Giovangigli and Massot [28] have derived a formal theory of chemi-
cally reacting flows for the case of neutral gases. Subsequently, Giovangigli and
Graille [27] have studied the case of ionized gases. We recall that their scaling
does not take into account the mass disparity between electrons and heavy parti-
cles. Besides, in chemical equilibrium situations, a long-standing theoretical debate
in the literature deals with nonuniqueness of the two-temperature Saha equation.
Recently, Giordano and Capitelli [29] have emphasized the importance of the phys-
ical constraints imposed on the system by using a thermodynamic approach. A
derivation based on kinetic theory should further improve the understanding of the
problem. Choquet and Lucquin [15] have already studied the case of ionization
reactions by electron impact.
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Fourth, molecules rotate and vibrate, and moreover, the electronic energy lev-
els of atoms and molecules are excited. Generally, the rotational energy mode
is considered to be fully excited above a few Kelvins. In a plasma environment,
the vibrational and electronic energy modes are also significantly excited. The de-
tailed treatment of the internal degrees of freedom is however beyond the scope of
the present contribution where we will only tackle the translational energy in the
context of thermal nonequilibrium. The reader is thus referred to the specialized
literature [11, 38, 42].

Fifth, the development of numerical methods to solve conservation equations re-
lies on the identification of their intrinsic mathematical structure. For instance, the
system of conservation equations of mass, momentum, and energy is found to be
nonconservative for thermal nonequilibrium ionized gases. Therefore, this formula-
tion is not suitable for numerical approximations of discontinuous solutions. Coquel
and Marmignon [17] have derived a well-posed conservative formulation based on a
phenomenological approach. Nevertheless, their derivation is not consistent with a
scaling issued from a dimensional analysis. We will show that kinetic theory, based
on first principles, naturally allows for an adequate mathematical structure to be
obtained, as opposed to the phenomenological approach.

In this work, we propose to derive the multicomponent plasma conservation
equations of mass, momentum, and energy, as well as the expressions of the as-
sociated multicomponent transport fluxes and coefficients. The multicomponent
Navier-Stokes regime is reached for the heavy particles, which follow a hyperbolic
scaling, and is coupled to first order drift-diffusion equations for the electrons, which
follow a parabolic scaling. We deal here with first-order equations, thus one order
beyond the expansion commonly investigated for the electrons in the literature.
The derivation relies on kinetic theory and is based on the ansatz that the particles
constitutive of the plasma are inert and only possess translational degrees of free-
dom. The electromagnetic field influence is accounted for. In Section 2, we express
the Boltzmann equation in a noninertial reference frame. We show that the mean
heavy-particle velocity is a suitable choice for the referential velocity. This step is
essential to establish a formalism where the electrons follow the bulk movement of
the plasma. Then, we define the reference quantities of the system in order to derive
the scaling of the Boltzmann equation from a dimensional analysis. The multiscale
aspect occurs in both the streaming operator and collision operator of the Boltz-
mann equation. Consequently, Section 3 is devoted to the scaling of the partial
collision operators between unlike particles. Besides, we determine the space of
collisional invariants associated with respectively the electrons and the heavy par-
ticles. In Section 4, we resort to a Chapman-Enskog method to derive macroscopic
conservation equations. The system is examined at successive orders of approxima-
tion, each of which corresponding to a physical time scale. For that purpose, scalar
products and linearized collision operators are introduced. The global expressions
of the macroscopic fluid equations are then provided up to Navier-Stokes equations
for the heavy particles and first-order drift-diffusion equations for the electrons. We
also prove that our choice of referential is essential in order to reach this expansion
level. In Section 5, we establish the formal existence and uniqueness of a solution
to the Boltzmann equation. The multicomponent transport coefficients are then
calculated in terms of bracket operators whose mathematical structure allows for
the sign of the transport coefficients to be determined; in particular, the Kolesnikov
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effect, or the crossed contributions to the mass and energy transport fluxes coupling
the electrons and heavy particles. The explicit expressions of the transport coef-
ficients can be obtained by means of a Galerkin spectral method [14] disregarded
in the present contribution. Finally in Section 6, the first and second principles
of thermodynamics are proved to be satisfied by deriving a total energy equation
and an entropy equation. Then, we establish, from a fluid standpoint, a conser-
vative formulation of the system of macroscopic equations. We also identify the
mathematical structure of the purely convective system. Hence, we demonstrate
that kinetic theory shall be used as a guideline in the derivation of the macroscopic
conservation equations as well as in the design of the associated numerical methods.

Beyond the obvious interest of such a study from the point of view of the ap-
plications and design of numerical schemes, the present contribution also yields a
formal kinetic theory of mixtures of separate masses, where the light species obey a
parabolic scaling whereas the heavy species obey a hyperbolic scaling. The original
treatment of the two different scalings for fluid flows was first provided by Bardos
et al. [2]. In their study, the purely hyperbolic scaling yields the compressible gas
dynamics equations, whereas the purely parabolic scaling leads to the low Mach
number limit. These scalings are quite classical and both of them can be used for
various asymptotics such as the Vlasov-Navier-Stokes equations in different regimes
investigated by Goudon et al. [31, 32]. Yet, a rigourous derivation of a set of macro-
scopic equations in the situation where the hyperbolic and parabolic scalings are
entangled in the same problem is an original result obtained in the present work.

2. Boltzmann equation

2.1. Assumptions.

(1) Our plasma is described by the kinetic theory of gases based on classical
mechanics, provided that: a) The mean distance between the gas particles
1/(n0)1/3 is larger than the thermal de Broglie wavelength, where n0 is a
reference number density, b) The square of the ratio of the electron thermal
speed V 0

e to the speed of light is small.
(2) The reactive collisions and particle internal energy are not accounted for.
(3) The particle interactions are modeled as binary encounters by means of

a Boltzmann collision operator, provided that: a) The gas is sufficiently
dilute, i.e., the mean distance between the gas particles 1/(n0)1/3 is larger
than the particle interaction distance (σ0)1/2, where σ0 is a reference dif-
ferential cross-section common to all species, b) The plasma parameter,
quantity proportional to the number of electrons in a sphere of radius equal
to the Debye length, is supposed to be large. Hence, multiple charged par-
ticle interactions are treated as equivalent binary collisions by means of a
Coulomb potential screened at the Debye length [1, 22].

(4) A plasma is composed of electrons and a multicomponent mixture of heavy
particles (atoms, molecules, and ions). The ratio of the electron mass m0

e

to a characteristic heavy-particle mass m0
h is such that the nondimensional

number ε =
√
m0

e/m
0
h is small.

(5) The number of Mach, defined as a reference hydrodynamic velocity divided
by the heavy-particle thermal speed Mh = v0/V 0

h , is supposed to be of the
order of one.



6 BENJAMIN GRAILLE, THIERRY E. MAGIN⋆, AND MARC MASSOT

(6) The macroscopic time scale t0 is assumed to be comparable with the heavy-
particle kinetic time scale t0h divided by ε. The macroscopic length scale is
based on a reference convective length L0 = v0t0.

(7) The reference electrical and thermal energies of the system are of the same
order of magnitude.

The mean free path l0 and macroscopic length scale L0 allow for the Knudsen
number to be defined Kn = l0/L0. It will be shown that this quantity is small,
provided that assumptions (4)-(6) are satisfied. Therefore, a continuous description
of the system is deemed to be possible.

2.2. Inertial frame. The choice of an adequate referential will prove to be essential
in the following multiscale analysis. Two referentials are commonly used in the
literature. Degond and Lucquin [19, 20] work in the inertial frame, as Ferziger and
Kaper [25]. The second referential is presented in the following section. Considering
assumptions (1)-(3), the temporal evolution of the velocity distribution function f⋆

i

of the plasma particles i is governed in the phase space (x⋆, c⋆
i ) by the Boltzmann

equation [13, 25]

(2.1) D
⋆
i (f⋆

i ) = J⋆
i , i ∈ S,

where symbol S is the set of indices of the gas species. Dimensional quantities are
denoted by the superscript ⋆. The streaming operator reads

(2.2) D
⋆
i (f⋆

i ) = ∂t⋆f⋆
i + c⋆

i ·∂x⋆f⋆
i +

q⋆
i

m⋆
i

(E⋆ + c⋆
i ∧B⋆)·∂c⋆

i
f⋆
i , i ∈ S,

in an inertial frame. Symbol t⋆ stands for time, E⋆, the electric field, B⋆, the
magnetic field, m⋆

i , the mass of the particle i, and q⋆
i , its charge. The collision

operator is given by

J⋆
i =

∑

j∈S

J⋆
ij

(
f⋆
i , f

⋆
j

)
, i ∈ S,(2.3)

with the partial collision operator of particle j impacting on particle i

(2.4) J⋆
ij

(
f⋆
i , f

⋆
j

)
=

∫ (
f⋆′
i f⋆′

j − f⋆
i f

⋆
j

)
|c⋆

i − c⋆
j |σ

⋆
ijdωdc⋆

j , i, j ∈ S.

After collision, quantities are denoted by the superscript ′. The differential cross-
section σ⋆

ij =σ⋆
ij

[
µ⋆

ij |c
⋆
i − c⋆

j |
2/(kBT

0),ω·e
]

depends on the relative kinetic energy
of the colliding particles and the cosine of the angle between the unit vectors of
relative velocities ω = (c⋆′

i − c⋆′
j )/|c⋆′

i − c⋆′
j | and e = (c⋆

i − c⋆
j )/|c

⋆
i − c⋆

j |. Quantity

µ⋆
ij = m⋆

im
⋆
j/(m

⋆
i +m⋆

j) is the reduced mass of the particle pair, T 0, a reference tem-
perature, and kB, Boltzmann’s constant. Therefore, the differential cross-sections
are symmetric with respect to their indices i, j ∈ S, i.e., σ⋆

ij = σ⋆
ji.

2.3. Noninertial frame. Sutton and Sherman [51], as Chapman and Cowling [14],
have proposed a noninertial frame based on the hydrodynamic velocity

(2.5) ρ⋆v⋆ =
∑

j∈S

∫
m⋆

jc
⋆
jf

⋆
j dc⋆

j ,

where the mixture mass density is defined as ρ⋆ =
∑

j∈S ρ
⋆
j . Symbol ρ⋆

i = n⋆
im

⋆
i

stands for the partial mass density, and n⋆
i =

∫
f⋆
i dc⋆

i , the partial number density.
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It is a convenient choice since it is the referential associated with the definition of
the peculiar velocities

(2.6) Cv⋆
i = c⋆

i − v⋆, i ∈ S,

induced from the usual momentum constraint. We infer from definition (2.5) that
the global diffusion flux vanishes

(2.7)
∑

j∈S

∫
m⋆

jC
v⋆
j f⋆

j dc⋆
j = 0,

that is, the standard momentum constraint.
Given the strong disparity of mass between the electrons and heavy particles,

a frame linked with the heavy particles appears to be a rather natural choice for
plasmas, as fully justified in the following detailed multiscale analysis. Thus, we
define the mean electron velocity and mean heavy-particle velocity

(2.8) ρ⋆
ev

⋆
e =

∫
m⋆

ec
⋆
ef

⋆
e dc⋆

e , ρ⋆
hv⋆

h =
∑

j∈H

∫
m⋆

jc
⋆
jf

⋆
j dc⋆

j ,

where the heavy-particle mass density reads ρ⋆
h =

∑
j∈H ρ

⋆
j . In the v⋆

h referential,
the free electrons interact with heavy particles whose global movement is frozen
in space. A similar viewpoint is commonly adopted in the quantum theory of
molecules when the Born-Oppenheimer approximation is used to study the motion
of the bound electrons about the nuclei [7]. Based on the following definition of
peculiar velocities

(2.9) C⋆
i = c⋆

i − v⋆
h, i ∈ S,

the heavy-particle diffusion flux is shown to vanish

(2.10)
∑

j∈H

∫
m⋆

jC
⋆
j f

⋆
j dc⋆

j = 0.

For now, we defer the choice of the referential velocity. Therefore, we use the
symbol u⋆ to define the peculiar velocities Cu⋆

i = c⋆
i − u⋆, i ∈ S. Then, the

Boltzmann equation is expressed in a frame moving at u⋆ velocity by means of the
latter change of variables. Hence, the streaming operator (2.2) is transformed into
the expression

(2.11)

D
⋆
i (f⋆

i ) = ∂t⋆f⋆
i + (Cu⋆

i + u⋆) ·∂x⋆f⋆
i +

q⋆
i

m⋆
i

[E⋆ + (Cu⋆
i + u⋆) ∧B⋆] ·∂Cu⋆

i
f⋆
i

−
Du⋆

Dt⋆
·∂Cu⋆

i
f⋆
i − ∂⋆

Cu⋆
i
f⋆
i ⊗Cu⋆

i :∂x⋆u⋆,

where D/Dt⋆ = ∂t⋆ + u⋆·∂x⋆ . The partial collision operator (2.4) is found to be

(2.12) J⋆
ij

(
f⋆
i , f

⋆
j

)
=

∫ (
f ′⋆
i f ′⋆

j − f⋆
i f

⋆
j

)
|Cu⋆

i − Cu⋆
j |σ⋆

ijdωdCu⋆
j , i, j ∈ S.

In a noninertial frame, the velocity distribution function f⋆
i , the differential cross-

section σ⋆
ij = σ⋆

ij

[
µ⋆

ij |C
u⋆
i − Cu⋆

j |2/(kBT
0), ω·e

]
, as well as both the unit vectors

ω = (Cu′⋆
i −Cu′⋆

j )/|Cu′⋆
i −Cu′⋆

j | and e = (Cu⋆
i −Cu⋆

j )/|Cu⋆
i −Cu⋆

j | depend on the
peculiar velocities. Nevertheless, for simplicity reasons, notations are unchanged
with respect to the inertial frame, where the previous quantities depend on the
absolute velocities. Moreover, we define collisional invariants.
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Definition 2.1. The space of scalar collisional invariants Iu⋆ is spanned by the
following elements

(2.13)






ψu,j⋆ =
(
m⋆

i δij
)
i∈S

, j ∈ S,

ψu,nS+ν⋆ =
(
m⋆

iC
u⋆
iν

)
i∈S

, ν ∈ {1, 2, 3},

ψu,nS+4⋆ =
(

1
2m

⋆
i C

u⋆
i ·Cu⋆

i

)
i∈S

,

where symbol nS denotes the cardinality of the set of species S.

Besides, a scalar product is introduced

(2.14) 〈〈ξ⋆, ζ⋆〉〉
u⋆

=
∑

j∈S

∫
ξ⋆
j ⊙ζ̄j

⋆
dCu⋆

j ,

for families ξ⋆ = (ξ⋆
i )i∈S and ζ⋆ = (ζ⋆

i )i∈S. Symbol ⊙ stands for the maximum
contracted product in space and symbol ¯ for the conjugate transpose operation.
Ergo, the collision operator J⋆ = (J⋆

i )i∈S defined in eq. (2.3) obeys the following
property.

Property 2.1. The collision operator J⋆ is orthogonal to the space of collisional

invariants Iu⋆, i.e., 〈〈ψu,l⋆, J⋆〉〉
u⋆

= 0, for all l ∈ {1, . . . , nS+4}.

Proof. The projection of the collision operator J⋆ onto ψu,l⋆, l ∈ {1, . . . , nS+4}, is
shown to be

1
4

∑

i,j∈S

∫
(f⋆′

i f⋆′
j −f⋆

i f
⋆

j )(ψu,l⋆
i +ψu,l⋆

j −ψ̂u,l′⋆
i −ψ̂u,l′⋆

j )|Cu⋆
i −Cu⋆

j |σ⋆
ijdωdCu⋆

i dCu⋆
j ,

see for instance Chapman and Cowling [14]. The latter expression vanishes for all
l ∈ {1, . . . , nS+4}. �

Finally, the macroscopic properties can be expressed by means of the scalar
product of the distribution functions and the collisional invariants





〈〈f⋆, ψi⋆〉〉⋆ = ρ⋆
i , i ∈ S,

〈〈f⋆, ψnS+ν⋆〉〉⋆ = ρ⋆(v⋆
ν − u⋆

ν), ν ∈ {1, 2, 3},

〈〈f⋆, ψnS+4⋆〉〉⋆ = ρ⋆e⋆ + 1
2ρ

⋆(v⋆ − u⋆)·(v⋆ − u⋆),

where quantity e⋆ stands for the gas thermal energy per unit mass.

2.4. Dimensional analysis. A sound scaling of the Boltzmann equation is de-
duced from a dimensional analysis inspired from Petit and Darrozes [46]. First,
reference quantities are introduced in Table 1. The characteristic temperature,
number density, differential cross-section, mean free path, macroscopic time scale,
hydrodynamic velocity, macroscopic length, and electric and magnetic fields are
assumed to be common to all species. The nondimensional number

(2.15) ε =

√
m0

e

m0
h

quantifies the ratio of the electron mass to a reference heavy-particle mass. Ac-
cording to assumption (4), the value of ε is small. Consequently, electrons exhibit
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Table 1. Reference quantitities.

Common to all species

Temperature T 0

Number density n0

Differential cross-section σ0

Mean free path l0

Macroscopic time scale t0

Hydrodynamic velocity v0

Macroscopic length L0

Electric field E0

Magnetic field B0

Electrons Heavy particles

Mass m0

e m0

h

Thermal speed V 0

e V 0

h

Kinetic time scale t0e t0h

a larger thermal speed than that of heavy particles

(2.16) V 0
e =

√
kBT 0

m0
e

, V 0
h =

√
kBT 0

m0
h

= εV 0
e .

Moreover, the electron and heavy particle temperatures may be distinct, provided
that eq. (2.16) does not fail to describe the reference thermal speeds. The differential
cross-sections are of the same order of magnitude σ0. Hence, the characteristic mean
free path l0 = 1/(n0σ0) is found to be identical for all species. As a result, the
kinetic time scale, or relaxation time of a distribution function towards its respective
quasi-equilibrium state, is lower for electrons than for heavy particles

(2.17) t0e =
l0

V 0
e

, t0h =
l0

V 0
h

=
t0e
ε
.

Assumption (6) states that the macroscopic time scale reads

(2.18) t0 =
t0h
ε
.

It is shown in Section 4 that this quantity corresponds to the averaged time during
which electrons and heavy particles exchange their energy through encounters. In
addition, the macroscopic temporal and spatial scales are linked by the expression

(2.19) L0 = v0t0,

where the hydrodynamic velocity is determined by the Mach number Mh = v0/V 0
h .

Given assumption (5), the Mach number is of the order of one. Hence, the Knudsen
number

(2.20) Kn =
l0

L0
=

ε

Mh
,

is small. Finally, following assumption (7), the reference electric field is such that

(2.21) q0E0L0 = kBT
0.
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The intensity of the magnetic field is governed by the Hall numbers of the electrons
and heavy particles

(2.22) βe =
q0B0

m0
e

t0e = ε1−b, βh =
q0B0

m0
h

t0h = εβe,

defined as the Larmor frequencies, q0B0/me for the electrons and q0B0/m0
h for the

heavy particles, multiplied by their corresponding kinetic time scale. The magnetic
field is assumed to be proportional to a power of ε by means of an integer b ≤ 1.
The physical interpretation of the b parameter appears at the end of Section 6.

The dimensional analysis can be summarized as follows: a) Two spatial scales
were introduced, one spatial scale at the microscopic level and one spatial scale
at the macroscopic level; b) Whereas three temporal scales were defined, two time
scales at the microscopic level, respectively for the electrons and for the heavy
particles, and one time scale at the macroscopic level, common to all species.

Nondimensional variables are based on the reference quantities. They are de-
noted by dropping the superscript ⋆. In particular, one has the following expressions
for the particle velocities

(2.23) c⋆
e = V 0

e ce, c⋆
i = V 0

h ci, i ∈ H,

where symbol H stands for the set of indices of heavy particles. Both the reference
hydrodynamic velocity and mean heavy-particle velocity are equal to v0. Indeed,
the hydrodynamic velocity defined in eq. (2.5) is found to be

(2.24) (ρh + ε2ρe)Mhv = ρhMhvh + ε2ρeve,

whereas the mean electron and heavy-particle velocities given in eq. (2.8) read

(2.25) ρeve =
1

ε

∫
cefe dce, ρhMhvh =

∑

j∈H

∫
mjcjfj dcj .

The peculiar velocities are given by the relations

(2.26) Cu
e = ce − εMhu, Cu

i = ci −Mhu, i ∈ H.

Usually, they are associated with the momentum constraints of the mixture, so that
the natural choice is u = v. In such a case, we get the following relation

∑

j∈H

∫
mjC

v
j fj dCv

j + ε

∫
Cv

e fe dCv
e = 0.

However, the hydrodynamic velocity of the mixture, electrons included, can also
be expanded in the ε parameter and thus receives contributions at various ε orders
in the Chapman-Enskog method. Since the change of referential should not differ
depending on the expansion order, we could mimic the approach of Lucquin and
Degond [19, 20, 36] and take u = 0, which means working in the inertial framework.
However, we follow a different path not only by choosing the mean heavy-particle
velocity as referential velocity, u = vh, but also by defining the peculiar velocities
based on this quantity, as opposed to Petit and Darrozes [46]. The rationale for
such a choice is threefold: a) This quantity does not depend on ε while still being
a perturbation of the hydrodynamic velocity of the complete mixture up to second
order in ε

(2.27) (ρh + ε2ρe)Mh(v − vh) = ε

∫
Cvh

e fe dCvh
e ,
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since quantity
∫

Cvh
e fe dCvh

e taken on a perturbation of a Maxwell-Boltzmann dis-
tribution will be of O(ε) in the framework of the Chapman-Enskog expansion pre-
sented in Section 4; b) It will prove to be the natural referential in which the heavy
particles thermalize in the context of the proposed multiscale analysis; c) It will
also prove to be the only available choice for electron thermalization and successive
order resolubility, thus making the proposed change of referential optimal and lead-
ing to a rigourous framework as well as a simplified algebra. In the sequel, since
there is no ambiguity, we will drop the vh superscript in the use of the peculiar
velocities Cvh

e and Cvh
j , i ∈ H.

Consequently, the heavy-particle diffusion flux vanishes, as shown in eq. (2.10)

(2.28)
∑

j∈H

∫
mjCjfj dCj = 0.

Thus, the Boltzmann equation (2.1) can be expressed in nondimensional form,
respectively for the electrons and heavy particles, as

(2.29) ∂tfe + 1
εMh

(Ce + εMhvh)·∂xfe + ε−(1+b)qe
[
(Ce + εMhvh)∧B

]
·∂C

e
fe

+
(

1
εMh

qeE − εMh
Dvh

Dt

)
·∂C

e
fe − ∂C

e
fe ⊗Ce:∂xvh = 1

ε2 Je,

(2.30) ∂tfi + 1
Mh

(Ci +Mhvh)·∂xfi + ε1−b qi

mi

[
(Ci +Mhvh)∧B

]
·∂Ci

fi

+
(

1
Mh

qi

mi
E −Mh

Dvh

Dt

)
·∂Ci

fi − ∂Ci
fi ⊗Ci:∂xvh = 1

εJi, i ∈ H,

where the collision operators read

Je = Jee (fe , fe ) +
∑

j∈H

Jej (fe , fj ) ,(2.31)

Ji = 1
εJie(fi , fe ) +

∑

j∈H

Jij(fi , fj ), i ∈ H.(2.32)

The collisional invariants (2.13) depend on the mass ratio as well, as shown in their
nondimensional form.

Definition 2.2. The space of scalar collisional invariants I is spanned by the
following elements ψl

ε = (ψl
e, ψ

l
h), l ∈ {1, . . . , nS+4}, with

(2.33)





ψj
e = ε2δej , ψj

h =
(
miδij

)
i∈H

, j ∈ S,

ψnS+ν
e = εCeν , ψnS+ν

h =
(
miCiν

)
i∈H

, ν ∈ {1, 2, 3},

ψnS+4
e = 1

2Ce·Ce, ψnS+4
h =

(
1
2miCi·Ci

)
i∈H

.

It is worth noticing the influence of the hierarchy of scales; whereas the scaling
does not introduce any structural change in the mass and energy collisional invari-
ants, the electron contribution disappears from the momentum collisional invariant
vector in the limit of ε tends to zero. A similar behavior can be observed for the
total mass; however, the single species collisional invariants are not affected.

Let us underline that eq. (2.29) for the light species is typical of a parabolic scal-
ing, which corresponds to the low Mach number limit for the electron gas, whereas
eq. (2.30) for the heavy species is typical of a hyperbolic scaling, which corresponds
to the compressible gas dynamics for the heavy-species gas mixture [2]. The present
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scaling is thus intermediate between the usual cases and the mathematical structure
of the resulting system of macroscopic equations has to be identified.

For a family ξ = (ξi)i∈S, we introduce two separate contributions: ξe, concerning
the electrons, and ξh = (ξi)i∈H, concerning the heavy particles. Hence, the scalar
product between the families ξ = (ξi)i∈S and ζ = (ζi)i∈S defined in eq. (2.14) is
decomposed into a sum of partial scalar products with different scales

(2.34) 〈〈ξ, ζ〉〉 = 〈〈ξe, ζe〉〉e + ε3〈〈ξh, ζh〉〉h,

given by the expressions

(2.35) 〈〈ξe, ζe〉〉e =

∫
ξe⊙ζ̄e dCe, 〈〈ξh, ζh〉〉h =

∑

j∈H

∫
ξj⊙ζ̄j dCj.

Finally, we introduce the collision operator Jε = (εJe,
1
εJh), where eq. (2.29) has

been multiplied by a factor ε3 corresponding to a coherent scaling of the two Boltz-
mann equations. Then, we derive the following property.

Property 2.2. The collision operator Jε is orthogonal to the space of collisional

invariants I, i.e., 〈〈ψl
ε, Jε〉〉 = 0, for all l ∈ {1, . . . , nS+4}. Furthermore, the terms

of 〈〈ψl
ε, Jε〉〉 cancel by pair of interaction, i.e.,

〈〈ψl
e, Jee〉〉e = 0,(2.36)

∑

j∈H

〈〈ψl
e, Jej〉〉e + 〈〈ψl

h, Jhe〉〉h = 0,(2.37)
∑

j∈H

〈〈ψl
h, Jhj〉〉h = 0,(2.38)

respectively for the electron, electron heavy-particle, and heavy-particle interactions.

Proof. The projection of the collision operator Jε onto ψl
ε, l ∈ {1, . . . , nS+4}, is

given by the expression

〈〈ψl
ε, Jε〉〉 = ε〈〈ψl

e, Jee〉〉e + ε
∑

j∈H

〈〈ψl
e, Jej〉〉e + ε〈〈ψl

h, Jhe〉〉h + ε2
∑

j∈H

〈〈ψl
h, Jhj〉〉h.

The terms of this sum are examined by interaction pairs

〈〈ψl
e, Jee〉〉e =

1

4

∫
(f ′

e f
′
e1 − fe fe1 )(ψl

e + ψl
e1 − ψl′

e − ψl′
e1)|Ce − Ce1|σee1dωdCedCe1,

∑

j∈H

〈〈ψl
e, Jej〉〉e + 〈〈ψl

h, Jhe〉〉h

=
1

2

∑

j∈H

∫
(f ′

e f
′

j − fe fj )(ψl
e + ψl

j − ψl′
e − ψl′

j )|Ce − εCj |σejdωdCedCj ,

∑

j∈H

〈〈ψl
h, Jhj〉〉h

=
1

4

∑

i,j∈H

∫ (
f ′
i f

′
j − fi fj

) (
ψl

i + ψl
j − ψl′

i − ψl′
j

)
|Ci − Cj |σijdωdCidCj .

These expressions vanish and thus the sum 〈〈ψl
ε, Jε〉〉 = 0. �

The multiscale analysis occurs at three levels: a) In the kinetic equations (2.29)
and (2.30); b) In the collisional invariants (2.33) and thus in the conservation
of the associated macroscopic quantities; c) In the collision operators. Actually,
encounters between particles of the same type are dealt with as usual, whereas the
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collision operators between unlike particles depend on the ε parameter via their
relative kinetic energy and velocity, and the vectors ω and e. The scaling of these
operators is investigated in the following section.

3. Preliminary results

3.1. Electron heavy-particle collision dynamics. The study of the electron
heavy-particle collision dynamics yields the dependence of the peculiar velocities
on the ε parameter. First, we express the momentum conservation in terms of
the peculiar velocities. Considering a collision of a heavy species, i ∈ H, against
an electron, the peculiar velocities after collision C′

i and C ′
e are related to their

counterpart before collision Ci and Ce

(3.1)

∣∣∣∣∣∣∣∣

C ′
i =

ε

mi + ε2
Ce +

mi

mi + ε2
Ci +s

ε

mi + ε2
|εCi − Ce|ω, i ∈ H,

C ′
e =

ε2

mi + ε2
Ce +

εmi

mi + ε2
Ci −s

mi

mi + ε2
|εCi − Ce|ω,

where the direction of the relative velocities after collision is defined in their center
of mass by

ω = s
εC′

i − C′
e

|εC′
i − C′

e|
.

Symbol s stands for an integer either equal to +1 for the collision operator Jie,
i ∈ H, or −1 for Jei, i ∈ H. This notation allows for the interaction considered
in eq. (2.12) to be distinguished. We are now able to expand the crossed-collision
operators.

3.2. Expansion of the collision operator Jie. The dimensional analysis yields
the following expression of the nondimensional collision operator Jie, i ∈ H,

(3.2) Jie(fi , fe )(Ci) =

∫
σie

(
|γe|

2,ω· γ
e

|γe|

)
|εCi − Ce|

[
fi (C

′
i )fe (C′

e) − fi (Ci)fe (Ce)
]

dω dCe,

where the relative kinetic energy and the vector e are expressed by means of the
vector γe = s(εCi − Ce)/(1 + ε2/mi)

1/2.
We then introduce the generalized momentum cross-section [14] in a thermal

nonequilibrium context

(3.3) Q
(l)
ie (|γe|

2) = 2π

∫ π

0

σie(|γe|
2, cos θ)(1 − cosl θ) sin θ dθ, i ∈ H,

where symbol θ stands for the angle between the vectors ω and e. For l = 1, this
cross-section represents the average momentum transfered in encounters between i
heavy particles and electrons for a given value of the relative kinetic energy.

Theorem 3.1. The collision operator Jie, i ∈ H, can be expanded in the form

(3.4) Jie(fi , fe )(Ci) = εJ1
ie(fi , fe )(Ci)+ε

2J2
ie(fi , fe )(Ci)+ε

3J3
ie(fi , fe )(Ci)+O(ε4).

The zero-order collision operator J0
ie(fi , fe )(Ci), i ∈ H, vanishes. The first-order

term J1
ie, i ∈ H, reads

(3.5) J1
ie(fi , fe )(Ci) = −

1

mi
∂Ci

fi (Ci)·

∫
Q

(1)
ie (|γe|

2) |γe|γe fe (γe) dγe, i ∈ H.
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The second order term J2
ie, i ∈ H, is found to be

(3.6) J2
ie(fi , fe )(Ci) = −

1

mi
∂Ci(fi (Ci)Ci):

∫
Q

(1)
ie (|γe|

2)|γe|∂Ce
fe (γe)⊗γe dγe

+
1

4m2
i

∂2
CiCi

fi (Ci):

∫
Q

(2)
ie (|γe|

2)|γe|(|γe|
2
I − 3γe⊗γe)fe (γe) dγe

+
1

m2
i

∂2
CiCi

fi (Ci):

∫
Q

(1)
ie (|γe|

2)|γe|γe⊗γefe (γe) dγe.

Finally, the third-order term J3
ie, i ∈ H, is given by

(3.7) J3
ie(fi , fe )(Ci) =

1

mi
∂Ci(

1
2fi Ci⊗Ci)⊙

∫
Q

(1)
ie (|γe|

2) |γe|∂
2
CeCe

fe (γe)⊗γe dγe

+
1

2m2
i

∂Ci
fi (Ci)·

∫
Q

(1)
ie (|γe|

2)|γe|γe⊗γe·∂Ce
fe (γe) dγe

+
1

m2
i

∂Ci(∂Cifi (Ci)⊗Ci)⊙

∫
Q

(1)
ie (|γe|

2)|γe|γe⊗γe⊗∂Ce
fe (γe) dγe

+
1

4m2
i

∂Ci
(∂Ci

fi (Ci)⊗Ci)⊙

∫
Q

(2)
ie (|γe|

2)|γe|(|γe|
2
I − 3γe⊗γe)⊗∂Ce

fe (γe) dγe

−
1

4m2
i

∂3
CiCiCi

fi (Ci)⊙

∫
Q

(1)
ie (|γe|

2)|γe|(|γe|
2
I + γe⊗γe)⊗γefe (γe) dγe

−
1

4m2
i

∂3
CiCiCi

fi (Ci)⊙

∫
Q

(2)
ie (|γe|

2)|γe|(|γe|
2
I − 3γe⊗γe)⊗γefe (γe) dγe

+
1

12m2
i

∂3
CiCiCi

fi (Ci)⊙

∫
Q

(3)
ie (|γe|

2)|γe|(3|γe|
2
I − 5γe⊗γe)⊗γefe (γe) dγe

+
3

2mi
J1

ie(fi , fe )(Ci).

Proof. The change of variable dCe = −(1+ ε2/mi)
3/2dγe allows for the differential

cross-section dependance on ε to be eliminated

Jie(fi , fe )(Ci) =

∫
σie

(
|γe|

2,ω· γe

|γe|

)
|γe|(1 + ε2/mi)

2

[
fi (C

′
i )fe (C ′

e) − fi (Ci)fe (Ce)
]

dω dγe, i ∈ H.

Then, the peculiar velocities are expanded in a power series of ε

C′
i = Ci + ε 1

mi
a1 − ε3 1

2m2

i
a1 + O(ε4), a1 = −γe + |γe|ω, i ∈ H,

C′
e = −|γe|ω + εCi + ε2 1

mi
a2 + O(ε4), a2 = −γe + 1

2 |γe|ω,

Ce = −γe + εCi − ε2 1
2mi

γe + O(ε4).

Hence, the distribution functions are found to be

fi (C
′
i ) = fi (Ci) + ε 1

mi
∂Ci

fi (Ci)·a1 + ε2 1
2m2

i
∂2

CiCi
fi (Ci):a1⊗a1

+ ε3 1
6m3

i
∂3

CiCiCi
fi (Ci)⊙a1⊗a1⊗a1 − ε3 1

2m2

i
∂Cifi (Ci)·a1 + O(ε4), i ∈ H,
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fe (C ′
e) = fe (−|γe|ω) + ε∂Ce

fe (−|γe|ω)·Ci + ε2 1
2∂

2
CeCe

fe (−|γe|ω):Ci⊗Ci

+ ε2 1
mi
∂Ce

fe (−|γe|ω)·a2 + ε3 1
6∂

3
CeCeCe

fe (−|γe|ω)⊙Ci⊗Ci⊗Ci

+ ε3 1
mi
∂2

CeCe
fe (−|γe|ω):Ci⊗a2 + O(ε4),

fe (Ce) = fe (−γe) + ε∂Ce
fe (−γe)·Ci + ε2 1

2∂
2
CeCe

fe (−γe):Ci⊗Ci

− ε2 1
2mi

∂Ce
fe (−γe)·γe + ε3 1

6∂
3
CeCeCe

fe (−γe)⊙Ci⊗Ci⊗Ci

− ε3 1
2mi

∂2
CeCe

fe (−γe):Ci⊗γe + O(ε4).

Combining these equations, the zero-order term J0
ie, i ∈ H, is thus given by

J0
ie(fi , fe )(Ci) = fi (Ci)

∫
σie

(
|γe|

2,ω·e
)

|γe|
3
[
fe (−|γe|ω) − fe (−|γe|e)

]
dω de d|γe|.

Intertwining e with ω, the integral is shown to vanish. Then, eqs. (3.5)-(3.7) are
obtained after some lengthy calculation. �

Theorem 3.1 admits three corollaries.

Corollary 3.1. The first-order collision operator J1
ie(fi , fe ), i ∈ H, vanishes when

fe is an isotropic function of the velocity Ce.

Proof. Expression (3.5) immediately yields that the integrand is an odd function of
γe if fe is isotropic in the mean heavy-particle frame, so that the first-order collision
operator vanishes. �

Remark 3.1. So far, we note that this property is strongly related to our choice
of referential. For example, such a property is not satisfied when u = 0. Thus, the
structure of the expansion of collisional integrals depends on the initial choice of
referential. We will come back to this point in Section 4.8.

A collision frequency is defined as a Maxwell-Boltzmann averaged momentum
cross-section

νie =
1

Te

∫
Q

(1)
ie (|γe|

2)|γe|
3f0

e (γe) dγe, i ∈ H,

where f0
e (γe) = ne exp [−γe·γe/(2Te)] / (2πTe)

3/2
.

Corollary 3.2. If f0
e = ne exp [−Ce·Ce/(2Te)] / (2πTe)

3/2
, the second-order colli-

sion operator reads

(3.8) J2
ie(fi , f

0
e )(Ci) =

νie

3mi

(
∂Ci

·(fi Ci) +
Te

mi
∆Ci

fi

)
, i ∈ H.

Proof. A direct calculation of J2
ie(fi , f

0
e )(Ci) given in (3.6) immediately yields ex-

pression (3.8) if f0
e = ne exp [−Ce·Ce/(2Te)] / (2πTe)

3/2. �

Corollary 3.3. The third-order collision operator J3
ie(fi , fe ), i ∈ H, vanishes when

fe is an isotropic function of the velocity Ce.

Proof. Expression (3.7) immediately yields that the integrand is an odd function
of γe if fe is isotropic in the mean heavy-particle frame, so that the third-order
collision operator vanishes. �
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3.3. Expansion of the collision operator Jei. The dimensional analysis yields
the following expression of the nondimensional collision operator Jei, i ∈ H,

(3.9) Jei(fe , fi )(Ce) =

∫
σei

(
mi|Ce−εCi|

2

mi+ε2 ,ω·e
)
|Ce − εCi|

[
fe (C ′

e)fi (C
′
i ) − fe (Ce)fi (Ci)

]
dω dCi.

The original set of variables {Ce,Ci,ω} is retained. We introduce the momentum
cross-section

(3.10) Q
(1)
ei (|Ce|

2) = 2π

∫ π

0

σei(|Ce|
2, cos θ)(1 − cos θ) sin θ dθ, i ∈ H,

representing the average momentum transfered in encounters between electrons and

heavy particles i ∈ H. It is equal to the cross-section Q
(1)
ie .

Theorem 3.2. The collision operator Jei, i ∈ H, can be expanded in the form

(3.11) Jei(fe , fi )(Ce) = J0
ei(fe , fi )(Ce) + εJ1

ei(fe , fi )(Ce) + ε2J2
ei(fe , fi )(Ce)

+ ε3J3
ei(fe , fi )(Ce) + O(ε4).

The zero-order term J0
ei, i ∈ H, is given by the expression

(3.12)

J0
ei(fe , fi )(Ce) =

∫
fi (Ci) dCi

∫
σei

(
|Ce|

2,ω· Ce

|Ce|

)
|Ce|

[
fe (|Ce|ω) − fe (Ce)

]
dω.

The first-order term J1
ie, i ∈ H, reads

(3.13) J1
ei(fe , fi )(Ce) =

(∫
fi (Ci)Ci dCi

)
·

{
∂Ce

∫
σei(|Ce|

2, Ce

|Ce|
·ω)
[
fe (Ce) − fe (|Ce|ω)

]
|Ce| dω

+

∫
σei(|Ce|

2, Ce

|Ce|
·ω)|Ce|

[
∂Ce

fe (|Ce|ω) − ∂Ce
fe (Ce)

]
dω

}
.

The second order term J2
ie, i ∈ H, is found to be

(3.14)

J2
ei(fe , fi )(Ce) = 1

mi
K2,1

ei (Ce)

∫
fi (Ci) dCi + 1

2K
2,2
ei (Ce) :

∫
fi (Ci)Ci⊗Ci dCi,

with

K2,1
ei (Ce) = ∂Ce

·

∫
σei(|Ce|

2, Ce

|Ce|
·ω)(Ce − |Ce|ω)|Ce|fe (|Ce|ω) dω

− |Ce|Ce·

∫
∂Ce

σei(|Ce|
2, Ce

|Ce|
·ω)
[
fe (|Ce|ω) − fe (Ce)

]
dω,
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and

K
2,2
ei (Ce) = ∂2

CeCe

∫
σei(|Ce|

2, Ce

|Ce|
·ω)|Ce|

[
fe (Ce|ω) − fe (Ce)

]
dω

+ 2

∫
∂Ce

(
σei(|Ce|

2, Ce

|Ce|
·ω)|Ce|

)
⊗
[
∂Ce

fe (Ce) − ∂Ce
fe (|Ce|ω)

]
dω

+ |Ce|

∫
σei(|Ce|

2, Ce

|Ce|
·ω)
[
∂2

CeCe
fe (Ce) − ∂2

CeCe
fe (|Ce|ω)

]
dω

+ 2|Ce|

∫
σei(|Ce|

2, Ce

|Ce|
·ω) Ce

|Ce|
⊗ω∂2

CeCe
fe (|Ce|ω) dω.

Proof. The relative velocity and peculiar velocities after collision are expanded in
a power series of ε. For i ∈ H, we have

|Ce − εCi| = |Ce| − ε Ce

|Ce|
·Ci + ε2b1 + O(ε3),

C′
i = Ci + ε 1

mi
a4 − ε2 1

mi
a5 + O(ε3),

C ′
e = |Ce|ω + εa5 + ε2

(
1

mi
a4 + a6

)
+ O(ε3),

with b1 = 1
2|Ce|

[
|Ci|

2−
(

Ce

|Ce|
·Ci

)2]
, a4 = Ce−|Ce|ω, a5 = Ci−

Ce

|Ce|
·Ciω, a6 = b1ω.

Hence, the distribution functions are found to be

fi (C
′
i ) = fi (Ci) + ε 1

mi
∂Ci

fi (Ci)·a4 + ε2 1
2m2

i
∂2

CiCi
fi (Ci):a4⊗a4

− ε2 1
2mi

∂Cifi (Ci)·a5 + O(ε3), i ∈ H,

fe (C ′
e) = fe (|Ce|ω) + ε∂Ce

fe (|Ce|ω)·a5 +
1

2
ε2∂2

CeCe
fe (|Ce|ω):a5⊗a5

+ ε2∂Ce
fe (|Ce|ω)·

(
1

mi
a4 + a6

)
+ O(ε3).

Combining these equations, we obtain eqs. (3.12)-(3.14) after some lengthy calcu-
lation. �

Theorem 3.2 admits three corollaries. First, we define the entropy produced at
order ε0 in collisions between electrons and i heavy particles

Υ0
ei = −

∫
J0
ei(fe , fi )(Ce) ln

[
(2π)3/2n0

Q0
e

fe (Ce)

]
dCe, i ∈ H,

where Q0
e = (2πm0

ekBT
0/h2

P)3/2 is the translational partition function of electrons.
Symbol hP stands for Planck’s constant. The zero-order operator describes the
relaxation of the electron populations towards an isotropic distribution function in
the mean heavy-particle frame.

Corollary 3.4. The zero-order collision operator J0
ei(fe , fi ), i ∈ H, vanishes when

fe is an isotropic function of the velocity Ce. Moreover, the zero-order entropy is

nonnegative, that writes Υ0
ei ≥ 0, i ∈ H, and the inequality is an equality if and

only if fe is an isotropic function of the velocity Ce.

Proof. If fe is an isotropic function of Ce, we have fe (|Ce|ω) = fe (Ce) for any
ω in the unit sphere, so that expression (3.12) implies that J0

ei(fe , fi ) = 0. The
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zero-order production entropy production reads

Υ0
ei = −ni

∫
σei

(
|Ce|

2,ω· Ce

|Ce|

)
|Ce|

3
[
fe (|Ce|ω) − fe (Ce)

]

ln

[
(2π)3/2n0

Q0
e

fe (Ce)

]
d|Ce|d

Ce

|Ce|
dω,

and intertwining Ce

|Ce|
with ω,

Υ0
ei =

ni

2

∫
σei

(
|Ce|

2,ω· Ce

|Ce|

)
|Ce|

3Ω
(
fe (|Ce|ω), fe (Ce)

)
d|Ce|d

Ce

|Ce|
dω.

where Ω(x, y) = (x − y) ln(x/y) is a nonnegative function. We then obtain that
Υ0

ei, i ∈ H, is nonnegative and equal to 0 if and only if fe is isotropic in the mean
heavy-particle frame. �

Corollary 3.5. The first-order collision operator J1
ei(fe , fi ), i ∈ H, vanishes when

fi is an isotropic function of the velocity Ci.

Proof. Expression (3.13) immediately yields that the integrand is an odd function of
Ci, i ∈ H, if fi is isotropic in the mean heavy-particle frame, so that the first-order
collision operator vanishes. �

Corollary 3.6. Considering f0
e = ne exp [−Ce·Ce/(2Te)] / (2πTe)

3/2
and f0

i =

nim
3/2
i exp [−miCi·Ci/(2Th)] / (2πTh)3/2

, i ∈ H, the second-order collision oper-

ator J2
ei(f

0
e , f

0
i )(Ce), i ∈ H, reads

(3.15) J2
ei(f

0
e , f

0
i )(Ce) = (Th − Te)

ni

mi

1

Te
f0
e (Ce)|Ce|

[
∂Ce

·
(
Q

(1)
ei (Ce)Ce

)
+
(
1 − |Ce|

2

Te

)
Q

(1)
ei (Ce)

]
.

Proof. A direct calculation of J2
ei(f

0
e , fi )(Ce) given in (3.14) immediately yields

expression (3.15) if f0
e and f0

i are the Maxwell-Boltzmann distribution functions
given in the assumptions of corollary 3.6. �

3.4. Electron and heavy-particle collisional invariants. In the asymptotic
limit ε→ 0, the space of collisional invariants I defined in eq. (2.33) splits into two
subspaces naturally associated with our choice of scaling.

Definition 3.1. The space of scalar electron collisional invariants Ie is spanned by
the following elements

(3.16)

{
ψ̂1

e = 1,

ψ̂2
e = 1

2Ce·Ce.

Definition 3.2. The space of scalar heavy-particle collisional invariants Ih is
spanned by the following elements

(3.17)





ψ̂j
h =

(
miδij

)
i∈H

, j ∈ H,

ψ̂nH+ν
h =

(
miCiν

)
i∈H

, ν ∈ {1, 2, 3},

ψ̂nH+4
h =

(
1
2miCi·Ci

)
i∈H

,

where symbol nH denotes the cardinality of the set H.
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The decoupling of the collision invariants is clearly identified in the proposed
scaling. More precisely, the definition of the electron linearized collision operator
(given in Section 4) will involve the electron partial collision operator Jee and the
mixed partial collision operators J0

ei, i ∈ H, satisfying the following important
property.

Property 3.1. The partial collision operators J0
ei, i ∈ H, are orthogonal to the

space of collisional invariants Ie, i.e., 〈〈ψ̂
l
e, J

0
ei〉〉e = 0 for all l ∈ {1, 2}.

Proof. The projection of the collision operator J0
ei, i ∈ H, onto ψ̂l

e, l ∈ {1, 2} reads

〈〈ψ̂l
e, J

0
ei〉〉e = ni

∫
σei

(
|Ce|

2,ω· Ce

|Ce|

)
|Ce|

3
[
fe (|Ce|ω) − fe (Ce)

]
ψ̂l

e d|Ce|dωd Ce

|Ce|
.

Intertwining ω with Ce

|Ce|
, the projection 〈〈ψ̂l

e, J
0
ei〉〉e is shown to vanish for all l ∈

{1, 2}. �

We underline that the partial collision operators J0
ei, i ∈ H, are not orthogonal

for the scalar product 〈〈·, ·〉〉e to the space spanned by the electron momentum. It
is the reason why the vector Ce does not belong to Ie. In contrast, the definition of
the heavy-particle linearized collision operator (given in Section 4) will only involve
the heavy-particle partial collision operators Jij , i, j ∈ H.

Subsequently, using the newly defined collisional invariants, the orthogonality
property 2.2 of the cross-collision operators can be rewritten

(3.18)
∑

j∈H

〈〈ψ̂1
e , Jej〉〉e = 0, 〈〈ψ̂i

h, Jhe〉〉h = 0, i ∈ H,

for mass conservation,

(3.19) ε
∑

j∈H

〈〈Ceν , Jej〉〉e + 〈〈ψ̂nH+ν
h , Jhe〉〉h = 0, ν ∈ {1, 2, 3},

for momentum conservation, and

(3.20)
∑

j∈H

〈〈ψ̂2
e , Jej〉〉e + 〈〈ψ̂nH+4

h , Jhe〉〉h = 0,

for energy conservation. This set of relations is essential since it corresponds to
the conservation of mass, momentum, and energy in the electron heavy-particle
interactions through the various orders in ε of the Chapman-Enskog expansion.

Then, the macroscopic properties are expressed as partial scalar products of the
distribution functions and the new collisional invariants

(3.21)

{
〈〈fe , ψ̂

1
e 〉〉e = ρe,

〈〈fe , ψ̂
2
e 〉〉e = ρeee,

and

(3.22)






〈〈fh , ψ̂
i
h〉〉h = ρi, i ∈ H,

〈〈fh , ψ̂
nH+ν
h 〉〉

h
= 0, ν ∈ {1, 2, 3},

〈〈fh , ψ̂
nH+4
h 〉〉h = ρheh.

Symbol ee stands for the electron thermal energy per unit mass and eh, the heavy-
particle thermal energy per unit mass. It is important to mention that the later
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quantities are defined in the mean heavy-particle frame. Furthermore, the de-
coupling of the collisional invariants is also consistent with the expression of the
macroscopic properties. In particular, the electron momentum is not a collision in-
variant in the proposed asymptotic limit, the electron mass flux is not constrained
in the mean heavy-particle velocity referential.

Moreover, translational temperatures are introduced as averaged thermal ener-
gies in the mean heavy-particle frame.

Definition 3.3. The electron and heavy-particle translational temperatures are
given by

Te =
2

3ne
〈〈fe , ψ̂

2
e 〉〉e,(3.23)

Th =
2

3nh
〈〈fh , ψ̂

nH+4
h 〉〉h,(3.24)

where the heavy-particle number density reads nh =
∑

j∈H nj .

Consequently, the energy can be rewritten

〈〈fe , ψ̂
2
e 〉〉e =

3

2
neTe,

for the electrons, and

〈〈fh , ψ̂
nH+4
h 〉〉h =

3

2
nhTh

for the heavy particles. Moreover, it will be shown in Section 4 that both temper-
atures are generally different.

4. Chapman-Enskog method

We resort to an Enskog expansion to derive an approximate solution to the
Boltzmann equations (2.29)-(2.30) by expanding the species distribution functions
as

fe = f0
e (1 + εφe + ε2φ2

e + ε3φ3
e ) + O(ε4),(4.1)

fi = f0
i (1 + εφi + ε2φ2

i ) + O(ε3), i ∈ H,(4.2)

and by imposing that the zero-order contributions f0
e and f0

h yield the local macro-
scopic properties

〈〈f0
e , ψ̂

l
e〉〉e = 〈〈fe , ψ̂

l
e〉〉e, l ∈ {1, 2},(4.3)

〈〈f0
h , ψ̂

l
h〉〉h = 〈〈fh , ψ̂

l
h〉〉h, l ∈ {1, . . . , nH+4}.(4.4)

Hence, based upon the dimensional analysis of section 2.4, the electron Boltz-
mann equation (2.29) appears to be

(4.5) ε−2
D

−2
e (f0

e ) + ε−1
D

−1
e (f0

e , φe ) + D
0
e (f0

e , φe , φ
2
e ) + εD1

e (f0
e , φe , φ

2
e , φ

3
e )

= ε−2J−2
e + ε−1J−1

e + J0
e + εJ1

e + O(ε2),

where the electron streaming operators read at successive orders

D
−2
e (f0

e ) = δb1qe(Ce∧B)·∂C
e
f0
e ,

D
−1
e (f0

e , φe ) = D̂
−1
e (f0

e ) + qe(δb1Ce∧B)·∂C
e
(f0

e φe ),

D̂
−1
e (f0

e ) = 1
Mh

Ce·∂xf
0
e + qe

(
1

Mh
E′ + δb0Ce∧B

)
·∂C

e
f0
e ,
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D
0
e (f0

e , φe , φ
2
e ) = D̂

0
e (f0

e , φe ) + qe(δb1Ce∧B)·∂C
e
(f0

e φ
2
e ),

D̂
0
e (f0

e , φe ) = ∂tf
0
e + 1

Mh
Ce·∂x(f0

e φe ) + vh·∂xf
0
e −

(
∂C

e
f0
e ⊗Ce

)
:∂xvh

+ qe
(
δb0Mhvh∧B + δb(−1)Ce∧B

)
·∂C

e
f0
e

+ qe
(

1
Mh

E′ + δb0Ce∧B
)
·∂C

e
(f0

e φe ),

D
1
e (f0

e , φe , φ
2
e , φ

3
e ) = D̂

1
e (f0

e , φe , φ
2
e ) + qe(δb1Ce∧B)·∂C

e
(f0

e φ
3
e ),

D̂
1
e (f0

e , φe , φ
2
e ) = ∂t(f

0
e φe ) + 1

Mh
Ce·∂x(f0

e φ
2
e ) + vh·∂x(f0

e φe )

−Mh
Dvh

Dt ·∂C
e
f0
e −

(
∂C

e
(f0

e φe )⊗Ce

)
:∂xvh

+ qe
(
δb(−1)Mhvh∧B + δb(−2)Ce∧B

)
·∂C

e
f0
e

+ qe
(
δb0Mhvh∧B + δb(−1)Ce∧B

)
·∂C

e
(f0

e φe )

+ qe
(

1
Mh

E′ + δb0Ce∧B
)
·∂C

e
(f0

e φ
2
e ),

with the electric field expressed into the mean heavy-particle frame E′ = E +
δb1M

2
hvh∧B. The electron collision operators are given by

J−2
e =

�
�

�
�

�

Jee(f
0
e , f

0
e ) +

∑

j∈H
�

�
�

�
�

J0
ej(f

0
e , f

0
j ),

for ease of readability in Sections 4.2-4.7, we strike through the collision operators
that vanish when f0

e and f0
i , i ∈ H, are isotropic functions,

J−1
e = Jee(f

0
e φe , f

0
e ) + Jee(f

0
e , f

0
e φe )

+
∑

j∈H

J0
ej(f

0
e φe , f

0
j ) +

�
�

�
�

�
�

J0
ej(f

0
e , f

0
j φj ) +

�
�

�
�

�

J1
ej(f

0
e , f

0
j )

J0
e = Jee(f

0
e φ

2
e , f

0
e ) + Jee(f

0
e φe , f

0
e φe ) + Jee(f

0
e , f

0
e φ

2
e )

+
∑

j∈H

J0
ej(f

0
e φ

2
e , f

0
j ) +

�
�

�
�

�
�

J0
ej(f

0
e , f

0
j φ

2
j ) + Ĵ0

e ,

Ĵ0
e =

∑

j∈H

J0
ej(f

0
e φe , f

0
j φj ) +

�
�

�
�

�
�

J1
ej(f

0
e φe , f

0
j ) + J1

ej(f
0
e , f

0
j φj ) + J2

ej(f
0
e , f

0
j ),

J1
e = Jee(f

0
e φ

3
e , f

0
e ) + Jee(f

0
e φ

2
e , f

0
e φe ) + Jee(f

0
e φe , f

0
e φ

2
e ) + Jee(f

0
e , f

0
e φ

3
e )

+
∑

j∈H

J0
ej(f

0
e φ

3
e , f

0
j ) +

�
�

�
�

�
�

J0
ej(f

0
e , f

0
j φ

3
j ) + Ĵ1

e ,

Ĵ1
e =

∑

j∈H

{
J0
ej(f

0
e φ

2
e , f

0
j φj ) + J0

ej(f
0
e φe , f

0
j φ

2
j ) +

�
�

�
�

�
�

J1
ej(f

0
e φ

2
e , f

0
j ) + J1

ej(f
0
e φe , f

0
j φj )

J1
ej(f

0
e , f

0
j φ

2
j ) + J2

ej(f
0
e φe , f

0
j ) + J2

ej(f
0
e , f

0
j φj ) + J3

ej(f
0
e , f

0
j )
}
.

Likewise, the heavy-particle Boltzmann equation (2.30) is found to be

(4.6) D
0
i (f0

i ) + εD1
i (f0

i , φi ) = ε−1J
−1
i + J0

i + εJ1
i + O(ε2), i ∈ H,

where the heavy-particle streaming operators read at successive orders

D
0
i (f0

i ) = ∂tf
0

i +
(

1
Mh

Ci+vh

)
·∂xf

0
i + qi

mi

(
1

Mh
E′ + δb1Ci∧B

)
·∂Cif

0
i

−Mh
Dvh

Dt ·∂Cif
0

i −
(
∂Cif

0
i ⊗Ci

)
:∂xvh,
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D
1
i (f0

i , φi ) = ∂t(f
0

i φi ) +
(

1
Mh

Ci+vh

)
·∂x(f0

i φi )

+ qi

mi
δb0
[
(Ci+Mhvh)∧B

]
·∂Ci

f0
i + qi

mi

(
1

Mh
E′ + δb1Ci∧B

)
·∂Ci

(f0
i φi )

−Mh
Dvh

Dt ·∂Ci
(f0

i φi ) −
(
∂Ci

(f0
i φi )⊗Ci

)
:∂xvh.

The heavy-particle collision operators are given by

J
−1
i =

∑

j∈H
�

�
�

�
�

Jij(f
0

i , f
0

j ) +
�

�
�

��

J1
ie(f

0
i , f

0
e ),

J0
i =

∑

j∈H

Jij(f
0

i φi , f
0

j ) + Jij(f
0

i , f
0

j φj ) +
�

�
�

�
�
�

J1
ie(f

0
i φi , f

0
e ) + Ĵ0

i ,

Ĵ0
i = J1

ie(f
0

i , f
0
e φe ) + J2

ie(f
0

i , f
0
e ),

J1
i =

∑

j∈H

Jij(f
0

i φ
2
i , f

0
j ) + Jij(f

0
i φi , f

0
j φj ) + Jij(f

0
i , f

0
j φ

2
j ) +

�
�

�
�

�
�

J1
ie(f

0
i φ

2
i , f

0
e ) + Ĵ1

i ,

Ĵ1
i = J1

ie(f
0

i φi , f
0
e φe ) + J1

ie(f
0

i , f
0
e φ

2
e ) + J2

ie(f
0

i φi , f
0
e ) + J2

ie(f
0

i , f
0
e φe ) +

�
�

�
��

J3
ie(f

0
i , f

0
e ).

In the Chapman-Enskog method, the plasma is observed at successive orders of
the ε parameter equivalent to as many time scales. The micro- and macroscopic
equations derived at each order are reviewed in Table 2.

Table 2. Chapman-Enskog steps.

Order Time Heavy particles Electrons

ε−2 t0e Expression of f0

e

Thermalization (Te)

ε−1 t0h Expression of f0

i , i ∈ H Equation for φe

Thermalization (Th) Zero-order momentum relation

ε0 t0 Equation for φi , i ∈ H Equation for φ2

e

Euler equations Zero-order drift-diffusion equations
First-order momentum relation

ε t
0

ε
Navier-Stokes equations First-order drift-diffusion equations

4.1. Order ε−2: electron thermalization. We resolve the electron Boltzmann
equation (4.5) at order ε−2 corresponding to the kinetic time scale t0e . The electron
population is shown to thermalize in the mean heavy-particle frame to a quasi-
equilibrium state described by a Maxwell-Boltzmann distribution function at tem-
perature Te. In contrast, heavy particles do not exhibit any ensemble property at
this order.

Proposition 4.1. The zero-order electron distribution function f0
e , solution to

eq. (4.5) at order ε−2, i.e., D−2
e (f0

e ) = J−2
e , that satisfies the scalar constraints

(4.3) is a Maxwell-Boltzmann distribution function at the electron temperature

(4.7) f0
e = ne

(
1

2πTe

)3/2

exp

(
−

1

2Te
Ce·Ce

)
.
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Proof. Multiplying the equation D−2
e (f0

e ) = J−2
e by ln

[
(2π)3/2n0f0

e /Q
0
e

]
and inte-

grating over dCe yields the entropy production

Υ0
ee +

∑

j∈H

Υ0
ej + δb1qe

∫
(Ce∧B)·∂C

e
f0
e ln

[
(2π)3/2n0f0

e /Q
0
e

]
dCe = 0,

with Υ0
ee = −

∫
Jee(f

0
e , f

0
e )(Ce) ln

[
(2π)3/2n0f0

e /Q
0
e

]
dCe. Using the equality

∂C
e
f0
e ln

[
(2π)3/2n0f0

e /Q
0
e

]
= ∂C

e

{
f0
e ln

[
(2π)3/2n0f0

e /Q
0
e

]
− f0

e

}
and integrating

by parts, the entropy production is found to be Υ0
ee +

∑
j∈H Υ0

ej = 0. Moreover, a
well-established derivation yields

Υ0
ee =

1

4

∫
Ω(f0

e f
0
e1 , f

0′
e f0′

e1 )|Ce − Ce1|σee1dωdCedCe1 ≥ 0.

Using corollary 3.4, we first obtain that Υ0
ei ≥ 0, i ∈ H, so that both terms Υ0

ee = 0
and Υ0

ei = 0, i ∈ H. Then, corollary 3.4 implies that f0
e is isotropic in the mean

heavy-particle frame. Seeing that Υ0
ee = 0, ln f0

e is thus a collisional invariant, i.e.
is in the space Ie. By using the macroscopic constraints, expression (4.7) is readily
obtained. �

The choice of the referential velocity in which electrons thermalize will turns
out to be crucial for the rest of the resolution. In the u = vh frame, the quasi-
equilibrium electron velocity distribution function is isotropic and the electrons
follow the bulk movement associated with the hydrodynamic velocity of the mixture,
following a physically relevant scenario. As already mentioned, the mean heavy-
particle velocity vh does not depend on the small ε parameter while still being
close to the actual hydrodynamic velocity v of the entire mixture; this property is
essential in order to conduct a rigourous multiscale analysis in the framework of the
present Chapman-Enskog expansion. The relevance of such a choice of referential
will be thoroughly investigated in section 4.8.

4.2. Order ε−1: heavy-particle thermalization. We resolve the heavy-particle
Boltzmann equation (4.6) at order ε−1 corresponding to the kinetic time scale t0h.
The heavy-particle population is shown to thermalize in the mean heavy-particle
frame to a quasi-equilibrium state described by a Maxwell-Boltzmann distribution
function at temperature Th.

Proposition 4.2. Considering f0
e given by eq. (4.7), the zero-order family of heavy-

particle distribution functions f0
h solution to eq. (4.6) at order ε−1, i.e., J−1

i = 0,
i ∈ H, that satisfies the scalar constraints (4.4) is a family of Maxwell-Boltzmann

distribution functions at the heavy-particle temperature

(4.8) f0
i = ni

(
mi

2πTh

)3/2

exp

(
−
mi

2Th
Ci·Ci

)
, i ∈ H.

Proof. As the zero-order electron distribution function f0
e is isotropic in the mean

heavy-particle frame, corollary 3.1 yields that the heavy-particle Boltzmann equa-
tion (4.6) reads at order ε−1

∑

j∈H

Jij(f
0

i , f
0

j ) = 0, i ∈ H.

After some classical algebra [14], we obtain expression (4.8) for the zero-order heavy-
particle distribution functions. �
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Thus, propositions 4.1 and 4.2 allow for electron and heavy particles quasi-
equilibrium states to be obtained at different temperatures.

4.3. Order ε−1: electron momentum relation. We conduct the resolution and
derive a momentum relation based on the electron Boltzmann equation (4.5) at
order ε−1 corresponding to the kinetic time scale t0h. We then emphasize an original
property of the Chapman-Enskog expansion at this order associated with both the
absence of momentum constraint in eq. 3.21 and the multiscale analysis.

With the previously obtained Maxwell-Boltzmann electron distribution function,
we first define the electron linearized collision operator in the case.

Definition 4.1. The electron linearized collision operator Fe reads

Fe(φe ) = −
1

f0
e

[
Jee(f

0
e φe , f

0
e ) + Jee(f

0
e , f

0
e φe ) +

∑

j∈H

J0
ej(f

0
e φe , f

0
j )
]
,

where f0
e is given by eq. (4.7) and f0

i by eq. (4.8).

The kernel of this operator is given in the following property.

Property 4.1. The kernel of the linearized collision operator Fe is the space of

scalar electron collisional invariants Ie.

Proof. The linearized collision operator Fe is rewritten in the form

Fe(φe ) = −

∫
f0
e1

(
φ′e + φ′e1 − φe − φe1

)
|Ce − Ce1|σee1 dωdCe1

−
∑

j∈H

nj

∫
σej

(
|Ce|

2,ω· Ce

|Ce|

)
|Ce|

(
φe (|Ce|ω) − φe (Ce)

)
dω.

We then obtain that the space Ie is in the kernel of Fe. Reciprocally, if Fe(φe ) = 0,
multiplying Fe(φe ) by f0

e φe and integrating over dCe yields

1

4

∫
f0
e f

0
e1

(
φ′e + φ′e1 − φe − φe1

)2
|Ce − Ce1|σee1 dωdCedCe1

+
1

2

∑

j∈H

nj

∫
σej

(
|Ce|

2,ω· Ce

|Ce|

)
|Ce|f

0
e

(
φe (|Ce|ω) − φe (Ce)

)2
dωdCe = 0,

so that φe is in the space Ie. �

Based on corollaries 3.4 and 3.5, the electron Boltzmann equation (4.5) is found
to be at order ε−1

(4.9) f0
e Fe(φe ) + δb1qe∂C

e
(f0

e φe )·Ce∧B = −D̂
−1
e (f0

e ),

with the constraints

(4.10) 〈〈f0
e φe , ψ̂

l
e〉〉e = 0, l ∈ {1, 2}.

The terms ∂C
e
(f0

e φe )·Ce∧B and D̂−1
e (f0

e ) are orthogonal to the kernel of Fe for
the scalar product 〈〈·, ·〉〉e. Consequently, no macroscopic conservation equations of
mass and energy are derived at this order.

In fact, for any value of w, defining the shifted Maxwell-Boltzmann distribution

(4.11) fw0
e = ne

(
1

2πTe

)3/2

exp

(
−

1

2Te
(Ce − εMhw)2

)
,
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we can expand it as a function of ε

(4.12) fw0
e = f0

e

(
1 + ε

Mh

Te
Ce·w + ε2

M2
h

2Te

[
−w·w +

(Ce·w)2

Te

])
+ O(ε3),

which still yields, at leading order, the same distribution as defined in eq. (4.7).
We then realize that the Chapman-Enskog expansion can be rewritten in a different
way at this order :

(4.13) f0
e (1 + εφe + ε2φ2

e ) = fw0
e (1 + εφw

e + ε2φw0
e ) + O(ε3),

with
(4.14)

φe = φw
e +

Mh

Te
Ce·w, φ2

e = φw2
e +

Mh

Te
(Ce·w)φw

e +
M2

h

2Te

[
−w·w +

(Ce·w)2

Te

]
.

It is interesting to notice that, whatever the choice of w, the part of the hydro-
dynamic velocity of the full mixture

(ρh + ε2ρe)Mhv = ρhMhvh + ε2ρeve,

associated with the electrons ρeve will be splitted into two parts at the same order
of the multiscale expansion

ve = Mhvh + Ve + O(ε) = Mh(vh + w) + Ve
w + O(ε), Ve

w = Ve −Mhw,

with ρeVe
w =

∫
Cef

w0
e φw

e dCe. Thus, as opposed to the classical expansion, since
no momentum constraint is to be found for the electrons, the definition of the mix-
ture hydrodynamic velocity does not allow to uniquely define the electron diffusion
velocities. In any case, the hydrodynamic velocity of the mixture is vh at order ε−1.
It is then necessary to properly delineate the possible choices for the w velocity,
which should not be confused with a change of referential, since it only influences
the electron Chapman-Enskog expansion.

Lemma 4.1. In the chosen frame of reference, any velocity w leads to a new

definition of φw
e for which property 4.1 is preserved and thus leads to an equivalent

resolubility condition for φw
e as for φe . Moreover, the resolution of φw

e is completely

equivalent to the resolution of φe .

Proof. It is sufficient to note that the difference δφw
e = φw

e −φe = −MhCe·w/Te is

orthogonal to the collisional invariants 〈〈f0
e δφ

w
e , ψ̂

l
e〉〉e = 0, l ∈ {1, 2}. �

It is interesting to note that for our choice of moving frame u = vh, the electron
thermalization naturally occurs in the “appropriate” referential in close connection
to the physics of the problem and there is no need to use the abovementioned
property in order to conduct the resolution at order ε−1, therefore, we take w = 0
in the following. We will also have to check the validity of such a strategy at higher
orders; we will come back to this point in Section 4.5.

As mentioned earlier, the partial collision operators J0
ei, i ∈ H, are not orthogonal

to the space spanned by the vector Ce. However, an electron momentum relation
is obtained by projecting eq. (4.9) onto this space. First, the electron pressure,
diffusion velocity, mean velocity, conduction current density in the mean heavy-
particle velocity frame, and conduction current density in the inertial frame are
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defined as

pe = neTe,(4.15)

Ve =
1

ne

∫
Cef

0
e φe dCe, ve = Mhvh + Ve ,(4.16)

Je = neqeVe , je = neqeve.(4.17)

Then, we have the following proposition.

Proposition 4.3. Considering f0
e given by eq. (4.7) and f0

i , i ∈ H, by eq. (4.8),
the zero-order momentum exchanged between electrons and heavy particles reads

(4.18)
∑

j∈H

〈〈J0
ej(f

0
e φe , f

0
j ),Ce〉〉e =

1

Mh
∂xpe −

neqe
Mh

E − δb1je∧B.

Proof. Equation (4.9) is projected onto the space spanned by the vector Ce

−〈〈f0
e Fe(φe ),Ce〉〉e = 〈〈D̂−1

e ,Ce〉〉e + δb1qe〈〈∂C
e
(f0

e φe )·(Ce∧B),Ce〉〉e.

Then, eq. (4.18) is readily established by simplifying the left-hand-side by means
of eq. (2.36), 〈〈Ce, Jee〉〉e = 0, at order ε and by integrating by parts the right-hand-
side. �

The zero-order momentum exchanged between electrons and heavy particles is
thus expressed in terms of the electron pressure and electric force. In addition, the
following lemma allows for the momentum exchanged between heavy particles and
electrons to be calculated at order zero.

Lemma 4.2. Considering f0
e given by eq. (4.7) and f0

i , i ∈ H, by eq. (4.8), the net

zero-order momentum exchanged between electrons and heavy particles vanishes,

i.e.

〈〈J1
he

(
f0
h , f

0
e φe

)
, ψ̂nh+ν

h 〉〉
h

+
∑

j∈H

〈〈J0
ej

(
f0
e φe , f

0
j

)
, Ceν〉〉e = 0,(4.19)

for ν ∈ {1, 2, 3}.

Proof. Equation (4.19) is derived from eq. (3.19) at order ε2 based on corollaries
3.1, 3.2, 3.4, and 3.5. �

Moreover, the zero-order momentum exchanged between heavy particles and
electrons can be directly calculated after introducing the average force of an electron
acting on a heavy particle i given by

(4.20) Fie =

∫
Q

(1)
ie (|γe|

2) |γe|γe f
0
e (γe)φe (γe) dγe, i ∈ H.

Lemma 4.3. Considering f0
e given by eq. (4.7) and f0

i , i ∈ H, by eq. (4.8), the

zero-order momentum exchanged between heavy particles and electrons reads

〈〈J1
he

(
f0
h , f

0
e φe

)
, ψ̂nh+ν

h 〉〉
h

=
∑

i∈H

niFieν ,(4.21)

for ν ∈ {1, 2, 3}.

We will see that the average forces Fie, i ∈ H, contribute to the heavy-particle
diffusion driving forces and, in particular, yielding to anisotropic diffusion velocities
for the heavy particles in the case b = 1.
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4.4. Order ε0: heavy-particle Euler equations. We derive Euler equations
based on the heavy-particle Boltzmann equation (4.6) at order ε0 corresponding to
the macroscopic time scale t0. First, a linearized collision operator is introduced
for heavy-particles.

Definition 4.2. The linearized collision operator Fh = (Fi)i∈H reads

Fi(φh) = −
1

f0
i

∑

j∈H

[
Jij(f

0
i φi , f

0
j ) + Jij(f

0
i , f

0
j φj )

]
, i ∈ H,

where f0
i , i ∈ H, is given by eq. (4.8), for a family φh = (φi)i∈H.

The first non-vanishing term of the partial collision operator Jhe is not included
in the linearized collision operator since it does not exhibit any property of orthogo-
nality to Ih for the scalar product 〈〈·, ·〉〉h. The kernel of Fh is given in the following
property, the proof of which is omitted since it is a well-established result [25].

Property 4.2. The kernel of the linearized collision operator Fh is the space of

scalar collisional invariants Ih.

Furthermore, we define the heavy-particle pressure, ph = nhTh, the mixture
pressure, p = pe + ph, the heavy-particle charge, nhqh =

∑
j∈H njqj , the mixture

charge, nq = neqe +nhqh, and the total current density I0 = nhqh vh +neqeve/Mh.
The energy exchanged between heavy particles and electrons reads at order zero

(4.22) ∆E0
h = 〈〈J2

he(f
0

h , f
0
e ), ψ̂nh+4

h 〉〉h.

This quantity is of the order of the thermal energy divided by the macroscopic time
scale, n0kBT

0/t0. A more accurate expression is calculated by means of corollary 3.2

(4.23) ∆E0
h = (Te − Th)

∑

j∈H

nj
νje

mj
.

Then, the heavy-particle Euler equations are derived in the following proposition.

Proposition 4.4. If φh is a solution to eq. (4.6) at order ε0, i.e.

(4.24) f0
i Fi(φh) = −D

0
i (f0

i ) + Ĵ0
i , i ∈ H,

where f0
e is given by eq. (4.7), f0

i , i ∈ H, by eq. (4.8), and φe by eqs. (4.9)-(4.10),
and if f0

h φh = (f0
i φi )i∈H satisfies the constraints

(4.25) 〈〈f0
h φh, ψ̂

l
h〉〉h = 0, l ∈ {1, . . . , nH + 4},

then, the zero-order conservation equations of heavy-particle mass, momentum, and

energy read

∂tρi + ∂x·(ρivh) = 0, i ∈ H,(4.26)

∂t(ρhvh) + ∂x·(ρhvh⊗vh + 1
M2

h

pI) = 1
M2

h

nqE + δb1I0∧B,(4.27)

∂t(ρheh) + ∂x· (ρhehvh) = −ph∂x·vh + ∆E0
h.(4.28)

Proof. Fredholm’s alternative [30] represents the solvability condition of eq. (4.24)

〈〈D0
h , ψ̂

l
h〉〉h = 〈〈Ĵ0

h, ψ̂
l
h〉〉h,
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l ∈ {1, . . . , nH + 4}. Integrating by parts the left-hand-side and simplifying the
right-hand-side based on theorem 3.1 and corollary 3.2, one obtains eqs. (4.26),
(4.28), and the following momentum conservation equation
(4.29)

−Mhρh
Dvh

Dt
−

1

Mh
∂xph +

1

Mh
nhqhE′ + 〈〈J1

he

(
f0
h , f

0
e φe

)
, (ψ̂nh+ν

h )ν∈{1,2,3}〉〉h = 0.

Simplifying the latter equation by means of the heavy-particle mass conservation
equation ∂tρh + ∂x·(ρhvh) = 0 and lemma 4.2, yields eq. (4.27). �

4.5. Order ε0: zero-order electron drift-diffusion equations. We derive zero-
order electron drift-diffusion equations and a momentum relation based on the
electron Boltzmann equation (4.5) at order ε0 corresponding to the macroscopic
time scale t0. We also prove, at this order of the resolution, that any nonzero shift
introduced at the previous order leads to a series of difficulties at the present order.
It thus demonstrates that the initial choice of referential leads to a quite natural
resolution at sucessive orders.

With the previously obtained Maxwell-Boltzmann electron distribution function
in eq. (4.7) we introduce the electron heat flux

(4.30) qe =

∫
1

2
Ce·CeCef

0
e φe dCe.

The energy exchanged between electrons and heavy particles reads at order zero

(4.31) ∆E0
e =

∑

j∈H

〈〈J2
ej(f

0
e , f

0
j ), ψ̂2

e 〉〉e.

The latter expression is calculated by means of eq. (3.20) at order ε2

(4.32) ∆E0
e + ∆E0

h = 0,

where ∆E0
h is given by eq. (4.23). Then, the zero-order electron drift-diffusion

equations are derived in the following proposition.

Proposition 4.5. If φ2
e is a solution to eq. (4.5) at order ε0, i.e.

(4.33) f0
e Fe(φ

2
e ) + δb1qe∂C

e
(f0

e φ
2
e )·Ce∧B = −D̂

0
e (f0

e , φe ) + Jee(f
0
e φe , f

0
e φe ) + Ĵ0

e ,

where f0
e is given by eq. (4.7), f0

i , i ∈ H, by eq. (4.8), φe by eqs. (4.9)-(4.10), and

φi , i ∈ H by eqs. (4.24)-(4.25), and if f0
e φ

2
e satisfies the constraints

(4.34) 〈〈f0
e φ

2
e , ψ̂

l
e〉〉e = 0, l ∈ {1, 2},

then, the zero-order conservation equations of electron mass and energy read

∂tρe + ∂x·
(
ρevh + 1

Mh
ρeVe

)
= 0,(4.35)

∂t(ρeee) + ∂x· (ρeeevh) = −pe∂x·vh − 1
Mh

∂x·qe + 1
Mh

Je·E
′ + ∆E0

e .(4.36)

Proof. Fredholm’s alternative [30] represents the solvability condition of eq. (4.33)

〈〈D̂0
e , ψ̂

l
e〉〉e = 〈〈Ĵ0

e , ψ̂
l
e〉〉e, l ∈ {1, 2}.

Integrating by parts the left-hand-side and simplifying the right-hand-side based
on theorem 3.2 and corollary 3.5 yields eqs. (4.35) and (4.36). �
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Lemma 4.4. In the chosen frame of reference, any velocity w leads to a new defi-

nition of φw2
e in eq. (4.14), for which property 4.1 is preserved, and thus leads to an

equivalent resolubility condition for φw2
e as for φ2

e . However, the resolution of φw2
e

is not equivalent to the resolution of φ2
e : in particular, the expansion corresponding

to w 6= 0 yields a non standard Chapman-Enskog expansion where the second-order

distribution perturbation does not satisfy the scalar constraints (4.34).

Proof. The difference between φw2
e and φ2

e reads (4.14)

δφw2
e = φw2

e − φ2
e = −

Mh

Te
(Ce·w)φe +

M2
h

2Te

[
w·w +

(Ce·w)2

Te

]
.

The projection of δφw2
e onto the collisional invariants is given by

〈〈f0
e δφ

w2
e , ψ̂1

e 〉〉e = Mh

Te
new·(Mhw − Ve),

〈〈f0
e δφ

w2
e , ψ̂2

e 〉〉e = Mhw·(2Mhnew − 1
Te

qe).

The difference δφw2
e is then orthogonal to the collisional invariants if and only if

w = 0. To conclude, the resolution of φw2
e yields a linearized Boltzmann equation

where the right-member is orthogonal to the collisional invariants—a direct calcu-
lation shows that Fe(δφ

w2
e )+ δb1qe∂C

e
(δφw2

e )·Ce∧B is orthogonal to the collisional

invariants—whereas the scalar constraints on the unknown function φw2
e are not

zero. �

Consequently, for the reasons invoked so far, we will not try to shift the center
of the Maxwell-Boltzmann distribution for electrons and stick with w = 0 at any
order.

Then, we define the electron viscous tensor, second-order electron diffusion ve-
locity, and second-order current density

Πe =

∫
Ce⊗Cef

0
e φe dCe,(4.37)

V 2
e =

1

ne

∫
Cef

0
e φ

2
e dCe,(4.38)

J2
e = neqeV

2
e .(4.39)

A first-order electron momentum relation is given in the following proposition.

Proposition 4.6. Considering f0
e given by eq. (4.7), f0

i , i ∈ H, by eq. (4.8), φe by

eqs. (4.9)-(4.10), φi , i ∈ H, by eqs. (4.24)-(4.25), and φ2
e by eqs. (4.33)-(4.34), the

first-order momentum exchanged between electrons and heavy particles reads

(4.40)
∑

j∈H

〈〈J0
ej(f

0
e φ

2
e , f

0
j ),Ce〉〉e + 〈〈Ĵ0

e ,Ce〉〉e = 1
Mh

∂x·Πe −
(
δb0je + δb1J

2
e

)
∧B.

Proof. Equation (4.33) is projected onto the space spanned by the vector Ce

−〈〈f0
e Fe(φ

2
e ),Ce〉〉e + 〈〈Ĵ0

e ,Ce〉〉e = D̂
0
e (f0

e , φe ) + δb1qe〈〈∂C
e
(f0

e φ
2
e )·Ce∧B,Ce〉〉e.

Then, eq. (4.40) is readily established by simplifying the left-hand-side by means of
eq. (2.36), 〈〈Ce, Jee〉〉e = 0, at order ε2 and by integrating by parts the right-hand-
side. �
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The first-order momentum exchanged between electrons and heavy particles is
thus expressed in terms of the electron viscous tensor and electric force. Besides,
the following lemma allows for the momentum exchanged between heavy particles
and electrons to be calculated at order ε.

Lemma 4.5. Considering f0
e given by eq. (4.7), f0

i , i ∈ H, by eq. (4.8), φe by

eqs. (4.9)-(4.10), φi , i ∈ H, by eqs. (4.24)-(4.25), and φ2
e by eqs. (4.33)-(4.34), the

net first-order momentum exchanged between electrons and heavy particles vanishes,

i.e.,

(4.41) 〈〈Ĵ1
h, ψ̂

nh+ν
h 〉〉h +

∑

j∈H

〈〈J0
ej(f

0
e φ

2
e , f

0
j ), Ceν〉〉e + 〈〈Ĵ0

e , Ceν〉〉e = 0, ν ∈ {1, 2, 3}.

Proof. Equation (4.41) is derived from eq. (3.19) at order ε2 based on corollaries
3.1-3.6. �

4.6. Order ε: heavy-particle Navier-Stokes equations. We derive Navier-
Stokes equations based on the heavy-particle Boltzmann equation (4.6) at order ε.
First, we introduce the diffusion velocity and mean velocity of species i ∈ H,

(4.42) Vi =
1

ni

∫
Cif

0
i φi dCi, vi = vh + ε

Mh
Vi , i ∈ H,

the heavy-particle viscous tensor,

(4.43) Πh =
∑

j∈H

∫
mjCj⊗Cjf

0
j φj dCj ,

the second-order electron mean velocity,

(4.44) v2
e = Mhvh + Ve + εV 2

e ,

the heavy-particle heat flux,

(4.45) qh =
∑

j∈H

∫
1

2
mjCj ·CjCjf

0
j φj dCj ,

the heavy-particle conduction current density in the mean heavy-particle veloc-
ity frame, the heavy-particle conduction current density in the inertial frame, the
second-order electron conduction current density in the inertial frame, and the total
current density,

(4.46) Jh =
∑

j∈H

njqjVj , jh =
∑

j∈H

njqjvj , j2
e = neqev

2
e , I = jh +

1

Mh
j2
e .

Furthermore, we define the energy exchanged between heavy particles and electrons
reads at order ε

(4.47) ∆E1
h = 〈〈J1

he(f
0

h φh , f
0
e φe ), ψ̂nh+4

h 〉〉h + 〈〈J2
he(f

0
h , f

0
e φe ), ψ̂nh+4

h 〉〉h

+ 〈〈J2
he(f

0
h φh , f

0
e ), ψ̂nh+4

h 〉〉h.

The first term can be calculated by means of theorem 3.1

(4.48) 〈〈J1
he(f

0
h φh , f

0
e φe ), ψ̂nh+4

h 〉〉
h

=
∑

j∈H

njVj ·Fje,

and the two other terms will vanish. Then, we establish the following lemma used
in the derivation of the heavy-particle Navier-Stokes equations.
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Lemma 4.6. Considering f0
e given by eq. (4.7), f0

i , i ∈ H, by eq. (4.8), φe by

eqs. (4.9)-(4.10), φi , i ∈ H, by eqs. (4.24)-(4.25), and φ2
e by eqs. (4.33)-(4.34), the

mass exchanged at order ε between heavy particles and electrons vanishes, i.e.,

(4.49) 〈〈Ĵ1
h, ψ̂

l
h〉〉h = 0, l ∈ {1, . . . , nh}.

Proof. Equation (4.49) is readily derived from eq. (3.18) at order ε3. �

Proposition 4.7. If φ2
h is a solution to eq. (2.30) at order ε1, i.e.

(4.50) f0
i Fi(φ

2
h ) = −D

1
i (f0

i , φi ) +
∑

j∈H

Jij(f
0

i φi , f
0

j φj ) + Ĵ1
i , i ∈ H,

where f0
e is given by eq. (4.7), f0

i , i ∈ H, by eq. (4.8), φe by eqs. (4.9)-(4.10), φi ,

i ∈ H, by eqs. (4.24)-(4.25), and φ2
e by eqs. (4.33)-(4.34), and if f0

h φ
2
h = (f0

i φ
2
i )i∈H

satisfies the constraints

(4.51) 〈〈f0
hφ

2
h , ψ̂

l
h〉〉h = 0, l ∈ {1, . . . , nH + 4},

then, the first-order conservation equations of heavy-particle mass, momentum, and

energy read

(4.52) ∂tρi + ∂x·(ρivh + ε
Mh

ρiVi ) = 0, i ∈ H,

(4.53) ∂t(ρhvh) + ∂x·(ρhvh⊗vh + 1
M2

h
pI) = − ε

M2

h
∂x·(Πh + Πe) + 1

M2

h
nqE

+ [δb0I0 + δb1I]∧B,

(4.54) ∂t(ρheh) + ∂x·(ρhehvh) = −(phI + εΠh):∂xvh − ε
Mh

∂x·qh + ε
Mh

Jh·E
′

+ ∆E0
h + ε∆E1

h.

Proof. The Chapman-Enskog method allows for the following conservation equa-
tions to be derived

〈〈D0
h , ψ̂

l
h〉〉h + ε〈〈D1

h , ψ̂
l
h〉〉h = 〈〈Ĵ0

h, ψ̂
l
h〉〉h + ε〈〈Ĵ1

h, ψ̂
l
h〉〉h,

l ∈ {1, . . . , nH + 4}. Integrating by parts the left-hand-side and simplifying the
right-hand-side based on the proof of heavy-particle Euler eqs. (4.26)-(4.28), propo-
sition 4.6, lemma 4.5, and lemma 4.6, one obtains eqs. (4.52)-(4.54).

�

Remark 4.1. When one single type of heavy particles is considered, the first-order
energy exchange term, heavy-particle diffusion velocities, and conduction currrent
degenerate, ∆E1

h = 0, Vi = 0, i ∈ H, Jh = 0, the total current is simplified
as well, I = nqvh + neqeVe/Mh. Therefore, we retrieve the formalism of Degond
and Lucquin. In such a case, the Navier-Stokes system can be coupled to the
system of drift-diffusion equations for the electrons obtained at order ε0 in the
previous section. Since no energy exchange occurs at order ε1, there is no need
to resolve the electrons at order ε1 to obtain a conservative model which insures
the positivity of the entropy production. However, this oversimplified case hides
the details of the complex interaction between the electron and the heavy-particle
mixture which is exhibited by the previous system of conservation eqs. (4.52)-(4.54).
For a multicomponent mixture of heavy particles, thus, we have to extend the model
obtained so far for the electron one order further, as done in the following section.
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4.7. Order ε: first-order electron drift-diffusion equations . We derive first-
order electron drift-diffusion equations based on the electron Boltzmann equa-
tion (4.5) at order ε1.

Then, we define the second-order electron heat flux

(4.55) q2
e =

∫
1

2
Ce·CeCef

0
e φ

2
e dCe.

The energy exchanged between electrons and heavy particles at order ε is caculated
by means of eq. (3.20) at order ε3

(4.56) ∆E1
e + ∆E1

h = 0,

where ∆E1
h is given by eq. (4.47). Moreover, we establish the following lemma used

in the derivation of the first-order electron drift-diffusion equations.

Lemma 4.7. Considering f0
e given by eq. (4.7), f0

i , i ∈ H, by eq. (4.8), φe by

eqs. (4.9)-(4.10), φi , i ∈ H, by eqs. (4.24)-(4.25), and φ2
e by eqs. (4.33)-(4.34), the

mass exchanged at order ε between electrons and heavy particles vanishes, i.e.,

(4.57) 〈〈Ĵ1
e , ψ̂

1
e 〉〉e = 0.

Proof. Equation (4.57) is readily derived from eq. (3.18) at order ε3. �

Proposition 4.8. If φ3
e is a solution to eq. (4.5) at order ε1, i.e.

(4.58) f0
e Fe

(
φ3
e

)
+ δb1qe∂C

e

(
f0
e φ

3
e

)
·Ce∧B = −D̂

1
e (f0

e , φe , φ
2
e ) + Jee(f

0
e φ

2
e , f

0
e φe )

+ Jee(f
0
e φe , f

0
e φ

2
e ) + Ĵ1

e ,

where f0
e is given by eq. (4.7), f0

i , i ∈ H, by eq. (4.8), φe by eqs. (4.9)-(4.10), φi,

i ∈ H, by eqs. (4.24)-(4.25), φ2
e by eqs. (4.33)-(4.34), and φ2

i , i ∈ H, by eqs. (4.50)-
(4.51), and if f0

e φ
3
e satisfies the constraints

(4.59) 〈〈f0
e φ

3
e , ψ̂

l
e〉〉e = 0, l ∈ {1, 2},

then, the first-order conservation equations of electron mass and energy read

(4.60) ∂tρe + ∂x·
[
ρe

(
vh + 1

Mh
(Ve + εV 2

e )
)]

= 0,

(4.61) ∂t(ρeee) + ∂x· (ρeeevh) = −pe∂x·vh − 1
Mh

∂x·
(
qe + εq2

e

)

+ 1
Mh

(
Je + εJ2

e

)
·E′ + δb0εMhJe·vh∧B + ∆E0

e + ε∆E1
e .

Proof. The Chapman-Enskog method allows for the following conservation equa-
tions to be derived

〈〈D̂0
e , ψ̂

l
e〉〉e + ε〈〈D̂1

e , ψ̂
l
e〉〉e = 〈〈Ĵ0

e , ψ̂
l
e〉〉e + ε〈〈Ĵ1

e , ψ̂
l
e〉〉e, l ∈ {1, 2}.

Integrating by parts the left-hand-side and simplifying the right-hand-side based
on lemma 4.7, one obtains eqs. (4.60)-(4.61). The added terms associated with
the perturbation of the mean electron velocity at order ε1 do not bring in any
contribution to the conservation equations. �

Before switching to Section 5 in order to evaluate the expression of the transport
fluxes, we briefly come back to question of the influence of the choice of the initial
frame of reference.
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4.8. About the necessity of conducting the expansion in the vh frame.

As mentioned earlier, the mean heavy-particle velocity frame is not commonly
adopted in the literature to conduct the Chapman-Enskog expansion. We have
already underlined that the natural choice of the hydrodynamic velocity frame
is not appropriate insofar as the global hydrodynamic velocity v depends on the
parameter ε. Besides, the choice of the inertial frame provides a vanishing mean
velocity of the electrons. In fact Degond and Lucquin [20] and Lucquin [36, 37]
reach such a conclusion. However, since the expansion of the collision operators in
terms of ε depends on the initial choice of referential (see remark 3.1) and since the
choice of the inertial frame prevents some terms from vanishing (such as J1

ej(f
0
e , f

0
j )),

we will first show that these authors compensate the presence of non-zero terms
in the integro-differential equations by the help of the w velocity on the electron
introduced in Section 4.3. This is affordable for the resolution of φe , as proved
in the following. We then investigate if such an approach can be extended to the
resolution of φ2

e .
Let us review the Chapman-Enskog expansion in a general frame. Considering

a frame moving with the velocity u, the peculiar velocities are given by

(4.62) Cu
e = ce − εMhu, Cu

i = ci −Mhu, i ∈ H.

The space of scalar electron collisional invariants Iu
e is spanned by the following

elements {
ψ̂u,1

e = 1,

ψ̂u,2
e = 1

2Cu
e ·Cu

e ,

the space of scalar heavy-particle collisional invariants Iu
h by






ψ̂u,j
h =

(
miδij

)
i∈H

, j ∈ H,

ψ̂u,nH+ν
h =

(
miC

u
iν

)
i∈H

, ν ∈ {1, 2, 3},

ψ̂u,nH+4
h =

(
1
2miC

u
i ·Cu

i

)
i∈H

,

and the macroscopic properties are expressed as partial scalar products of the dis-
tribution functions and the collisional invariants

{
〈〈fu

e , ψ̂
u,1
e 〉〉e = ρe,

〈〈fu
e , ψ̂

u,2
e 〉〉e = 3

2neTe,

and





〈〈fu
h , ψ̂

u,i
h 〉〉h = ρi, i ∈ H,

〈〈fu
h , ψ̂

u,nH+ν
h 〉〉h = ρhMh(vhν − uν), ν ∈ {1, 2, 3},

〈〈fu
h , ψ̂

u,nH+4
h 〉〉h = 3

2nhTh + 1
2M

2
hρh(u − vh)·(u − vh).

Similarly to the low Mach number approximation for neutral gases, we decouple for
the electrons the thermal energy from the mixture kinetic energy.

Then, we reword the Chapman-Enskog expansion of Section 4 in the u frame.
First, let us now formulate two propositions from the begining of this section.

Proposition 4.9 (Order ε−2: electron thermalization). The zero-order electron

distribution function fu0
e , solution to eq. (4.5) at order ε−2, i.e., D

−2
e (fu0

e ) =
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J−2
e , that satisfies the scalar constraints 〈〈fu0

e , ψ̂l
e〉〉e = 〈〈fu

e , ψ̂
l
e〉〉e, l ∈ {1, 2}, is a

Maxwell-Boltzmann distribution function at the electron temperature

(4.63) fu0
e = ne

(
1

2πTe

)3/2

exp

(
−

1

2Te
Cu

e ·Cu
e

)
.

Proof. The proof is identical to the one of proposition 4.1. �

Proposition 4.10 (Order ε−1: heavy particle thermalization). Considering fu0
e

given by eq. (4.63), the zero-order family of heavy-particle distribution functions

fu0
h solution to eq. (4.6) at order ε−1, i.e., J−1

i = 0, i ∈ H, that satisfies the scalar

constraints 〈〈fu0
h , ψ̂l

h〉〉h = 〈〈fu
h , ψ̂

l
h〉〉h, l ∈ {1, . . . , nH+4}, is a family of Maxwell-

Boltzmann distribution functions at the heavy-particle temperature

(4.64)

fu0
i = ni

(
mi

2πTh

)3/2

exp
(
−
mi

2Th

[
Cu

i −Mh(vh−u)
]
·
[
Cu

i −Mh(vh−u)
])
, i ∈ H.

Proof. Multiplying the equation J
−1
i = 0 by ln

[
(2π)3/2n0fu0

i (m3
iQ

0
h)
]
, where the

heavy-particle translational partition function reads Q0
h = (2πm0

hkBT
0/h2

P)3/2, in-
tegrating over dCi, and summing over the heavy particles yields the entropy pro-
duction ∑

i,j∈H

Υ0
ij +

∑

i∈H

Υ0
ie = 0,

where the partial entropy production terms read

Υ0
ij =

∫
σij |Ci − Cj | Ω(fu0′

i fu0′
j , fu0

i fu0
j ) dCidCjdω, i, j ∈ H,

Υ0
ie = 1

mi

∫
∂Ci

fu0
i ln

[
(2π)3/2n0fu0

i

m3

i Q0

h

]
dCi·

∫
Q

(1)
ie (|γe|

2) |γe|γe f
u0
e dγe, i ∈ H.

Integrating by parts, the terms Υ0
ie, i ∈ H, vanish and we conclude as usual. �

At this step, two properties appear: the electron thermalization takes place in
any velocity frame, whereas the zero-order heavy particle distribution functions do
not depend on the selected frame. Indeed, we clearly have fu0

i = f0
i , i ∈ H, for all

velocity u.
Considering then the Boltzmann equation at order ε−1, the electron first per-

turbation φu
e satisfies the linearized Boltzmann equation

(4.65) Fe(φ
u
e ) + δb1qe∂Cu

e
(φu

e )·Ce∧B = −
1

f0
e

u D̂
−1
e (fu0

e )

+
∑

i∈H

ni
Mh

Te
Q

(1)
ei (|Cu

e |2)|Cu
e |(vh − u)·Cu

e ,

with the constraints

(4.66) 〈〈fu0
e φu

e , ψ̂
u,l
e 〉〉e = 0, l ∈ {1, 2}.

The right-member of eq. (4.65) satisfies the constraint to be orthogonal to the
collisional invariants, that is the solvability condition. Moreover, in order to avoid
treating the newly introduced term in the integro-differential equation, one can use
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the absence of momentum constraints on the electron distribution function and
introduce a velocity shift w = vh − u and notice that [36]

(4.67) Fe(C
u
e ) = −

∑

i∈H

niQ
(1)
ei (|Cu

e |2)|Cu
e |Cu

e ,

we thus obtain that the conduction of the Chapman-Enskog expansion in the u

frame is equivalent to that in the vh frame with

φu
e = φe +

Mh

Te
(vh − u)·Cu

e .

As already mentioned in Section 4.3, the electron velocity ve can be splitted into
two parts at the same order of the multiscale expansion ve = Mhu + Ve

u + O(ε),
with Ve

u = Ve +Mh(vh − u). We have thus provided a nice interpretation of the
algebra proposed in Lucquin [36] where the use of w = vh allows to eliminate the
presence of the term

∑
j∈H J1

ej(f
u0
e , fu0

j ) in the integro-differential equation for φu
e

obtained when working in the inertial frame u = 0.
As a conclusion, it amounts to “coming back” into the mean heavy-particle veloc-

ity referential. Let us underline at this point, that the set of equations obtained for
the heavy-particle Euler equations coupled to the zero-order electron drift-diffusion
equations is identical to the set obtained in Lucquin [36]. While still equivalent
at this order of the expansion to our study and yielding the same macroscopic
equations, it leads to an artificial complexity. This is a first step in the justifica-
tion of the choices made in Section 2.4 in terms of the referential and associated
simplified algebra. However, at order ε, which yields heavy-particle Navier-Stokes
equations coupled to first-order electron drift-diffusion equations, we realize that
such a compensation used through the velocity shift w has a nasty influence on the
structure of the expansion at the next order (see Lemma 4.4) and hence will make
the resolution of φ2

e difficult. Concerning the heavy-particle Boltzmann equation
at order ε0, the first-order perturbation functions φu

i , i ∈ H, satisfy too eq. (4.24),
that implies that φu

i = φi , i ∈ H.
Finally, the second-order electron perturbation φu2

e satisfies

(4.68) Fe(φ
u2
e ) + δb1qe∂C

e
(φu2

e )·Ce∧B = −
1

fu0
e

D̂
0
e (fu0

e , φu
e )

+
1

f0
e

u Jee(f
u0
e φu

e , f
u0
e φu

e ) +
1

fu0
e

∑

j∈H

[
J1
ej(f

u0
e φu

e , f
u0

j ) + J2
ej(f

u0
e , fu0

j )
]
,

with the constraints

(4.69) 〈〈f0
e φ

u2
e , ψ̂u,l

e 〉〉e = 0, l ∈ {1, 2}.

In the general case, the right-member of eq. (4.68) is not orthogonal to the collisional
invariants, and the solvability condition is not satisfied. More precisely, the two first

terms D̂0
e (fu0

e , φu
e )/fu0

e and Jee(f
u0
e φu

e , f
u0
e φu

e )/fu0
e satisfy the constraints for all

velocity u, whereas a lengthly calculation yields that the projection of the last term

over the collisional invariants ψ̂u,l
e , l ∈ {1, 2}, does not vanish, except for u = vh.

As a conclusion on this matter, if the velocity u is not equal to vh, that is to say
if the selected frame is not the mean-heavy particle velocity frame, the structure
of the expansion of the collision operators in terms of ε prevents from solving for
φu2
e . Moreover, the “trick” used in Degond and Lucquin at previous order for
φe also brings in additional difficulties at subsequent order through the residual
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terms associated with w. The choice of the mean heavy-particle velocity frame not
only yields a simplified algebra—the parity properties of the distribution functions
are in accordance to the expression of the multiscale collisional operators— but
is mandatory in order to obtain the well-posed second-order problem for electron
distribution, second-order electron diffusion velocity, and heat flux being crucial to
balance the global energy equation. This statement fully justifies the choices made
in this contribution.

5. Transport coefficients

In this section, we investigate the electron and heavy-particle perturbation func-
tions in order to obtain the expressions of the transport fluxes. We only treat the
case b = 1 corresponding to a strong magnetization (inducing anisotropic trans-
port coefficients), the case b = 0 corresponding to a weak magnetization will be
investigated in a forthcoming publication.

5.1. Extra notations for anisotropy. We introduce some extra notations in
order to conveniently express the solution to the Boltzmann equation in the presence
of a strong magnetic field. First, we define a unitary vector for the magnetic field
B = B/|B| and also three direction matrices

M‖ = B⊗B, M⊥ = I − B⊗B, M⊙ =




0 −B3 B2

B3 0 −B1

−B2 B1 0


 ,

so that we have for any vector x in three dimensions

x‖ = M‖x = x·B B, x⊥ = M⊥x = x − x·B B, x⊙ = M⊙x = B∧x.

In the (x,B) plane, the vector x‖ is the component of x parallel to the magnetic
field and x⊥ its component perpendicular to the magnetic field. Thus, we have
x = x‖ + x⊥. The vector x⊙ lies in the direction transverse to the (x,B) plane.
The three vectors x‖, x⊥, and x⊙ are then mutually orthogonal. We will show
that the transport properties are anisotropic. In the weak magnetization limit, the
transport properties are identical in the parallel and perpendicular directions and
vanish in the transverse direction.

5.2. First-order electron perturbation function. The first-order perturbation
function φe is a solution to eq. (4.9)

(5.1) Fe(φe ) + qe∂C
e
(φe )·Ce∧B = Ψe,

and satisfies the constraints (4.10), where Ψe is given by the expression Ψe =

−D̂
−1
e (f0

e )/f0
e and f0

e by eq. (4.7). After some algebra based on the expression of
f0
e , the quantity Ψe is transformed into

(5.2) Ψe = −pe ΨDe

e ·de − Ψλ̂e

e ·∂x

( 1

Te

)
,

where the electron diffusion driving force de is defined by the relation

(5.3) de =
1

pe
∂xpe −

neqe
pe

E′,

and with

(5.4) ΨDe

e =
1

Mhpe
Ce, Ψλ̂e

e =
1

Mh

(5

2
Te −

1

2
Ce·Ce

)
Ce.
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The right-hand-side of eq. (5.1) does not depend on the heavy-particle driving
forces. Therefore, the first-order electron perturbation function is decoupled from
the heavy-particles.

The existence and uniqueness of a solution to eq. (5.2) is given in the following
proposition.

Proposition 5.1. The scalar function φe given by

(5.5) φe = −peℜ
[
M‖ϕDe(1)

e + (M⊥ + ıM⊙)ϕDe(2)
e

]
·de

−ℜ
[
M‖ϕλ̂e(1)

e + (M⊥ + ıM⊙)ϕλ̂e(2)
e

]
·∂x

( 1

Te

)
,

is the solution to eq. (5.1) under the constraints (4.10), where the vectorial functions

ϕ
De(1)
e , ϕ

De(2)
e , ϕ

λ̂e(1)
e , and ϕ

λ̂e(2)
e are the solutions of the problem

Fe(ϕ
µ(1)
e ) = Ψµ

e ,(5.6)
(
Fe + ı|B|Fqe

e

)(
ϕµ(2)

e

)
= Ψµ

e ,(5.7)

where Fqe

e (u) = qeu, under the constraints

〈〈f0
e ϕµ(1)

e , ψ̂l
e〉〉e = 0, l ∈ {1, 2},(5.8)

〈〈f0
e ϕµ(2)

e , ψ̂l
e〉〉e = 0, l ∈ {1, 2},(5.9)

with µ ∈ {De, λ̂e}.

Proof. By linearity and isotropy of the linearized Boltzmann operator Fe, the de-
velopment (5.2) of Ψe can be followed through for φe as well

φe = −peφ
De

e ·de − φλ̂e

e ·∂x

( 1

Te

)
.

The functions φµ
e , µ ∈ {De, λ̂e}, are now vectorial and satisfy the equations

(5.10) Fe(φ
µ
e ) + qeCe∧B·∂C

e
φµ

e = Ψµ
e ,

and the scalar constraints

(5.11) 〈〈f0
e φµ

e , ψ̂
l
e〉〉e = 0, l ∈ {1, 2}.

We seek a solution φµ
e in the form

φµ
e = φµ(1)

e Ce + φµ(2)
e Ce∧B + φµ(3)

e Ce·B B,

where φ
µ(1)
e , φ

µ(2)
e and φ

µ(3)
e are scalar functions of Ce·Ce, (Ce·B)2 and B·B, since

φµ
e must be invariant under a change of coordinates. Substituting this expansion

in (5.10), and using isotropy, eq. (5.10) splits into three separate coupled equations

Fe(φ
µ(1)
e Ce) − qeB·Bφµ(2)

e Ce = Ψµ
e ,(5.12)

Fe(φ
µ(2)
e Ce∧B) + qeφ

µ(1)
e Ce∧B = 0,(5.13)

Fe(φ
µ(3)
e Ce·B B) + qeCe·Bφµ(2)

e B = 0.(5.14)

Further simplification is now obtained if, instead of three real quantities φ
µ(1)
e , φ

µ(2)
e

and φ
µ(3)
e , we introduce one real and one complex unknown defined by

ϕµ(1)
e = φµ(1)

e + B·Bφµ(3)
e , ϕµ(2)

e = φµ(1)
e + ı|B|φµ(2)

e .
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Upon introducing ϕ
µ(1)
e = ϕ

µ(1)
e Ce and ϕ

µ(2)
e = ϕ

µ(2)
e Ce, eqs. (5.12), (5.13), and

(5.14) can be conveniently rewritten in terms of these new functions

Fe(ϕ
µ(1)
e ) = Ψµ

e ,(5.6)
(
Fe + ı|B|Fqe

e

)(
ϕµ(2)

e

)
= Ψµ

e ,(5.7)

Furthermore, the constraints (5.11) are easily rewritten in the form

〈〈f0
e ϕµ(1)

e , ψ̂l
e〉〉e = 0, l ∈ {1, 2},(5.8)

〈〈f0
e ϕµ(2)

e , ψ̂l
e〉〉e = 0, l ∈ {1, 2}.(5.9)

Moreover, expression (5.5) for φe is immediately obtained using the recombination
formula

φµ
e = M‖ϕµ(1)

e + M⊥
R
(
ϕµ(2)

e

)
− M⊙

I
(
ϕµ(2)

e

)
.

�

The structure of the integral equation (5.6) under the constraints (5.8) is clas-
sical and the structure of equation (5.7) under the constraints (5.9) is similar in a
complex framework. More specifically, the operator Fe+ı|B|Fqe

e and the associated
bilinear form a(u,v) = 〈〈u, (Fe + ı|B|Fqe

e )v〉〉e, defined on the proper Hilbert space
of complex isotropic squared integrable functions associated with the scalar product
[·, ·], are such that |a(u,u)| ≥ [u,u], which yields existence and uniqueness thanks
to the constraints. Moreover, from the isotropy of the operator Fe, the expressions

ϕ
µ(1)
e and ϕ

µ(2)
e cannot be functions of (Ce·B)2 as shown in [25].

We further introduce the electron bracket operators [[·, ·]]e and ((·, ·))e associated
with the two operators Fe and Fqe

e . For any ξe and ζe, we define

[[ξe, ζe]]e = 〈〈f0
e ξe,Fe(ζe)〉〉e, ((ξe, ζe))e = |B| 〈〈f0

e ξe,F
qe

e (ζe)〉〉e.

These bracket operators develop into

[[ξe, ζe]]e = 1
2

∑

j∈H

nj

∫
σej(|Ce|

2,ω·e)|Ce|f
0
e (|Ce|e)

[ξe(|Ce|e) − ξe(|Ce|ω)]⊙[ζe(|Ce|e) − ζe(|Ce|ω)] dω de d|Ce|

+ 1
4

∫
σee1|Ce − Ce1|f

0
e f

0
e1

(ξe + ξe1 − ξ′e − ξ′e1)⊙(ζe + ζe1 − ζ′e − ζ′e1) dωdCedCe1,

and

((ξe, ζe))e = |B|qe

∫
f0
e ξe⊙ζ̄e dCe.

The bracket operator [[·, ·]]e is hermitian [[ξe, ζe]]e = [[ζe, ξe]]e, positive semi-definite
[[ξe, ξe]]e ≥ 0, and its kernel is spanned by the collisional invariants, i.e., [[ξe, ξe]]e =
0 implies that ξe is a (tensorial) collisional invariant, or in other words, all its
tensorial components are in the space Ie. The bracket operator ((·, ·))e is hermitian

((ξe, ζe))e = ((ζe, ξe))e and negative definite ((ξe, ξe))e < 0 if ξe 6= 0.

Remark 5.1. In the limit case B tends to zero, expression (5.5) for the first-order
electron perturbation function reduces to an isotropic form. We prove indeed that,
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for µ ∈ {De, λ̂e}, ϕ
µ(1)
e does not depend on the magnetic field and that ϕ

µ(2)
e

converges to ϕ
µ(1)
e for a vanishing magnetic field.

The expression of the electron diffusion velocity is given in the following propo-
sition.

Proposition 5.2. The electron diffusion velocity Ve reads

(5.15) Ve = −
(
D‖

eed
‖
e +D⊥

eed
⊥
e +D⊙

eed
⊙
e

)

−
(
θe‖e (∂xlnTe)

‖ + θe⊥e (∂xlnTe)
⊥ + θe⊙e (∂xlnTe)

⊙
)
,

where the diffusion coefficients and thermal diffusion coefficients are given by

(5.16)

D
‖
ee = 1

3peTeMh [[ϕ
De(1)
e ,ϕ

De(1)
e ]]e, θ

e‖
e = − 1

3Mh [[ϕ
De(1)
e ,ϕ

λ̂e(1)
e ]]e,

D⊥
ee = 1

3peTeMh [[ϕ
De(2)
e ,ϕ

De(2)
e ]]e, θe⊥e = − 1

3Mh [[ϕ
De(2)
e ,ϕ

λ̂e(2)
e ]]e,

D⊙
ee = − 1

3peTeMh((ϕ
De(2)
e ,ϕ

De(2)
e ))e, θe⊙e = 1

3Mh((ϕ
De(2)
e ,ϕ

λ̂e(2)
e ))e.

Note that the previous expressions are real, in particular for θe⊥e and θe⊙e , although

functions ϕ
De(2)
e and ϕ

λ̂e(2)
e are complex.

Proof. Using definition (4.16) of the diffusion velocity Ve and expression (5.4) of

ΨDe

e yields

Ve = TeMh〈〈Ψ
De

e , f0
e φe 〉〉e.

Further substituting expansion (5.5) into the latter equation, and using isotropy, we
obtain expression (5.15) for the diffusion velocity Ve , where the transport coefficients

are defined by D
‖
ee = 1

3peTeMh〈〈f
0
e ϕ

De(1)
e ,ΨDe

e 〉〉e, θ
e‖
e = − 1

3Mh〈〈f
0
e ϕ

λ̂e(1)
e ,ΨDe

e 〉〉e,

D⊥
ee + ıD⊙

ee = 1
3peTeMh〈〈f

0
e ϕ

De(2)
e ,ΨDe

e 〉〉e, θ
e⊥
e + ıθe⊙e = − 1

3Mh〈〈f
0
e ϕ

λ̂e(2)
e ,ΨDe

e 〉〉e.
Eqs. (5.6) and (5.7) for µ = De classically yields [25, 27]

D‖
ee = 1

3peTeMh [[ϕDe(1)
e ,ϕDe(1)

e ]]e,

D⊥
ee + ıD⊙

ee = 1
3peTeMh

(
[[ϕDe(2)

e ,ϕDe(2)
e ]]e − ı((ϕDe(2)

e ,ϕDe(2)
e ))e

)
,

θe‖e = − 1
3Mh [[ϕλ̂e(1)

e ,ϕDe(1)
e ]]e,

θe⊥e + ıθe⊙e = − 1
3Mh

(
[[ϕλ̂e(2)

e ,ϕDe(2)
e ]]e − ı((ϕλ̂e(2)

e ,ϕDe(2)
e ))e

)
.

As the bracket operators [[·, ·]]e and ((·, ·))e are hermitian, we immediately conclude

for expressions of D
‖
ee, D⊥

ee, D
⊙
ee and θ

e‖
e . Concerning θe⊥e and θe⊙e , we use the

imaginary part of eq. (5.7) for µ ∈ {De, λ̂e}, so that

ℑ
[(

Fe + ı|B|Fqe

e

)(
ϕµ(2)

e

)]
= 0, µ ∈ {De, λ̂e}.

Taking the scalar product of the previous equation with ϕ
µ(2)
e , µ ∈ {De, λ̂e} yields

the four following relations

[[ℜϕ
De(2)
e ,ℑϕ

λ̂e(2)
e ]]e + ((ℜϕ

De(2)
e ,ℜϕ

λ̂e(2)
e ))e = 0,

[[ℑϕ
De(2)
e ,ℑϕ

λ̂e(2)
e ]]e + ((ℑϕ

De(2)
e ,ℜϕ

λ̂e(2)
e ))e = 0,

[[ℑϕ
De(2)
e ,ℑϕ

λ̂e(2)
e ]]e + ((ℜϕ

De(2)
e ,ℑϕ

λ̂e(2)
e ))e = 0,

[[ℑϕ
De(2)
e ,ℜϕ

λ̂e(2)
e ]]e + ((ℜϕ

De(2)
e ,ℜϕ

λ̂e(2)
e ))e = 0.
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Then, a direct calculation implies that

ℜ[[ϕ
De(2)
e ,ϕ

λ̂e(2)
e ]]e = − 3

Mh
θe⊥e , ℜ((ϕ

De(2)
e ,ϕ

λ̂e(2)
e ))e = 3

Mh
θe⊙e ,

ℑ[[ϕ
De(2)
e ,ϕ

λ̂e(2)
e ]]e = 0, ℑ((ϕ

De(2)
e ,ϕ

λ̂e(2)
e ))e = 0,

so that θe⊥e = − 1
3Mh[[ϕ

De(2)
e ,ϕ

λ̂e(2)
e ]]e and θe⊙e = 1

3Mh((ϕ
De(2)
e ,ϕ

λ̂e(2)
e ))e. �

An alternative form of the diffusion velocity is given by

(5.17)

Ve = −D‖
ee

(
d‖

e + χe‖
e (∂xlnTe)

‖
)
−D⊥

ee

(
d⊥

e + χe⊥
e (∂xlnTe)

⊥ + χe⊙
e (∂xlnTe)

⊙
)

−D⊙
ee

(
d⊙

e + χe⊥
e (∂xlnTe)

⊙ − χe⊙
e (∂xlnTe)

⊥
)
,

where the real thermal diffusion ratios χ
e‖
e , χe⊥

e , χe⊙
e are defined by the relations

(5.18) θe‖e = D‖
eeχ

e‖
e , θe⊥e + ıθe⊙e = (D⊥

ee + ıD⊙
ee)(χ

e⊥
e + ıχe⊙

e ).

Then, the viscous tensor is calculated in the following proposition.

Proposition 5.3. The electron viscous tensor vanishes, i.e.,

(5.19) Πe = 0.

Proof. Using definition (4.37) of the stress tensor and expression (5.5) of φe , one
readily obtains that Πe = 0. �

The electron heat flux is given in the following proposition.

Proposition 5.4. The electron heat flux qe reads

(5.20) qe = −
[
λ̂‖e(∂xTe)

‖ + λ̂⊥e (∂xTe)
⊥ + λ̂⊙e (∂xTe)

⊙
]

− pe

(
θe‖e d‖

e + θe⊥e d⊥
e + θe⊙e d⊙

e

)
+ ρeheVe

where the partial thermal conductivities are given by

(5.21)

λ̂
‖
e = 1

3T 2
e

Mh [[ϕ
λ̂e(1)
e ,ϕ

λ̂e(1)
e ]]e,

λ̂⊥e = 1
3T 2

e

Mh [[ϕ
λ̂e(2)
e ,ϕ

λ̂e(2)
e ]]e,

λ̂⊙e = − 1
3T 2

e

Mh((ϕ
λ̂e(2)
e ,ϕ

λ̂e(2)
e ))e.

Proof. Using definition (4.30) of the heat flux qe and expression (5.4) of Ψλ̂e

e yields

qe = ρeheVe −Mh〈〈Ψ
λ̂e

e , f
0
e φe 〉〉e.

Further substituting expansion (5.5) into the latter equation, and using isotropy,

we obtain expression (5.20) for the heat flux qe where the transport coefficients θ
e‖
e ,

θe⊥e , θe⊙e are given in eq. (5.16) and the partial thermal conductivities λ̂
‖
e , λ̂⊥e , λ̂⊙e

are defined by λ̂
‖
e = 1

3T 2
e

Mh〈〈f
0
e ϕ

λ̂e(1)
e ,Ψλ̂e

e 〉〉e, λ̂
⊥
e + ıλ̂⊙e = 1

3T 2
e

Mh〈〈f
0
e ϕ

λ̂e(2)
e ,Ψλ̂e

e 〉〉e.

Eqs. (5.6) and (5.7) for µ = λe classically yields [25, 27]

λ̂‖e = 1
3T 2

e

Mh [[ϕλ̂e(1)
e ,ϕλ̂e(1)

e ]]e,

λ̂⊥e + ıλ̂⊙e = 1
3T 2

e

Mh

(
[[ϕλ̂e(2)

e ,ϕλ̂e(2)
e ]]e − ı((ϕλ̂e(2)

e ,ϕλ̂e(2)
e ))e

)
.
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As the bracket operators [[·, ·]]e and ((·, ·))e are hermitian, we immediately conclude

for the expressions of λ̂
‖
e , λ̂⊥e , and λ̂⊙e . �

Using the thermal diffusion ratios defined in eq. (5.18), the electron heat flux is
rewritten

(5.22) qe = −
[
λ‖e(∂xTe)

‖ + λ⊥e (∂xTe)
⊥ + λ⊙e (∂xTe)

⊙
]

+ pe

(
χe‖

e V‖
e + χe⊥

e V⊥
e + χe⊙

e V⊙
e

)
+ ρeheVe ,

where the thermal conductivities λ
‖
e , λ⊥e , λ⊙e are real quantities given by

λ‖e = λ̂‖e −
pe

Te
D‖

eeχ
e‖
e χ

e‖
e ,

λ⊥e + ıλ⊙e = λ̂⊥e + ıλ̂⊙e −
pe

Te
(D⊥

ee + ıD⊙
ee)(χ

e⊥
e + ıχe⊙

e )(χe⊥
e + ıχe⊙

e ).

The positivity properties associated with the heat flux and the diffusion velocities
can be written with the help of the mass-energy transport matrices

(5.23) A‖
e =

(
Te

pe
λ̂
‖
e θ

e‖
e

θ
e‖
e D

‖
ee

)
, A⊥

e =

(
Te

pe
λ̂⊥e θe⊥e

θe⊥e D⊥
ee

)
, A⊙

e =

(
Te

pe
λ̂⊙e θe⊙e

θe⊙e D⊙
ee

)
.

Proposition 5.5. Considering any two-dimensional real vectors x‖, x⊥, and x⊙,

the two following inequalities are satisfied

〈A‖
ex

‖,x‖〉 ≥ 0,(5.24)

〈A⊥
e x⊥,x⊥〉 + 〈A⊥

e x⊙,x⊙〉 + 〈A⊙
e x⊥,x⊙〉 − 〈A⊙

e x⊙,x⊥〉 ≥ 0.(5.25)

Proof. Introducing x‖ = (x
‖
1, x

‖
2), x⊥ = (x⊥1 , x

⊥
2 ), and x⊙ = (x⊙1 , x

⊙
2 ), expressions

(5.16) and (5.21) for transport coefficients yield

〈A‖
ex

‖,x‖〉 = peTeMh

3 [[y(1),y(1)]]e,

〈A⊥
e x⊥,x⊥〉 + 〈A⊥

e x⊙,x⊙〉 + 〈A⊙
e x⊥,x⊙〉 − 〈A⊙

e x⊙,x⊥〉 = peTeMh

3 [[y(2),y(2)]]e,

with

y(1) = x
‖
2ϕ

De(1)
e − 1

peTe
x
‖
1ϕ

λ̂e(1)
e ,

y(2) = (x⊥2 + ıx⊙2 )ϕDe(2)
e − 1

peTe
(x⊥1 + ıx⊙1 )ϕλ̂e(2)

e .

Inequalities (5.24) and (5.25) are then obtained thanks to the positivity of the
bracket operator [[·, ·]]e. �

Remark 5.2. In the limit case B tends to zero, the behavior of the transport

coefficients can be investigated. We formally prove that the matrix A‖
e does not

depend on the magnetic field, that A⊥
e converges to A‖

e , and that A⊙
e vanishes. So

that we obtain in the limit case the same contribution as with zero magnetic field
(b = 0) for the electron diffusion velocities and heat flux [39].
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5.3. First-order heavy-particle perturbation function. The first-order per-
turbation function φh = (φi )i∈H is solution to eq. (4.24), i.e.,

Fi(φh) = Ψi +
1

f0
i

Ĵ0
i , i ∈ H,

and satisfies the constraints (4.25), where Ψi = −D0
i (f0

i )/f0
i , i ∈ H. After some

lengthy calculation based on the expression (4.8) of f0
h , the Euler eqs. (4.26), (4.28),

and (4.29), theorem 3.1, and corollary 3.2, one obtains

(5.26) Fi(φh) = −Ψ
η
i :∂xvh − ph

∑

j∈H

Ψ
Dj

i ·d̂j − Ψλ̂h
i ·∂x

(
1

Th

)
− ΨΘ

i (Te − Th),

where

(5.27)





Ψ
η
i = mi

Th

(
Ci⊗Ci −

1
3Ci·CiI

)
, i ∈ H,

Ψ
Dj

i = 1
Mhpi

(
δij −

ρi

ρh

)
Ci, i, j ∈ H,

Ψλ̂h
i = 1

Mh

(
5
2Th − 1

2miCi·Ci

)
Ci, i ∈ H,

ΨΘ
i = 2

T 2

h

(
νie

3mi
−
∑
j∈H

njνje

nhmj

)(
3
2Th − 1

2miCi·Ci

)
, i ∈ H.

Quantity pi = niTh stands for the partial pressure of species i ∈ H. A linearly
independent family of diffusion driving forces is also introduced

(5.28) d̂i =
1

ph
∂xpi −

niqi
ph

E′ −
niMh

ph
Fie, i ∈ H.

The average electron forces acting on the heavy particles belong to the category of
the diffusion driving forces and allows for a coupling between the heavy particles
and electrons. Expression of φe given in eq. (5.5) and definition (4.20) implies that
Fie, i ∈ H, is proportional to the electron diffusion driving force and the electron
temperature gradient. Thus, the heavy-particle transport fluxes to be derived are
also expected to be proportional to the electron forces.

The existence and uniqueness of a solution to eq. (5.26) is then established in
the following proposition.

Proposition 5.6. The scalar functions family φh = (φi )i∈H, given by

(5.29) φi = −φ
η
i :∂xvh − ph

∑

j∈H

φ
Dj

i ·d̂j − φλ̂h
i ·∂x

(
1

Th

)
− φΘ

i (Te − Th), i ∈ H,

is the solution to eq. (5.26) under the constraints (4.25), where the tensorial func-

tions family φ
η
h = (φη

i )i∈H, the vectorial functions families φ
Dj

h = (φ
Dj

i )i∈H, j ∈ H,

and φλ̂
h = (φλ̂h

i )i∈H, and the scalar functions family φΘ
h = (φΘ

i )i∈H are the solutions

of the problems

(5.30) Fi(φ
µ
h) = Ψ

µ
i , i ∈ H,

under the scalar constraints

(5.31) 〈〈f0
h φ

µ
h, ψ̂

l
h〉〉h = 0, l ∈ {1, . . . , nH + 4},

with µ ∈ {η, (Dj)j∈H, λ̂h,Θ}.
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Proof. By linearity and isotropy of the linearized Boltzmann operator Fi, the de-
velopment of Ψi can be followed through for φi as well

φi = −φ
η
i :∂xvh − ph

∑

j∈H

φ
Dj

i ·d̂j − φλ̂h

i ·∂x

(
1

Th

)
− φΘ

i (Te − Th), i ∈ H,

where the functions families φ
µ
h, for µ ∈ {η, (Dj)j∈H, λ̂h,Θ} satisfy eq. (5.30) under

the scalar constraints (5.31). We seek a solution in the form

φ
µ
i = φ

µ(1)
i Ci, i ∈ H, µ ∈ {(Dj)j∈H, λ̂h},

φ
η
i = φ

η(1)
i

(
Ci⊗Ci −

1
3Ci·CiI

)
, i ∈ H.

Quantities φ
µ(1)
i , µ ∈ {η, (Dj)j∈H, λ̂h}, and φΘ

i are scalar functions of Ci·Ci, for

i ∈ H, since φ
µ
h, µ ∈ {η, (Dj)j∈H, λ̂h,Θ} must be invariant under a change of coordi-

nates. Uniqueness of the solution is readily proved based on the linearity property
of the operator Fh, its kernel given in property 4.2, and the constraints (4.25)
satisfied by φh. �

We further introduce the heavy-particle bracket operator [[·, ·]]h associated with
the operator Fh. For any ξh, ζh, we define

[[ξh, ζh]]h = 〈〈f0
h ξh,Fh(ζh)〉〉h.

The bracket operator develops into

[[ξh, ζh]]h = 1
4

∑

i,j∈H

∫
f0
i f

0
j (ξi+ξj−ξ

′
i−ξ

′
j)⊙(ζi + ζj − ζ′i − ζ′j)|Ci−Cj |σijdωdCidCj .

The bracket operator [[·, ·]]h is hermitian [[ξh, ζh]]h = [[ζh, ξh]]h, positive semi-definite
[[ξh, ξh]]h ≥ 0, and its kernel is spanned by the collisional invariants, i.e., [[ξh, ξh]]h =
0 implies that ξh is a (tensorial) collisional invariant, or in other words, that all
its tensorial components are in the space Ih. The expression of the heavy-particles
diffusion velocities is given in the following proposition.

Proposition 5.7. The diffusion velocity of species i ∈ H reads

(5.32) Vi = −
∑

j∈H

Dijd̂j − θh
i ∂xlnTh,

where the diffusion coefficients and thermal diffusion coefficients are given by

(5.33)
Dij = 1

3phThMh[[φDi

h ,φ
Dj

h ]]
h
, i, j ∈ H,

θh
i = − 1

3Mh[[φDi

h ,φλ̂h

h ]]h, i ∈ H.

Proof. Using definition (4.42) of the diffusion velocity and expression (5.27) of ΨDi

h ,
i ∈ H, yields

Vi = ThMh〈〈Ψ
Di

h , f0
h φh 〉〉h, i ∈ H.

Further substituting expansion (5.29) into the latter equation, we obtain expres-
sion (5.32) of the diffusion velocities. �

In particular, the heavy-particle diffusion velocities are thus proportional to the
electron driving force and electron temperature gradient through the Fie contribu-
tion to di, i ∈ H. Kolesnikov [34] has already introduced electron heavy-particle
diffusion coefficients and thermal diffusion coefficients and ratios to couple the
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heavy-particle diffusion velocities to the electron forces. Therefore, we propose
to refer to this phenomenom as the Kolesnikov effect for the heavy particles.

¿From the properties of the bracket operator, we infer that the diffusion matrix
D is symmetric. Moreover, an alternative form of the diffusion velocities is given
by

(5.34) Vi = −
∑

j∈H

Dij

(
d̂j + χh

j ∂xlnTh

)
, i ∈ H,

where the thermal diffusion ratios are defined from the relations

(5.35)





∑

j∈H

Dijχ
h
j = θh

i , i ∈ H,

∑

j∈H

χh
j = 0.

Then, we introduce the tensor

S =
[
∂xvh + (∂xvh)T

]
−

2

3
∂x·vh I,

in order to express the viscous tensor in the following proposition.

Proposition 5.8. The heavy-particle viscous tensor reads

(5.36) Πh = −ηhS,

where the shear viscosity is given by

(5.37) ηh =
Th

10
[[φη

h,φ
η
h]]h.

Proof. Using definition (4.43) of the viscous tensor and expression (5.27) of Ψ
η
h

yields

Πh = Th〈〈Ψ
η
h, f

0
h φh〉〉h.

Further substituting expansion (5.29) into the latter equation, we obtain expres-
sion (5.36) of the viscous tensor. �

The expression of the heavy-particle heat flux is given in the following proposi-
tion.

Proposition 5.9. The heavy-particle heat flux reads

(5.38) qh = −λ̂h∂xTh − ph

∑

j∈H

θh
j d̂j +

∑

j∈H

ρjhjVj ,

where the partial thermal conductivity is given by

(5.39) λ̂h =
1

3T 2
h

Mh[[φλ̂h

h ,φλ̂h

h ]]
h
.

Proof. Using definition (4.45) of the heavy-particle heat flux and expression (5.27)

of Ψ
λ̂h

i yields

qh = −Mh〈〈Ψ
λ̂h

h , f0
h φh〉〉h +

5

2
Th

∑

j∈H

njVj .

Further substituting expansion (5.29) into the latter equation, we obtain expres-
sion (5.38) of the heat flux. �
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Using the thermal diffusion ratios defined in eq. (5.35), the heavy-particle heat
flux is rewritten

(5.40) qh = −λh∂xTh + ph

∑

j∈H

χh
j Vj +

∑

j∈H

ρjhjVj ,

where the thermal conductivity is given by

(5.41) λh = λ̂h − nh

∑

j∈H

θh
j χ

h
j .

The positivity properties associated with the heat flux and the diffusion velocities
can be written with the help of the mass-energy transport matrix

Ah =

(
Th

ph
λ̂h [(θh

i )i∈H]T

(θh
i )i∈H (Dij)i,j∈H

)
.

Proposition 5.10. The heavy particles mass-energy transport matrix Ah is sym-

metric, positive semi-definite, and its kernel is onedimensional and spanned by the

vector [0, (ρi)i∈H]T .

Proof. We consider a vector x written in the form x = [xTh
, (xi)i∈H]T and introduce

the family yh = (yi)i∈H given by

yi =
∑

j∈H

xjφ
Dj

i −
1

phTh
xTh

φλ̂h

i .

Expressions (5.33) and (5.39) for transport coefficients yield

〈Ahx,x〉 = 1
3phThMh [[yh,yh]]h.

The positivity is then obtained thanks to the positivity of the heavy-particle bracket
operator [[·, ·]]h. Moreover, using the scalar constraints (5.31), that imply that yh

is orthogonal to the collisional invariants, the quantity 〈Ahx,x〉 vanishes if yh is a
collisional invariant, consequently if yh = 0. Finally, the linear rank of the family

(φλ̂h
i ,φD1

i , . . . ,φ
D

nH

i ) is exactly nH because it is the rank of the corresponding right

member (Ψλ̂h

i ,ΨD1

i , . . . ,Ψ
D

nH

i ). We then conclude that yh = 0 if and only if x lies
in the space spanned by the vector [0, (ρi)i∈H]T . �

5.4. Second-order electron perturbation function. The second-order pertur-
bation function φ2

e is a solution to eq. (4.33), i.e.,

(5.42) Fe(φ
2
e ) + qe∂C

e
(φ2

e )·Ce∧B = Ψ2
e ,

and satisfies the constraints (4.34), where

Ψ2
e =

1

f0
e

(
−D̂

0
e (f0

e , φe ) + Jee(f
0
e φe , f

0
e φe ) + Ĵ0

e

)
.

Introducing second-order heavy-particle diffusion driving forces d2
i = −niVi , i ∈ H,

one obtains after some lengthy calculation

Ψ2
e = −Ψηe

e :∂xvh − pe

∑

i∈H

ΨDi
e ·d2

i − Ψ̃2
e ,

where Ψ̃2
e is a scalar function of Ce·Ce, and

(5.43)

{
Ψηe

e = 1
Te

(Ce⊗Ce −
1
3Ce·CeI),

ΨDi
e = 1

peTe
Q

(1)
ei (|Ce|

2)|Ce|Ce, i ∈ H.
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The coupling of the electrons with the heavy particles occurs in the integral equation
for the second-order perturbation function through the d2

i forces, i ∈ H. Thus,
the second-order electron transport fluxes to be derived are also expected to be
proportional to the heavy-particle forces.

The complete resolution of eq. (5.42) is not necessary since we only need to
express the second-order transport fluxes V 2

e and q2
e in terms of bracket operators.

Consequently, we only have to examine the contribution of the two vectorial terms
ΨDe

e and ΨDi
e , i ∈ H.

Proposition 5.11. The scalar function φe given by

(5.44) φ2
e = −φηe

e :∂xvh − pe

∑

i∈H

ℜ
[
M‖ϕDi(1)

e + (M⊥+ıM⊙)ϕDi(2)
e

]
·d2

i − φ̃2
e ,

is the solution to eq. (5.42) under the constraints (4.34). The vectorial functions

ϕ
Di(1)
e , ϕ

Di(2)
e , i ∈ H, are the solutions of the problems

Fe(ϕ
Di(1)
e ) = ΨDi

e ,(5.45)
(
Fe + ı|B|Fqe

e

)(
ϕDi(2)

e

)
= ΨDi

e ,(5.46)

under the constraints

〈〈f0
e ϕDi(1)

e , ψ̂l
e〉〉e = 0, l ∈ {1, 2},(5.47)

〈〈f0
e ϕDi(2)

e , ψ̂l
e〉〉e = 0, l ∈ {1, 2}.(5.48)

The tensorial function φηe

e verifies

Fe(φ
ηe

e ) + qe∂C
e
(φηe

e )·Ce∧B = Ψηe

e ,

and the function φ̃2
e is a scalar function of Ce·Ce and (Ce·B)2.

Proof. The proof of this proposition is identical to the one of proposition 5.1 since
eqs. (5.1) and (5.42) for φe and φ2

e only differ with their second members. �

The expressions of the second-order electron diffusion velocity and heat flux and
of the average electron force are given in the following proposition.

Proposition 5.12. The second-order electron diffusion velocity V 2
e is given by

(5.49) V 2
e = −

∑

i∈H

(
D

‖
eid

2‖
i +D⊥

eid
2⊥
i +D⊙

eid
2⊙
i

)
.

The second-order electron heat flux q2
e reads

(5.50) q2
e = −pe

∑

i∈H

(
θ
e‖
i d

2‖
i + θe⊥i d2⊥

i + θe⊙i d2⊙
i

)
+ ρeheV

2
e .

The average electron force Fie acting on heavy particles i ∈ H is given by

(5.51) Fie = −
pe

Mh

(
D

‖
eid

‖
e +D⊥

eid
⊥
e +D⊙

eid
⊙
e

)

−
pe

Mh

(
θ
e‖
i (∂xlnTe)

‖ + θe⊥i (∂xlnTe)
⊥ + θe⊙i (∂xlnTe)

⊙
)
.
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The diffusion coefficients and thermal diffusion coefficients read

(5.52)

D
‖
ei = 1

3peTeMh [[ϕ
De(1)
e ,ϕ

Di(1)
e ]]e, θ

e‖
i = − 1

3Mh [[ϕ
Di(1)
e ,ϕ

λ̂e(1)
e ]]e, i ∈ H,

D⊥
ei = 1

3peTeMh [[ϕ
De(2)
e ,ϕ

Di(2)
e ]]e, θe⊥i = − 1

3Mh [[ϕ
Di(2)
e ,ϕ

λ̂e(2)
e ]]e, i ∈ H,

D⊙
ei = − 1

3peTeMh((ϕ
De(2)
e ,ϕ

Di(2)
e ))e, θe⊙i = 1

3Mh((ϕ
Di(2)
e ,ϕ

λ̂e(2)
e ))e, i ∈ H.

Note that the previous expressions are real, in particular for D⊥
ei, D

⊙
ei, θ

e⊥
i , and

θe⊙i , i ∈ H, although functions ϕ
λ̂e(2)
e , ϕ

De(2)
e and ϕ

Di(2)
e are complex.

Proof. Using definition (4.38) (respectively (4.55) and (4.20)) of the second-order
diffusion velocity V 2

e (respectively the second-order electron heat flux q2
e and av-

erage electron force Fie, i ∈ H), the same proof as that of proposition 5.2 yields to
conclude. �

Remark 5.3. The term φηe

e :∂xvh of eq. (5.44) contributes to a second-order elec-
tron momentum relation not investigated here.

Remark 5.4. To the authors’s knowledge, it is the first time that such second-
order transport coefficients are rigorously derived from a multiscale analysis. The
second-order electron diffusion velocity and heat flux are thus proportional to the
heavy-particle diffusion velocities. That is the Kolesnikov effect for the electrons.
However, it is important to mention that the second-order electron transport fluxes
shall not be confused with the Burnett transport fluxes appearing in second-order
macroscopic equations [25].

6. Conservation equations

We review the heavy-particle Navier-Stokes eqs. (4.52)-(4.54) and electron drift-
diffusion eqs. (4.60) and (4.61). We also derive a total energy equation and an
entropy equation. Then, we introduce a conservative formulation of the system of
equations.

6.1. Mass. The species mass conservation equations read

∂tρe + ∂x·
[
ρe

(
vh + 1

Mh
(Ve + εV 2

e )
)]

= 0,(6.1)

∂tρi + ∂x·
[
ρi

(
vh + ε

Mh
Vi

)]
= 0, i ∈ H.(6.2)

Summing eq. (6.2) over i ∈ H and using the constraint
∑

j∈H ρjVj = 0 given in

eq. (4.25), a heavy-particle mass conservation equation is obtained

(6.3) ∂tρh + ∂x·(ρhvh) = 0.

The heavy-particle mass is conserved in the mean heavy-particle velocity referential.
Then, adding the electron drift eq. (6.1) to eq. (6.3) and using eq. (2.27), i.e.,

ρv = ρhvh + ε2ρe

(
vh + 1

Mh
(Ve + εV 2

e )
)
,

a conservation equation of global mass ρ = ρh + ε2ρe is also established

(6.4) ∂tρ+ ∂x·(ρv) = 0.

The global mass is conserved in the hydrodynamic referential, although the trans-
port fluxes are calculated in the mean heavy-particle velocity referential. It is the
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only place where the difference between the global hydrodynamic velocity and the
mean heavy-particle velocity, of the order of ε2, plays an essential role. It is another
evidence of the coherence of our formalism compared to other approaches found in
the literature.

6.2. Momentum. The momentum conservation is expressed by

(6.5) ∂t(ρhvh)+∂x·(ρhvh⊗vh+ 1
M2

h
pI) = − ε

M2

h
∂x·Πh+ 1

M2

h
nqE+[δb0I0+δb1I]∧B.

A flow kinetic energy is obtained by projecting the previous equation onto the mean
heavy-particle velocity

(6.6) ∂t(
1
2ρh|vh|

2) + ∂x·
[
vh

(
1
2ρh|vh|

2 + 1
M2

h
p
)]

= 1
M2

h
p ∂x·vh − ε

M2

h
vh·∂x·Πh

+ 1
M2

h
nqE·vh + vh·(δb0I0 + δb1I)∧B.

6.3. Energy. The electron energy equation reads

(6.7) ∂t(ρeee) + ∂x· (ρeeevh) = −pe∂x·vh − 1
Mh

∂x·
(
qe + εq2

e

)

+ 1
Mh

(
Je + εJ2

e

)
·E′ + δb0εMhJe·vh∧B + ∆E0

e + ε∆E1
e ,

and the heavy-particle energy equation reads

(6.8) ∂t(ρheh) + ∂x·(ρhehvh) = −(phI + εΠh):∂xvh − ε
Mh

∂x·qh + ε
Mh

Jh·E
′

+ ∆E0
h + ε∆E1

h.

So that a global energy equation is derived by summing eqs. (6.7) and (6.8)

(6.9) ∂t(ρe) + ∂x· (ρevh) = −(pI + εΠh):∂xvh − 1
Mh

∂x·Q

+ 1
Mh

(
Je + εJ2

e + εJh

)
·E′ + δb0εMhJe·vh∧B,

where quantity Q = qe + εq2
e + εqh is the total heat flux. Finally, a total energy

equation is derived by adding eq. (6.6)

(6.10) ∂t(E) + ∂x· (Hvh) = −ε∂x·(Πh·vh) − 1
Mh

∂x·Q + I·E,

where quantity E = ρe+M2
hρh

1
2 |vh|

2 stands for the total energy and H = ρE + p,
the total enthalpy. The term I·E of eq. (6.10) represents the power developed by
the electromagnetic field. It has the form prescribed by Poynting’s theorem. Hence,
the first principle of thermodynamics is satisfied.

6.4. Electron and heavy-particle entropy equations. In addition to the ther-
mal energy, we introduce other relevant thermodynamic functions. First, the species
Gibbs free energy is defined by the relations

(6.11) ρege = neTe ln

(
nen

0

T
3/2
e Q0

e

)
, ρigi = niTh ln

[
nin

0

(miTh)
3/2

Q0
h

]
, i ∈ H,

where the translational partition functions read

(6.12) Q0
e =

(
2πm0

ekBT
0

h2
P

)3/2

, Q0
h =

(
2πm0

hkBT
0

h2
P

)3/2

.

Then, the species enthalpy is given by

(6.13) ρehe =
5

2
neTe, ρihi =

5

2
niTh, i ∈ H.
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Finally, the species entropy is introduced as

(6.14) se =
he − ge
Te

, si =
hi − gi

Th
, i ∈ H.

Therefore, the mixture entropy reads ρs =
∑

j∈S ρjsj . The thermodynamic func-
tions exhibit a wider range of validity than in classical thermodynamics, introduced
for stationary homogeneous equilibrium states [26]. Indeed, they are interpreted
in the framework of kinetic theory by establishing a relation between the thermo-
dynamic entropy and the kinetic entropy. The latter quantity is based upon the
distribution functions

(6.15) Skin =
∑

j∈H

∫
fj

{
1 − ln

[
(2π)3/2n0

m3
jQ

0
h

fj

]}
dCj

+

∫
fe

{
1 − ln

[
(2π)3/2n0

Q0
e

fe

]}
dCe.

Proposition 6.1. The kinetic entropy and the thermodynamic entropy are asymp-

totically equal at order ε2, i.e.,

(6.16) Skin = ρs+ O(ε2),

provided that the distribution functions follow the Enskog expansion given in eqs.

(4.3) and (4.4).

Proof. Using definition (6.15) and expansions (4.1) and (4.2), the kinetic entropy
is found to be

∑

j∈H

∫
f0
j

{
1 − ln

[
(2π)3/2n0

m3
jQ

0
h

f0
j

]}
dCj +

∫
f0
e

{
1 − ln

[
(2π)3/2n0

Q0
e

f0
e

]}
dCe

+ ε
∑

j∈H

∫
f0
j φj ln

[
(2π)3/2n0

m3
jQ

0
h

f0
j

]
dCj + ε

∫
f0
e φe ln

[
(2π)3/2n0

Q0
e

f0
e

]
dCe

+ O(ε2).

The first-order term vanishes seeing the constraints (4.10) and (4.25). Then, using
expressions (4.7) and (4.8) and definition (6.14), eq. (6.16) is readily obtained. �

Consequently, a first-order conservation equation of thermodynamic entropy can
be used instead of a conservation equation of kinetic entropy to ensure that the
second principle of thermodynamics is satisfied. First, we introduce the heavy-
particle entropy ρhsh =

∑
j∈H ρjsj and derive the entropy equations.

Proposition 6.2. The electron and heavy-particle entropy equations associated

with the macroscopic conservation equations (6.1)-(6.8) read

∂t(ρese) + ∂x· (ρesevh) + ∂x·(J
0

e +εJ 1
e ) = Υ0

e +εΥ1
e ,(6.17)

∂t(ρhsh) + ∂x· (ρhshvh) + ε∂x·J
1

h = Υ0
h + εΥ1

h ,(6.18)
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where the electron and heavy-particle entropy fluxes are given by

J
0

e =
1

MhTe
(qe − ρegeVe), J

1
e =

1

MhTe
(q2

e − ρegeV
2

e ),(6.19)

J
1

h =
1

MhTh

(
qh −

∑

j∈H

ρjgjVj

)
,(6.20)

and the electron and heavy-particle entropy production rates by

Υ0
e =

1

Te
∆E0

e −
pe

MhTe
de·Ve −

1

MhTe
∂xlnTe·(qe − ρeheVe),(6.21)

Υ1
e =

1

Te
∆E1

e −
pe

MhTe
de·V

2
e −

1

MhTe
∂xlnTe·(q

2
e − ρeheV

2
e ),(6.22)

Υ0
h =

1

Th
∆E0

h,(6.23)

Υ1
h =

1

Th
∆E1

h −
1

Th
Πh:∂xvh −

ph

MhTh

∑

i∈H

1

ph

(
∂xpi − niqiE

′
)
·Vi

−
1

MhTh
∂xlnTh·

(
qh −

∑

i∈H

ρihiVi

)
.(6.24)

Proof. Based on the relations

ρed

(
ge
Te

)
= dne −

3ne

2Te
dTe, ρid

(
gi

Th

)
= dni −

3ni

2Th
dTh, i ∈ H,

and definition (6.14), one obtains

∂t(ρese) + ∂x· (ρesevh) =
1

Te
[∂t(ρeee) + ∂x· (ρeeevh)] + ne∂x·vh

− [∂tρe + ∂x· (ρevh)]
ge
Te
,

∂t(ρhsh) + ∂x· (ρhshvh) =
1

Th
[∂t(ρheh) + ∂x· (ρhehvh)] + nh∂x·vh

−
∑

j∈H

[∂tρj + ∂x· (ρjvh)]
gj

Th
.

Then, using eqs. (6.1), (6.2), (6.7), (6.8), and the relations

d

(
ge
Te

)
= −

he

T 2
e

dTe +
1

pe
dpe, d

(
gi

Th

)
= −

hi

T 2
h

dTh +
1

mipi
dpi, i ∈ H,

we readily obtain eqs. (6.17) and (6.18), with the entropy fluxes given in eqs. (6.19)
and (6.20) and the entropy production rates given in eqs. (6.21)-(6.24). �

Adding eqs. (6.17) and (6.18), a global entropy equation is found

(6.25) ∂t(ρs) + ∂x· (ρsvh) + ∂x·J = Υ,

where the global entropy flux is given by

(6.26) J = J
0
e + εJ 1

e + εJ 1
h,

and the global entropy production rate by

(6.27) Υ = Υ0
e + εΥ1

e + Υ0
h + εΥ1

h .
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Proposition 6.3. Defining xh = (∂xlnTh, d̃1, . . . , d̃nH)T , x
‖
e = ((∂xlnTe)

‖,d‖
e)

T ,

and x⊥
e = ((∂xlnTe)

⊥,d⊥
e )T , where

d̃i = d̂i − ni
pe

ph

Th

Te

(
D⊙

eid
⊙
e + θe⊙i (∂xlnTe)

⊙
)
,

the global entropy production rate Υ defined in eq. (6.27) can be rewritten in the

following form

(6.28) Υ =
(Te − Th)2

TeTh

∑

j∈H

nj

mj
νje + ηhS:S + ε

ph

MhTh
〈Ahxh,xh〉

+
pe

MhTe
〈A‖

ex
‖
e ,x

‖
e〉 +

pe

MhTe
〈A⊥

ehx⊥
e ,x

⊥
e 〉,

where the matrix A⊥
eh

A⊥
eh =

(
Te

pe
λ̂⊥e θe⊥e

θe⊥e D⊥
ee

)
− ε

pe

ph

Th

Te

∑

i,j∈H

Dijninj

(
θe⊙i θe⊙j D⊙

eiθ
e⊙
j

D⊙
ejθ

e⊙
i D⊙

eiD
⊙
ej

)
,

is a perturbation of the mass-energy transport matrix A⊥
e defined in eq. (5.23). In

particular, the global entropy production rate is nonnegative provided that ε is small

enough and the collision frequencies νie, i ∈ H, are nonnegative.

Proof. Expression (6.28) is obtained after some lengthly calculation based on the
expressions of the diffusion velocities Ve , V 2

e , Vi , i ∈ H, heat fluxes qe, q2
e , qh, vis-

cous stress tensor Πh, energy exchange terms ∆E0
e , ∆E1

e , ∆E0
h, ∆E1

h, and average
forces Fie, i ∈ H, given in Section 5.

The positivity of the collision frequencies νie, i ∈ H, (respectively the viscosity
ηh) immediately yields the positivity of the first term (Te−Th)2/(TeTh)

∑
j∈H njνje/mj

(respectively the second term ηhS:S). Moreover, propositions 5.5 and 5.10 ensure

that both the following terms ph

MhTh
〈Ahxh,xh〉 and pe

MhTe
〈A‖

ex
‖
e ,x

‖
e〉 are nonneg-

ative. Finally, introducing y = d⊥
e ⊗ϕ

De(2)
e − (∂xlnTe)

⊥
⊗ϕ

λ̂e(2)
e , the last term is

expanded as

(6.29) 〈A⊥
ehx⊥

e ,x
⊥
e 〉 = [[y,y]]e − ε[[z, z]]h,

with

zi = 1
3peThMh

∑

j∈H

nj((y,ϕ
Dj(2)
e ))e⊗φ

Dj

i , i ∈ H.

We conclude after noticing that the classical term [[y,y]]e is nonnegative and van-
ishes if and only if y = 0 thanks to the scalar constraints (5.8) and (5.9). �

In the whole general case, we are not able to write the entropy production rate
as a sum of nonnegative contributions independently of the value of ε. However, it
is the case for vanishing magnetic field, the last term 〈A⊥

ehx⊥
e ,x

⊥
e 〉 given in (6.29)

being nonnegative as soon as the magnetic field disappears—the matrix A⊥
eh reduces

then to A⊥
e —and that for any value of ε.

The nonnegativity of the global entropy production rate implies that the second
principle of thermodynamics is satisfied. This statement could be equivalently
formulated by means of a H-Theorem. Besides, the electron and heavy-particle
temperatures must be equal when an equilibrium state is reached. Provided that
the collision frequency νie, i ∈ H, is positive, the quasi-equilibrium states described
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by the Maxwell-Boltzmann distribution functions given in eqs. (4.7) and (4.8) create
some nonnegative entropy expressed by the term (Te−Th)2/(TeTh)

∑
j∈H njνje/mj.

The latter term vanishes when the electron and heavy-particle temperatures are
identical.

6.5. Plasma magnetization. We recall that the intensity of the magnetic field is
expressed by means of the b parameter used to define the scaling of the nondimen-
sional electron Hall parameter q0B0t0e/m

0
e = ε1−b. Three categories of plasmas are

reviewed in Table 3. A value of b < 0 corresponds to unmagnetized plasmas, b = 0,
weakly magnetized plasmas, and b = 1, strongly magnetized plasmas.

Table 3. Magnetic field influence.

b Conservation equations Transport properties

< 0 − −

0 Bulk magnetic force Electron bulk magnetic driving force
Electron magnetic force

1 Bulk magnetic force Electron bulk magnetic driving force
Electron magnetic force Heavy-particle bulk magnetic driving forces
Heavy-particle magnetic force Anisotropic electron transport properties

6.6. Mathematical structure. The system of mass, momentum, total energy,
and entropy eqs. (6.1), (6.2), (6.5), (6.10), and (6.27) is conservative from a fluid
standpoint in the variables

U = [ρe, (ρi)i∈H, ρhvh, E , ρs]
T ,

that reads

(6.30) ∂tU + ∂x·F + ∂x·F = Ω,

with the convective fluxes

F = [ρevh, (ρi)i∈Hvh, ρhvh⊗vh +
1

M2
h

pI, Hvh, ρsvh]T ,

the diffusive fluxes

F = [
ρe

Mh
(Ve + εV 2

e ),
ε

Mh
(ρiVi )i∈H,

ε

M2
h

Πh,
ε

M2
h

Πh·vh +
1

Mh
Q, J ]T ,

and the source terms

Ω = [0, 0,
nq

M2
h

E + (δb0I0 + δb1I)∧B, I·E, Υ]T .

Then, we extract a purely convective system from eq. (6.30)

(6.31) ∂tU + ∂x·F = Ω′,

where the convective source terms are given by

Ω′ = [0, 0,
nq

M2
h

E + (δb0 + δb1)I
′
∧B, I′·E, Υ′]T ,
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with the current I′ = nqvh, and the entropy production rate

Υ′ =
(Te − Th)2

TeTh

∑

j∈H

nj

mj
νje.

The purely convective system given in eq. (6.31) is rewritten in a quasi-linear form

∂tW + A·∂xW = Ω′
W ,(6.32)

by means of the variables

W = [ρe, (ρi)i∈H, vh, pe, ph]T ,

the source terms

Ω′
W = [0, 0,

nq

M2
hρh

E +
1

ρh
(δb0 + δb1)I

′
∧B, 2

3∆E0
e ,

2
3∆E0

h]T ,

and the Jacobian matrices
(6.33)

Aν =




vhν 0 ρee
T
ν 0 0

0 vhν(δij)i,j∈H (ρi)i∈HeT
ν 0 0

0 0 vhνI
1

M2

hρh
eν

1
M2

hρh
eν

0 0 γpee
T
ν vhν 0

0 0 γpheT
ν 0 vhν



, ν ∈ {1, 2, 3},

where the specific heat ratio reads γ = 5/3 and symbol eν stands for the unit vector
in the ν direction.

For any direction defined by the unit vector n, the matrix n·A is shown to be
diagonalizable with real eigenvalues and a complete set of eigenvectors. There are
two nonlinear acoustic fields with the eigenvalues vh·n± c, where the sound speed
is given by c2 = p/(ρhM

2
h), and linearly degenerate fields with the eigenvalue vh·n

of multiplicity nS + 3. Thus, the macroscopic system of conservation equations
derived from kinetic theory in the proposed mixed hyperbolic-parabolic scaling has
a hyperbolic structure, as far as the convective part of the system is concerned.
Such a property is far from being obvious since the obtained sound speed involves
the electron pressure and seeing that the rigourous derivation of the momentum
equation of the heavy particles involves many ingredients throughout the paper.

7. Conclusions

In the present contribution, we have derived from kinetic theory a unified fluid
model for multicomponent plasmas by accounting for the electromagnetic field in-
fluence, neglecting the particle internal energy and the reactive collisions. Given
the strong disparity of mass between the electrons and heavy particles, such as
molecules, atoms, and ions, we have conducted a dimensional analysis of the Boltz-
mann equation following Petit and Darrozes [46] and introduced a scaling based
on the ε paramter, or square root of the ratio of the electron mass to a charac-
teristic heavy-particle mass. The multiscale analysis occurs at three levels: in the
kinetic equations, the collisional invariants, and the collision operators. The Boltz-
mann equation has been expressed in the mean heavy-particle velocity referential
to allow for the resolubility of the first- and second-order electron perturbation
function equations, as opposed to the inertial referential chosen by Degond and
Lucquin [19, 20]. Then, the resolubility of the electron and heavy-particle pertur-
bation functions has been classically based on the identification of the kernel of the
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linearized collision operators and space of scalar collisional invariants of both types
of species. The system has been examined at successive orders of approximation
by means of a generalized Chapman-Enskog method. The micro- and macroscopic
equations derived at each order are reviewed in Table 2. Depending on the type
of species, the quasi-equilibrium solutions are Maxwell-Boltzmann velocity distri-
bution functions at the electron temperature or the heavy-particule temperature,
therefore, allowing for thermal nonequilibrium to occur. At order ε1, the set of
macroscopic conservation equations of mass, momentum, and energy comprises
multicomponent Navier-Stokes equations for the heavy particles, which follow a
hyperbolic scaling, and first-order drift-diffusion equations for the electrons, which
follow a parabolic scaling. The expressions of the transport fluxes have also been
derived: first- and second-order diffusion velocity and heat flux for the electrons,
and first-order diffusion velocities, heat flux, and viscous tensor for the heavy par-
ticles. The transport coefficients have been written in terms of bracket operators;
both electron and heavy-particle transport coefficients exhibit anisotropy, provided
that the magnetic field is strong. We have also proposed a complete description
of the Kolesnikov effect, i.e., the crossed contributions to the mass and energy
transport fluxes coupling the electrons and heavy particles. This effect, appearing
in multicomponent plasmas, is essential to obtain a positive entropy production.
Besides, it contains, as degenerate case, the single heavy-species plasmas consid-
ered by Degond and Lucquin for which the Kolesnikov effect is not present. The
properties of electron and heavy-particle mass-energy transport matrices have been
established by using the mathematical structure of the bracket operators. In partic-
ular, the properties of symmetry and positivity implies that the second principle of
thermodynamics is satisfied, as shown by deriving an entropy equation. Moreover,
the first principle of thermodynamic was also verified by deriving a total energy
equation. Finally, the system of equations was found to be conservative and the
purely convective system hyperbolic, thus leading to a well defined structure.

The proposed formalism remains valid for collision operators of Fokker-Planck-
Landau type. These operators can be used to model the charged particle interac-
tion, instead of Bolztmann operators associated with a Coulomb potential screened
at the Debye distance. Besides, the explicit expression of the diffusion coeffi-
cients, thermal diffusion coefficients, viscosity, and partial thermal conductivities
can be obtained by means of a variational procedure to solve the integral equa-
tions (Galerkin spectral method [14]). The expressions of the thermal conductivity,
thermal diffusion ratios, and Stefan-Maxwell equations for the diffusion velocities
can be derived by means of a Goldstein expansion of the perturbation function, as
proposed by Kolesnikov and Tirskiy [35]. Finally, the mathematical structure of
the transport matrices obtained by the variational procedure can readily be used to
build efficient transport algorithms, as already shown by Ern and Giovangigli [24]
for neutral gases, or Magin and Degrez [40] for unmagnetized plasmas.
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