N

N

Decomposition of a 3D Discrete Object Surface.

Isabelle Sivignon, Florent Dupont, Jean-Marc Chassery

» To cite this version:

Isabelle Sivignon, Florent Dupont, Jean-Marc Chassery. Decomposition of a 3D Discrete Object
Surface.. Algorithmica, 2004, 38, pp.25-43. hal-00185097

HAL Id: hal-00185097
https://hal.science/hal-00185097
Submitted on 6 Nov 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00185097
https://hal.archives-ouvertes.fr

Decomposition of a 3D discrete object surface into
discrete plane pieces

Isabelle Sivignon? Florent Dupont’ and Jean-Marc Chassery*

*Laboratoire LIS {Laboratoire LIRIS
961, rue de la Houille Blanche 8, Boulevard Niels Bohr
Domaine Universitaire - BP46 69622 Villeurbanne Cedex, France

38402 Saint Martin D’Heres Cedex, France

Abstract

This paper deals with the polyhedrization of discrete volumes. The
aim is do a reversible transformation from a discrete volume to a Eu-
clidean polyhedron, i.e. such that the discretization of the Euclidean
volume is exactly the initial discrete volume. We propose a new poly-
nomial algorithm to split the surface of any discrete volume into pieces
of naive discrete plane which have known shape properties, and present
a study of the complexity as well as a study of the influence of the voxel
tracking order during the execution of this algorithm.

Keywords

1 Introduction

3D discrete volumes are more and more used especially in the medical area
since they result from MRI and scanners. As 2D images are composed of
squares called pixels, these 3D images are composed of cubes called voxels.
This structure induces many difficulties in the exploitation and study of
these objects: as each cube is stored, the volume of data is very huge which
is a problem to get a fluent interactive visualization; the facet structure
(voxels’s faces) of the discrete object induces many problems to get a nice
visualization that is necessary for medicines, as no rendering nor texture
algorithm can be applied.

The general idea to solve those problems is to transform discrete vol-
umes into Euclidean polyhedra. Many research activities have already been

*sivignon,chassery@lis.inpg.fr
tfdupont@ligim.univ-lyon1.fr

achieved to find solutions to this problem, using Euclidean geometry or dis-
crete geometry. To get a good visualization of discrete volumes, the method
that is most used is the Marching cubes method [1], which considers local
voxel configurations to replace them by small triangles. Even if this method
offers a good visualization, it does not provide a good data compression
(huge number of facets) and is not reversible.

Many other research activities have been done in this field, using com-
pletely different ideas. The first algorithms dealt with the construction of
the convex hull of the considered set of voxels. This study was mainly done
by Kim and Rosenfeld who published in [2] a first algorithm to characterize
a piece of discrete plane by the convex hull of the discrete surface. This
algorithm was then improved by Kim and Stojmenovi¢ [3]. This algorithm
was not reversible, that is to say that the discretization of the Euclidean
hull obtained is not the discrete object.

The first reversible algorithm was proposed by Borianne and Francon
[4]. In this paper, they expose two methods: one to do a polyhedrization,
and another to do the reverse operation, i.e. discretization. For that, they
use an approximation by the least-square method that make it marginal
compared with entirely discrete methods.

Another idea was then proposed by Debled [5] [6]. She developed an
algorithm to recognize rectangular pieces of naive planes. Then, she uses
this algorithm in order to decompose the digital surface of symmetric objects
(with known symmetries) into pieces of discrete planes. The polyhedrization
was not complete here but it was the first approach using discrete plane
recognition.

In 1999, Papier [7] [8] presents an algorithm using the Fourier-Motskin
algorithm to recognize standard discrete planes on an object surface, each
point of the plane being a pointel (vertex of a voxel). The complexity of this
algorithm is high because of the Fourier-Motskin algorithm and moreover,
the polyhedrization done is not reversible.

Finally, in 2000, Burguet and Malgouyres published [9] an approxima-
tion algorithm using a curvature computation to choose some germ points
and then calculate the skeleton of the discrete surface without those germs
(Voronoi diagram). The result is a Delaunay triangulation that approxi-
mates and simplificates the original object.

The aim of this paper is to present the first steps to achieve a totally dis-
crete and reversible polyhedrization. We use discrete geometry that seems
to fit best the structure of the processed objects. Reversibility means that
from a discrete object, we can get a Euclidean polyhedron which digital-
ization is exactly the former discrete volume. This property enables many
applications and we give two of them here. First, this can lead to an effi-
cient data compression describing the volume by the set of all the faces of
the Euclidean polyhedron: no loss of data and no loss of information in the
compressed object. After this transformation, we can apply morphological

operations on the reconstructed Euclidean polyhedron and then retrieve the
discrete volume obtained after these operations.

In a first part, we give the basic definitions of discrete geometry. Then,
we present in detail the naive plane recognition algorithm that we use in
the following, giving some improvements and new properties. In section 4,
after a short state of the art, we expose our splitting algorithm. Section 5
deals with the algorithm complexity computation. In the next section, we
propose a study of the voxel processing order and its influence on the final
surface decomposition. Before a few words of conclusion, we finally present
some performance and image results on generated and real volumes.

2 Basic Definitions and properties

In this first part, we focus in a few words on the basic objects definitions
of discrete geometry. All the following definitions lie in a discrete 3D space.
This space is defined as a unit cubic mesh centered on points having integer
coordinates. The vertices of each cell (cube) of the mesh correspond to
points with half-integer coordinates.

A voxel or Z? point or discrete point is assimilated with the unit closed
cubes of the mesh. Then, voxel coordinates are the coordinates of the cor-
responding cube center. Faces, edges and vertices of a voxel are respectively
called surfels, linels and pointels.

In 7Z3, three voxel neighborhoods (figure 1) are classically used. They
are defined with the two distances called Manhattan distance, denoted dg
and Chess board distance, denoted dog:

de(M, P) = |z, _xp‘ + |Ym —yp‘ + [2m _Zp|

do(M, P) = maz(|zm — Tpl, |[Ym — Yp|, |2m — 2p|)

Two voxels M and P are 6-neighbors (6-N) if and only if dg (M, P) < 1.
M and P are 26-neighbors (26-N) if and only if dog(M, P) < 1. In other
words, two points are 6-N if they have a common face, 26-N if they have
a common face, a common edge or a common vertex. This point of view
suggests another neighborhood for the case of two voxels sharing a common
face or a common edge, called 18-N.

A classical way to define a discrete line or a discrete plane is to consider
the digitization of a Fuclidean line or plane on a unit grid with a given
digitization scheme. But, as in Euclidean space, there exists arithmetical
definitions of discrete planes and lines. Those definitions where given by
Reveilles [10] and then generalized to hyperplanes by Andres [11].

A digital plane (figure 2) of normal vector (a,b,c), translation pa-
rameter r and arithmetical thickness w € N is defined as the set of points

M(z,y, z) € 73 satisfying the double inequality:
0<arx+by+cz+r<w

where a, b, ¢ are not null all together and verify ged(a,b,c) = 1. A discrete
plane such that w = |a| + |b] + || is called standard.

A discrete plane such that w = maz(|al, |b], |c|) is called naive. (cf. figure
2 for an example)

The thickness parameter determines the connectivity of the plane. In
fact, naive planes are the thinnest connected planes without holes and there-
fore they are very well adapted for object surface study. In the rest of the
paper, we will deal with naive planes denoted P(a,b, ¢,).

Finally, naive discrete plane can be decomposed into primitive elements
called tricubes: the tricube at point (i,7) of the naive plane P is defined
as the set {(z,y,2) € P | i<z <i+3, j<z<j+3}

3 Recognition of a piece of discrete naive plane

We present in this part an algorithm proposed by Vittone and Chassery
[12] to recognize digital plane segments. Some new properties are moreover
proved.

3.1 Description of the algorithm

Given a Euclidean plane P defined by az + by 4+ cz + r = 0, where 0 < a <
b < c and ¢ # 0, the OBQ discretization(Object Boundary Quantization)
of P is the set of all points M (xz,y, z) of the mesh on or “under” P. For
x,y € Z, this method consists in rounding z to the lower integer value. The
result of such a discretization is the naive plane with parameters (a,b, ¢, r).
In [13, 12], Vittone presents an algorithm that solves in polynomial time
the following problem (so called recognition problem):
Let S be a set of voxels containing the origin (0,0,0) and n other voxels
(igs Jgrkq); ¢ = 1,...m. What is the set S of the parameters (o, 3,7) € R3
with 0 < a < g <1and 0 <+ <1 such that all the voxels of S belong to
the OBQ discretization of P : ax 4+ fy + z 4+ v =0 7 Then, we look for the
set S defined by:

S ={(e,8,7) €[0,1*x[0,1], a« < B|V(z,y,2) € S 0 < az+By+z+7y < 1}

Let us consider the duality of the double inequation of the former formula.
Indeed, let P be a Euclidean plane defined by 2 = —(axz + By +). This
equation represents all the points (x,y, z) belonging to P. Let us rewrite the
equation as v = —(za + yB + z). Then, in the dual space (0, «, 3,7) (also
called parameter space), this equation represents all the planes containing

the point (2,y,2). In this space, a plane (a,b,c,r) is the point (£, g,) if
¢ = max(a, b, c).

Since each voxel generates a double inequation, in the dual space each
voxel of S is represented by an half-opened strip delimited by two parallel
planes. For a given voxel (z,, z), this area represents the set of Euclidean
planes parameters whose OBQ discretization contains the voxel (z,y, z). Fi-
nally, S is the intersection in the dual space of n half-opened strips delimited
by two Euclidean planes P(iq, jq, kq) and P(ig, jg, kg — 1), ¢ =1,...n.

This is the main point of the recognition algorithm: each voxel con-
straints the solution area in the dual space with an half-opened strip. The
intersection of those half-spaces can be found step by step adding one voxel
after the other. At the end, S can be a polyhedron, a polygon, a line segment
or empty. In the last case, the voxels are not coplanar.

We present here a sketch of the final algorithm. Let M(x,y,z) a voxel
and S the set containing M and p other voxels with coordinates (z + i,y +
Jg: 2+ kq¢), ¢ = 1,...p. The aim is to find out the set of the naive planes
containing all the p+ 1 voxels of S, M being the origin. The computation of
the half-spaces intersection returns the solution area S and the final solutions
are, after translation, the planes P(a, b, ¢,7—(az+by+cz)) such that (£, g,)
isin S.

Since 0 < a < f < 1and 0 <+ <1, the initial solution area is delimited
by the projections of the six vertices of

B, ={(0,0,0,1),(0,1,0,1),(1,1,0,1),(0,0,1,1),(0,1,1,1),(1,1,1,1)}

(figure 3) onto the dual space. In the rest of this paper, B, will stand for the
set of the points in N* such that their projections in the parameter space
are the vertices of the solution area for the first ¢ voxels. Hence, S is the
projection of translated B, in the parameter space.

Let us denote Ly(a,b,c,7) = aig + bj, + cky +r and L (a,b,c,7) =
Ly(a,b,c,r) —c. Let (a,b,c,r) be the normal vector of a plane P solution
after step q. Then, at step ¢ + 1, this plane is still a solution if and only if
Lgii1(a,b,e,r) and L;’_i_l(a, b, c,r) have opposite signs, i.e. in the dual space,
the point corresponding to the plane P is between the two planes defined
by the voxel (ig11, jg+1,Kqt1)-

The following algorithm takes as input a voxel V' (i4, j4, kg) and the set
B,_1 solution for the first ¢g—1 voxels and computes the set By of the solution
polyhedron vertices after the addition of V.

Function Add_voxel(B,_1,V)

Initialization. B, = (.
Ly(a,b,c,r) = aiqg+ bj, + cky + r and L;’(a, b,c,r) = Ly(a,b,c,r) —c.

Main loop.

(1) For all V; belonging to B, do

(2) If Ly(Vi) =0or LS (Vi) =0 then put V; in B,

(3) Else if Ly(V1) > 0 and LS (V1) < 0 then put V; in B,

(4) Else

(5) For all V5 inBy_1, Vo # Vi such that Ly(V1) and Ly(V2)
or L; (Vi) and L (V) have opposite signs

(6) e Compute the intersection I of the line (V1 V3)
and the plane Ly(X) =0 (or LS (X) = 0)

(7) e Put I in B,

(8) end for

(9) end for

Result. Return B,.

The result of this function is the set of the solution polyhedron vertices
after the processing of the ¢ first voxels. Hence, to check if a set of voxels S
are coplanar, it is enough to call the function Add_voxel for one voxel after
the other using each time the last B, computed. In the rest of this paper,
we call recognition algorithm the algorithm that recognizes a piece of plane.

3.2 Properties and improvements

This polyhedron S is the intersection of half-opened strips. Hence, although
the points that are linearly dependent with positive weights to the vertices
of S are necessarily solutions, this algorithm does not precise if the vertices,
edges and faces of S are solutions or not.

Proposition 1 Let S = {(iq,744.kq),q = 1,...,p} a set of p vozels, and let
S be the solution polyhedron obtained with the recognition algorithm. If S is
not empty, let N = {N;,i = 1...m} the set of the vertices of S. Then, N;
is a solution if and only if Vq,1 < q < p, L;(Ni) #0.

Let E be a point of the edge (N;, Nj). If N; or Nj is a solution, then E
18 also a solution.

Proof: Let Nj(a,b,c,r) be a vertex of S. Suppose that there exists a
voxel (ig, jq, kq) such that LT (N;) = 0. This means that N; belongs to the
plane (ig,j4. kg — 1) in the dual space. Since this plane is the open limit
of the solution area, N; is not a solution. In the other way, suppose that
N; is not a solution, and show that there exists a voxel (ig,j,.kq) such
that L;—(Ni) = 0. By construction, two kinds of non-solution points exist:
those that are not in the solution polyhedron, and those that belong to an
open side of the polyhedron. As N; is a non-solution vertex of the solution
polyhedron, it belongs to a plane that is an open side of the polyhedron, i.e.

a plane which normal vector is (i4, jq, kg — 1). Then, there exists (i4, jq, kq)
such that aiq + bjg + c¢(kq — 1) + r = 0, and then L] (N;) = 0.

Let E be a point of the edge (N;, N;) with N; solution. Suppose that £
is not solution. Then, there exists a half-opened strip that does not contain
E. As FE is on an edge of the polyhedron, E belongs to the open plane of
a strip. Either this plane contains the edge (N;, N;j) and then this leads
to a contradiction, or this plane cut this edge in F, and then, one of the
two vertices N; or N; is outside the strip. If N; is outside, then we get the
contradiction. Otherwise, if IV; is solution, then N; is not. As E is on the
edge (Nj, N;j), N; does not belong to the open plane, which implies that N
is not a vertex of S. Contradiction. O

Corollary 1 Let E be a point of a face F of S. Let N;j,i =1,...n,n >=2
the set of vertices of F. If at least one N; is a solution and if E is not on
an edge of the face, then E is also a solution.

Proof: For n = 2, see proposition 1. For n > 2, the demonstration is
nearly the same. Suppose that E is not a solution. As F is on a face of
the polyhedron, E belongs to one of the open planes of the strips. If this
plane contains the face F', then we get the contradiction as N; belongs to
this face. Otherwise, there exists an open plane containing . As E is not
on an edge and as S is convex, this plane cuts the face F in at least two
edge points. This plane split the space into two half-spaces, one containing
points that do not belong S . Therefore, at least one vertex of F will be in
this half-space, contradiction. O

Now let us focus on the line (6) of the function Add_voxel presented in
section 3.1. Many efficient algorithms exist to compute the intersection of
a polyhedron and a plane (see for instance [14], chap.7). Those algorithms
return the set of vertices of the polyhedron as rational numbers. But to
get the plane normal vectors corresponding to the vertices coordinates, we
must have those coordinates under fractional form. Instead of computing
the polyhedron first and then transforming each vertex coordinates, it is
better to compute them directly as fractions.

In [13], that was done using a modified version of Grabiner algorithm
[15]. This algorithm uses Farey series and their properties to compute the
new vertices v with a dichotomy method. The complexity is then O(log(n))
if v is between two vertices v and vy such that d(vq,v9) = n where d denote
the Euclidean distance. We propose here to compute directly those coordi-
nates keeping at each step of the computation the value of numerators and
denominators. This step can be done in O(1) with the following algorithm.

V1 and V4 are two vertices of the current solution polyhedron and P is a
plane in the dual space. This algorithm will compute the parameters of the
Euclidean plane which representation in the dual space is the intersection
point between the line (Vi, V3) and the plane P.

function Plane_line(V},V;,P)

Initialization. Vl(al, bl,Cl,T‘l), ‘/2(0,2,()2,62,7“2), P:ai+ B] +k+ Y= 0,
in the dual space (0, o, 3,7).
Let p be the intersection point of the line (V1, V5) and the plane P.

Computation.
Compute N = —iaicy — jbico — rica — kcica.
Compute D =i(agc; — ajca) + j(bacy — bice) + (rocy — rica).

Result. The three coordinates have a common denominator: pg = N X cjco.
The three numerators are p, = (N(agc1 — ajc2) + ayjcaD, N(bacy — bico) +
blcQD, N(’I“QCl — 7“162) + T162D).

It is easy to retrieve the coordinates of the corresponding plane with the
definition of the dual space: for instance, if |c[= maz(|a|, |bl,|c|), the plane
coordinates are (N (agcy —ajco)+aycaD, N(bycy—bico)+bicaD, pg, N(roci—
rice) + r1caD).

To conclude on this part, this recognition algorithm offers some prop-
erties that are useful for the next step, i.e. applying this algorithm on a
discrete surface:

e it recognizes naive discrete plane: the minimal thickness of these planes
implies that the object surface is enough to do a recognition, we do
not need interior voxels;

e it is incremental: the voxels can be added one by one;

e for a given set of voxels, the adding order does not have an influence
on the final result;

e it returns the set of vertices of the solution polyhedron: so, we have
the complete set of the solution planes normal vectors.

4 General algorithm

Recognizing discrete planes is the first step of a most general goal: the
polyhedrization of a discrete object. This section describes a new algorithm
that split the discrete surface of an object into naive plane pieces. We
will also see that this algorithm has features which make it especially well
adapted to get a totally discrete and reversible polyhedrization.

We consider 26-connected objects with a 6-connected background. In the
sequel, we will call surface the set of the surfels that belong simultaneously

to an object voxel and to a background voxel. In other words, the surface
will be the set of visible surfels. As each voxel has six faces, those six
faces define six directions that we will consider symmetrically during the
algorithm description.

Algorithm Decompose-discrete-surface

Initialization. For each object voxel, locate the surface surfels, S.
Initialize the number of planes cpt to —1.

Initialize the list To-process with the empty list.

Let B be a set of vertices of a solution polyhedron: By, the initial set,
depends on the current direction.

Main loop.

(1) For each object direction d

(2) For each object voxel V

(3) Let sy be the surfel of V' in the direction d;

(4) If sp € S and sp has never been treated then

(5) origin = s;

(6) cpt = ept + 1;

(7) put sp in To-process;

(8) B = By;

9) While To-process is not empty

(10) choose one surfel s in To-process;

(11) Bsgve = B;

(12) For each of the 8 neighbors s, of s

(13) B = Add_voxel(B,s;)

(14) if B is not empty then

(15) cpt is a solution for s and its 8 neighbors;
(16) among the 8 neighbors, put those which have not been

treated yet for this plane into the list To-process;

(17) else
(18) If s = 59 then cpt = cpt — 1;
(19) B = Bsave;
end while
end for
end for

Result. For each surfel: a list of all the plane numbers it belongs to.
For each piece of plane: the set of all the solution polyhedron vertices.

In this algorithm, the solution polyhedron is represented by the set of
its vertices denoted by B. Each time the function Add_voxel is called,

the set B is modified. We save the value of B before the addition of the 8
neighbors of a given surfel s. So, if s is not a tricube center, we can recover
the solution polyhedron as it was before the processing of s’s neighbors.

During the execution, for each surfel we create a list containing all the
plane numbers to which this surfel belongs. Moreover, at the end of each
piece of plane recognition, we keep in an appropriate structure the coordi-
nates of the solution polyhedron vertices.

Let us analyze the properties of this algorithm:

e during the processing of a surfel, either 8 faces are added to the current
plane or zero: indeed, if a surfel is a tricube center, then we add all of
them to the current plane, otherwise, none of them are added (even
those which could belong to the plane). This implies that every surfel
of a recognized naive plane has a least 3 neighbors belonging to this
plane. Indeed, a face that belongs to a piece of plane must have a
neighbor that is a tricube center. Hence, only two cases are possible
(see figure 4). As a consequence, recognized regions have a “regular
form”;

e a surfel can belong to many pieces of planes: indeed, no restrictions nor
choices are done during the expansion of the planes. Then, naive planes
are extended to their maximum under the constraint given before.

The second property can be seen as an advantage or as a problem. In-
deed, if we do not allow discrete plane covering, the limit between two planes
is easy to handle. But we can get many very small pieces of plane at the
end of the algorithm and hence, allowing plane covering reduces the influ-
ence of the pieces of planes origin choice. Moreover, to get a reversible
polyhedrization, the border of a piece of plane should be a discrete line.
Without covering, we have no mean to control the border of the pieces of
plane.

5 Complexity

In this section, we give a polynomial bound on the algorithm complexity.
This study is split into two parts: first, the complexity of the function
Add_voxel presented in section 3; then, the complexity of the algorithm
Decompose-discrete-surface described in section 4.

5.1 Add_voxel complexity

The first loop of this algorithm covers the elements of the set B,;. To bound
the cardinality of this set is to bound the number of vertices of a polyhedron
according to its number of faces. This is a classical result in computational
geometry (see [14], chap.7 for instance) that we recall here:

10

Theorem 1 Let P be a convex polyhedron with n faces. Then P has at
most 2n — 4 vertices.

In the algorithm, By is a polyhedron with 5 faces. As the addition of one
voxel is equivalent to the addition of two parallel planes in the dual space,
after step ¢, the solution polyhedron has at more 2(2¢g +5) —4 = 4¢ + 6
vertices. As a matter of fact, The first loop of the function Add_voxel is
done in O(q) time where ¢ is the number of voxels of the piece of plane.

In the loop, the first two tests can be done in constant time. The second
loop does a new cover of the set B, and is carried out in O(q). For the
computation of the plane/line intersection, we saw that we need here to keep
some particular knowledge on the values found for the intersection point, and
we proposed in section 3.2 an algorithm that solves this problem in constant
time. To recover the parameters of the solution planes, we will need after
this algorithm a step to normalize the parameters (using Euclide’s algorithm
for instance to compute the ged of the 3 denominators). This normalization
can be done either for each By, or only at the end, for the vertices of S.

For the function Add_voxel, we finally find a O(q¢?) complexity, where
g is the number of voxels of the piece of plane.

5.2 Decompose-discrete-surface complexity

Let us analyze line by line how this algorithm runs. Let n be the number
of voxels a surfel of which is on the object surface. As a voxel has six faces,
the first loop (line (1)) is done exactly 6 times. The second loop (line (2)) is
run n times as we have n surface voxels. All the tests and instructions done
between line (3) and line (8) run in constant time.

The complexity of the loop line (9) depends on the maximum number of
elements in To-Process.

Proposition 2 At step number q (after the q first vozels) the mazimum
number of elements in To-Process is 4q + 4.

Proof: After the processing of the first surfel, we put its 8 neighbors in
To-Process. Moreover, we have seen in section 4 that any surfel belonging
to a piece of plane has at least 3 neighbors in this plane. This means that
at any time during the algorithm, each surfel of To-Process has at least
two neighbors in this list. During the treatment of one surfel of the list, we
delete this element from the list and we add its 8 neighbors. But, since at
least 3 of them are already in the list, we add at most 5 for its neighbors.
Finally, we add at most 5—1 = 4 surfels at each step. Hence, at step number
q, this list has at most 8 + 4(¢ — 1) = 4¢q + 4 elements. O

So, for the recognition of a naive plane with ¢ voxels, this loop will
be done at most 4¢ + 4 times. The choice in line (10) can be done in

11

constant time, and in line (11), saving B needs a cover of the set B, which
is done in O(q) for a plane with ¢ voxels. Moreover, for a naive plane with
q voxels, the function Add_voxel runs in O(¢?), and the loop line (12) in
O(8¢%) = O(g?). All the tests and instructions done between line (14) and
(18) run in constant time. The restitution of B line (19) is done in O(q) as
it needs a cover of Bggye. Then, we have all the elements to compute the
global complexity of this algorithm as a function of n, the number of voxels
which have a surface surfel, and p, the size of the biggest recognized piece
of plane. We get:
6n X p x (2p + 8p?)

which leads to a final complexity O(np?).

6 Study on the voxel processing order

During the execution of the algorithm Decompose-discrete-surface, many
choices have to be done concerning the order to process the voxels. Those
choices have an influence on the final decomposition we get: a given set of
choices induces a different decomposition. Therefore, a study is useful to
know if some choices lead to a “better” decomposition. In this section, we
study this influence, comparing the results obtained with different strategies.

In the algorithm, three main choices are done for the tracking order.
Indeed, in line (1), (2), (10) and (12), no details are given concerning the
processing order for these different steps. But we can easily see that the
choice done in line (10) does not influence the result: as our approach is
surfel based, the recognition done for one direction has no influence on the
recognitions done for the others. Then, three choices remain:

e the origin of each piece of plane (line (2));

e the following voxel to process during the recognition of a piece of plane
(line (10));

e the tracking order of the 8 neighbors of a given voxel which determines
the structure of the list To-Process (line (16)).

In this study, we give an insight in the influence of the last two choices.

First, we can notice that the order we process the 8 neighbors of a given
voxel determines the order in which those neighbors are inserted into the
list To-Process. Hence, the planes growing shape depends on two inter-
dependant choices.

In the following, we present various strategies defined from those 2
choices.

12

6.1 Different strategies

The first strategy is also the simplest one to implement. In figure 5, we
present first the 8 neighbors tracking and then the propagation scheme de-
pending on which surfel we choose in the list of surfels To-Process. The
numbers on the surfels refer to the order in which they are added in the
list To-Process. With this first order, taking the last element of the list at
each step leads to a very linear propagation scheme. This induces a main
direction for the planes propagation. In fact, for any neighborhood tracking,
choosing the last element of the list leads to a main direction given by the
position of the last element processed during the 8 neighborhood tracking.
If we take the first element of the list as a following surfel, we get the propa-
gation drawn in figure 5. With this tracking, the left-down corner is always
treated before the other sides, and the expansion is not regular nor isotropic.

Figure 6 illustrates a second strategy. The 8-neighbors tracking is now
a clockwise tracking around the processed voxel (any other tracking around
the voxel gives symmetrical results). The propagation obtained with the
choice of the first surfel of the list is more isotropic than the previous one,
even if the left-down corner is still processed first in an irregular way when
we get further from the plane origin.

The main problem with those two strategies is that it is difficult to to
handle exactly the propagation even close to the origin.

A third method is illustrated in figure 7. This 8 neighbors tracking
processes the voxels that are closer to the origin of the piece of plane first:
the four 4-neighbors are first processed, and then the four 8-neighbors. As we
saw that choosing the last element of the list induces linear propagations,
we just show here the propagation obtained with the choice of the first
element. We see that even after a big number of steps, the propagation
scheme is always the same: the four directions (“sides”) are processed one
after the other in the clockwise direction. During the processing of one side,
the surfels are processed according to their distance to the origin. After the
processing of the 4 sides, the 4 corners are treated. So, the propagation is
perfectly defined in this case, and is isotropic as each direction is processed
in the same way as another, even if one direction is processed first.

6.2 Comparison results

In the following, we give some results for the comparison of the 3 tracking
orders given above. To do this comparison we use the following criterion
and objects: since a sphere is a symmetric object in all the directions, it
would be nice to get pieces of planes that have nearly the same size. Hence,
for a sphere, the standard deviation/average for the size of the recognized
pieces of places should be as small as possible.

In the following, we present two comparisons.

13

In the rest of this section, we denote order 1 the one which corresponds
to the first strategy on the previous section, order 2 the one corresponding
to the second one, and order 3 the one corresponding to the third one,
independently of the choice of the next voxel to process.

The curves presented in figures 8 and 9 are spline approximation of the
discrete results.

In the first comparison (figure 8), each diagram represents the curves for
one given tracking order, and each curve is the result choosing the first or the
last voxel of the list. For all the strategies, the general shape of the curves
is chaotic. This is due to the discrete nature of the datas. Nevertheless,
the curves have similar behaviours: for instance, all the curves have a local
maximum when the radius is 5 or 8. It is quite easy to see that on those
three first graphs, the curve corresponding to the choice of the last voxel of
the list is globally worse than the one corresponding to the first voxel of the
list. This suggests that the more isotropic the growing shape is, the better
the result is.

The second comparison is done in figure 9. If we look at these curves, we
see that they are really close one to another and that none is really better
than another. In fact, it seems that for the sphere, those three processing
order have nearly the same behavior if we consider the homogeneity of the
recognized pieces of plane.

But, it would be interesting to see if when the radius of the sphere
increases, the global behavior becomes stable, i.e. if one tracking order
becomes better than the others, or if the curves always cross whatever the
radius is. This leads to some problems of implementation because as we
work with integer fractions in the dual space, we quickly get some very long
integers. The solution is to use a library to handle integers with infinite
precision and this work is now in progress.

7 Results

In this section, we will present some results about speed performances and
images that are the result of the exposed algorithm.

7.1 Performance results

We did some tests for performance results on a Linux OS with a 1GHz pro-
cessor. The algorithm was coded in C++ with no particular optimizations.
The figure 10 shows the results obtained for cubes of different sizes. In this
figure, we uses logarithmic scales in basis 2 for the two axis. Then, with
those scales, if the processing time depends directly on a power of the size
of the object, the graph will be a straight line. Moreover we only consider
the time spent effectively for the recognition of the pieces of planes. So, we

14

does not include in those times the reading of the object nor the writing of
the solution nor the visualization.

As the tracking order does not influence in the result for a cube (we
always recognize the 6 faces), we choose the tracking order that minimizes
the lists tracking in the algorithm, i.e. the first order with the choice of the
last element of the list To-Process. We can moreover notice that even if
choosing the first element of the list To-Process induces a supplementary
list tracking in the complexity computation, in practice, this choice has no
incidence on performance results.

We see in figure 10 that the graph is really close to a straight line. In
fact, if we consider the uncertainties due to such measurements, this result
approaches very well a straight line with slope 3/4. This means that for the
cube, the algorithm runs in O(n3/4) if n is the side of the square, which is
quite better than the theoretical bound found in section 5.

7.2 Results with images

To finish, we give here some image results of this algorithm. Each color
corresponds to one piece of plane. To have a better visualization, if one
surfel belongs to many pieces of planes, we give vi the color of the piece of
plane that was first recognized.

Figure 11 presents some created and simple objects: two pyramids with
different edges and two cubes. On the smallest pyramid, we can see that
4 planes have been recognized, for the 4 faces of the pyramid. All those
planes are the same by symmetry: indeed, the nine upper voxels belong to
the four planes, and so we said the first recognized plane has a visualization
priority. For the biggest pyramid, we see that we also get the four sides.
Our algorithm recognize the six faces of a cube, and for a chamfer cube,
it recognizes the plane that cuts a vertex of this cube. As for the small
pyramid, the visualization priority hides the fact that the plane that cuts
the cube is bigger that what is shown: it overlaps all the steps of the cut
part.

Figure 12 gives the results for real objects: one image of one hand bones;
one image of a piece of vertebra with high resolution.

8 Conclusion and future work

In this paper, we presented a new polynomial algorithm to decompose the
surface of any discrete volume into pieces of digital naive planes. To do
that, we used an incremental naive plane recognition algorithm and we have
shown some properties on the dual space associated to each piece of plane.

Using a 8-neighborhood voxels tracking, this decomposition algorithm
forbids too long and narrow pieces of planes, and we analyzed some shape
properties of the recognized pieces of planes. Then, we analyzed the global

15

complexity of this algorithm finding a polynomial bound in function of the
number of surface voxels. A sharper analysis of this algorithm led us to study
the influence of the different chosen voxels tracking orders and we showed
that for this algorithm, the different orders proposed did not influence much
the resulting decomposition. In a last part, we made some performance tests
on cubes of increasing side, in order to see the practical behavior of this
algorithm and to compare it with the theoretical complexity found. These
tests showed that for the cube, practical performances are very much better
than the theoretical complexity. The last images illustrated the position of
the recognized pieces of plane for generated and real objects.

This work opens many future prospects. First, some practical work can
be done to improve performances: the use of a library that handles integers
with arbitrary precision will enable to run this algorithm on bigger volumes;
it would also be interesting to make this algorithm parallel. As it considers
successively the 6 directions of a volume and as those 6 processings do not
interfere, it would be quite easy to process those 6 steps in parallel.

On the theoretical side, it would be interesting to study more in details
the structure of the dual space for a piece of plane as it has been done in
2D for discrete line segments [17]. This may give some precision about the
theoretical complexity bound.

Finally, this paper presented the first step of a more global goal that
consists in finding a reversible polyhedrization of any discrete volume. To
get such a polyhedrization, we need to transform each recognized piece of
plane into a discrete polygon, a definition of which has been proposed in [18].
This supposes that we can define and place all the edges and the vertices
between the found pieces of plane.

References

[1] W.E. Lorensen and H.E. Cline. Marching cubes : A high resolution
3d surface construction algorithm. Computer Graphics, 21(4):163-169,
1987.

[2] C.E. Kim and A. Rosenfeld. Convex digital solids. IEEE Trans. on
Pattern Anal. Machine Intell., PAMI-4(6):612-618, 1982.

[3] C.E. Kim and I. Stojmenovi¢. On the recognition of digital planes
in three dimensionnal space. Pattern Recognition Letters, 32:612-618,
1991.

[4] Ph. Borianne and J. Frangon. Reversible polyhedrization of discrete
volumes. In Discrete Geometry for Computer Imagery, pages 157168,
Grenoble, France, September 1994.

16

[5]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Isabelle Debled-Rennesson. Ftude et reconnaissance des droites et plans
discrets. PhD thesis, Université Louis Pasteur, Strasbourg, France,
1995.

I. Debled-Rennesson and J.-P. Reveilles. An incremental algorithm for
digital plane recognition. In Discrete Geometry for Computer Imagery,
pages 207-222, Grenoble, France, September 1994.

Laurent Papier. Polyédrisation et visualisation d’objets discrets tridi-
mensionnels. PhD thesis, Université Louis Pasteur, Strasbourg, France,
1999.

L. Papier and J. Francon. Polyhedrization of the boundary of a voxel
object. In Couprie Bertrand and Perroton, editors, Discrete Geometry
for Computer Imagery, number 1568 in LNCS, pages 425-434. Springer,
1999.

J. Burguet and R. Malgouyres. Strong thinning and polyhedrization
of the surface of a voxel object. In G. Borgefors, I. Nystrom, and
G. Sanniti di Baja, editors, Discrete Geometry for Computer Imagery,
volume 1953 of LNCS, pages 222-234, Uppsala, Sweden, 2000. Springer.

J.-P. Reveilles. Géométrie discréte, calcul en nombres entiers et algo-
rithmique. PhD thesis, Université Louis Pasteur, 1991.

E. Andres, R. Acharya, and C. Sibata. Discrete analytical hyperplanes.
Graphical Models and Image Processing, 59(5):302-309, 1997.

J. Vittone and J.-M. Chassery. Recognition of digital naive planes and
polyhedization. In Discrete Geometry for Computer Imagery, number
1953 in LNCS, pages 296-307. Springer, 2000.

Joélle Vittone. Caractérisation et reconnaissance de droites et de plans
en géométrie discréte. PhD thesis, Université Joseph Fourier, Grenoble,
France, 1999.

F. P. Preparata and M. 1. Shamos. Computational Geometry : An
Introduction. Springer-Verlag, 1985.

D.J. Grabiner. Farey nets and multidimensionnal continued fractions.
Monath. Math., 114(1):35-61, 1992.

P. J. Federico. Descartes on Polyhedra, volume 4 of Sources in the
history of Mathematics and Physical Sciences. Springer, New-York,
1982.

M.D. Mcllroy. A note on discrete representation of lines. ATET Tech-
nical Journal, 64(2):481-490, February 1984.

17

[18] E. Andres. Defining discrete objects for polygonalization : the standard
model. In Lachaud Braquelaire and Vialard, editors, Discrete Geometry
for Computer Imagery, number 2301 in LNCS, pages 313-325. Springer,
2002.

18

pointel I Lq
/Maun,
-

surfel

(a) (b) (¢) (d)

Figure 1: A voxel and the three classical neighborhoods

X 4 4

(a) (b) (c)
Figure 2: A discrete plane: 0 < 6z+13y+27z < w with different thicknesses:

(a) w = 15 a thin plane with holes; (b) w = 27 a naive plane; (¢) w = 46 a
standard plane. A tricube is also depicted onto the naive plane.

19

Figure 3: The initial set of solutions

Figure 4: A surfel of a piece of plane has at least 3 neighbors in this plane

14 |15 | 16 | 18 | 23
B2 |47 |22
Y, 101 |Vvo|l6 |21
1 9103 |5](20
8 (11|12 |17 |19

(a) (b)

Figure 5: Strategy 1: (a) the 8 neighbors tracking; (b) propagation with the
first element of the list To-Process; (¢) propagation with the last element

18 |19 | 22
13 (14|17 |21
8|19 (12|16 |20
4 | 7 (11|15
V0| 6 |10
315
()

343536373839 |40
3314|1516 |17 |18 |41 21314
301131 2| 3|4]|19 1 |VOo| 5

Y, 2 (10| 1 |Vv0o| 5|2 0716
26|19 |0|7]|6 |21 8 [10| 9
25| 8 |12|11|23 |22 11 |13 | 12
24128 | 27|32 |31

(a) (b) ()

Figure 6: Strategy 2: (a) the 8 neighbors tracking; (b) propagation with the
first element of the list To-Process; (¢) propagation with the last element

20

32130|29|31]|33

28|21 |12 |11 |13 |22 |37

26(10| 5|1 |6 [15]|3

¢ v 24| 8|0 |vo|2|14]|34

2519 |4 |3|7]|16]|36

27120 |18 | 17| 19| 23 | 38

42 40|30 |41 |43
(a) (b)

Figure 7: Strategy 3: (a) the 8 neighbors tracking; (b) propagation with the
first element of the list To-Process

stand. dev. / average

Figure 8: Comparison for the choice of the next voxel to process: (a) order
1; (b) order 2; (c) order 3

21

T
“ressensy_first.ixt
“ressens2_first ixt
“ressens3_first.ixt

stand. dev. / average
o
N

radius

Figure 9: Comparison for the 8-neighbors tracking order

“cubes.dat’ +

processing time (s)
+

0.0625 | 4

0.015625 4

0.00390625 L L L L L
2) 8 16 32 64 128

Figure 10: Performance results for the cube

22

(c)

Figure 11: Simple objects: (a) two pyramids with different heights; (b) cube
of side 16; (c) chamfer cube

23

Figure 12: (a) A sphere of radius 14; (b) Real volumes

24

