
HAL Id: hal-00185089
https://hal.science/hal-00185089v1

Submitted on 5 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

2D and 3D Visibility in Discrete Geometry : an
Application to Discrete Geodesic Paths

David Coeurjolly, S. Miguet, Laure Tougne

To cite this version:
David Coeurjolly, S. Miguet, Laure Tougne. 2D and 3D Visibility in Discrete Geometry : an
Application to Discrete Geodesic Paths. Pattern Recognition Letters, 2004, 25 (5), pp.561-570.
�10.1016/j.patrec.2003.12.002�. �hal-00185089�

https://hal.science/hal-00185089v1
https://hal.archives-ouvertes.fr

1

2D and 3D Visibility in Discrete Geometry: an application to discrete

geodesic paths

D. Coeurjollya, S. Migueta and L. Tougnea

aLaboratoire ERIC
Université Lumière Lyon 2
5, av. Pierre Mendès-France
69676 BRON cedex, FRANCE

In this article, we present a discrete definition of the classical visibility in computational geometry based on
digital straight lines. We present efficient algorithms to compute the set of pixels in a non-convex domain that
are visible from a source pixel. Based on these definitions, we define discrete geodesic paths in discrete domain
with obstacles. This allows us to introduce a new geodesic metric in discrete geometry.

Keywords: discrete visibility, geodesic path, distance transform, discrete straight line.

1. Introduction

In discrete geometry, many Euclidean geomet-
ric tools are redefined to take into account speci-
ficities of the discrete grid. In this article, we
propose a definition of the classical Euclidean vis-
ibility based on discrete objects. The interest is
double: on one hand we extend the discrete geom-
etry with a new tool and on the other hand, since
this visibility allows us to define discrete geodesic
paths and discrete shortest paths, we have a prac-
tical tool needed by many applications in medical
imaging or image analysis to estimate geodesic
distance in non-convex domains.

In the literature, Soille [27–29] defines the vis-
ibility between two points using the Bresenham
digital line drawing algorithm [4]. The visibility
definition we propose in this article is based on
classical Discrete Straight Lines (DSL for short).
Hence the proposed approach considers a more
general set of lines and allows efficient algorithms.
Many technics exist for the DSL recognition prob-
lem. Some of these approaches are based on chain
code analysis [33], on links between the chain
code and arithmetical properties of DSL [8,9], on
links between the chain code and the feasible re-
gion in the dual -or parameter- space [11,19,32]
and others on linear programming tools such that
Fourier-Motzkin’s algorithm [13]. All these al-

gorithms present a solution either to decide if a
given set of pixels is a discrete straight segment
(DSS for short) or to segment a discrete curve
into DSS, or both. In our case, the problem is
quite different, we want to decide if there exits at
least one DSS between two pixels in a non-convex
domain.

We present definitions and algorithms to com-
pute the set of pixels which are visible from
a source. Then, we define the notion of dis-
crete geodesic path and the metric associated to
such path based on this visibility definition. We
also proposed an efficient implementation of the
geodesic distance labelling from a source pixel. In
section 5, we present some ideas for a 3D gener-
alization.

2. Visibility

2.1. Notions and definitions
Let us denote D a discrete domain, that is a

n−connected set of pixels. We denote D̄ the com-
plement of D, we call this set indifferently the
background or the set of obstacles. In the follow-
ing, we consider D an 8-connected domain.

In this domain, we define the discrete visibility
by analogy to the continuous definition.

Definition 1 (Discrete Visibility) Let s and

2

t be two pixels in D, we define the discrete vis-

ibility as a binary relationship v ⊆ D × D such

that we have v(s, t) if and only if there exists an

8-connected discrete straight segment from s to t
whose pixels belong to D

Before introducing the visibility problem in
non-convex domain, we recall classical parame-
ter space characterizations of DSL [19,20,32]. If
we consider an Euclidean straight line y = αx+β,
the digitization of this line using the Grid Inter-
sect Quantization (see [14] for a survey on digiti-
zation scheme) is the set of discrete points such
that:

∆(α, β) = {(x, y) ∈ Z
2|−

1

2
≤ αx+β−y <

1

2
} (1)

Note that all classical digitization schemes
(GIQ, Object Boundary Quantization or Back-
ground Boundary Quantization) can be used and
such a choice will not interfere in our algorithms.
We choose here the GIQ scheme because of its
symmetry properties.

In the parameter space of the previous defini-
tion, we can describe the set of Euclidean straight
lines whose digitization contains a pixel p(x, y):

Sp = {(α, β) ∈ R
2|−

1

2
+y ≤ αx+β <

1

2
+y} (2)

A pixel in D defines a strip in the (α, β)-space
delimited by two lines L1 : αx + β − y ≥ −1/2
and L2 : αx + β − y < 1/2. If we want to know if
a set of pixels belongs to a DSL, a classical way
is to compute the intersection in the (α, β)-space
of strips associated to each pixel. If the feasible
domain is not empty, it describes all DSL con-
taining the pixels (cf figure 2 for an example). In
the following, we define the domain S(s, t) associ-
ated to two pixels s and t which is the intersection
Ss ∩ St.

In order to compute the visibility in non-convex
domains, the main idea is to check in the dual
space if domains associated to obstacle pixels do
not hide the current pixel t from the source s.

2.2. Visibility domain
Let o denote an obstacle pixel. If we want to

describe the set of Euclidean straight lines whose

digitizations do not contain o, we also introduce
a strip in the parameter space such that the in-
equations are reversed. Hence, an obstacle o is as-
sociated to constraints L̄1(o) : αx+β−y < −1/2
and L̄2(o) : αx + β − y ≥ 1/2. If we want to
know if this obstacle blocks the visibility from s
to t, we just have to compute in the (α, β)-space
L1(s) ∩ L2(s) ∩ L1(t) ∩ L2(t) ∩ (L̄1(o) ∪ L̄2(o)).
If this intersection is empty then t is not visible
from s.

More generally, if we consider a non-convex do-
main D and a set of obstacle pixels O = {oi}i=1..n

that is a restriction of D̄ such that all point ab-
scissas are between the abscissa of s and the ab-
scissa of t (all other points can be omitted for the
visibility problem). We have the lemma:

Lemma 1 Let s be the source and t a pixel in D,

t is visible from s in D if and only if:

S(s, t) ∩

(

⋂

i=1..n

L̄1(oi) ∪ L̄2(oi)

)

6= ∅ (3)

The proof of this lemma can be deduced by the
visibility definition and by construction of S.

Obviously, we do not have to consider all ob-
stacle pixels. We first define:

Definition 2 A pixel o in O is called “blocking

pixel” for the visibility problem v(s, t) if:

S(s, t) ∩ (L̄1(o) ∪ L̄2(o)) 6= S(s, t) (4)

and the abscissa of o is between the abscissa of s
and t.

These blocking pixels are those which interfere
in the visibility problem. Non-blocking pixels
in O can be removed from the v(s, t) test. We
can characterize the shape of the domain when a
blocking pixel modifies it:

Lemma 2 If o is a blocking pixel for the v(s, t)
problem, either the domain S(s, t) ∩ (L̄1(o) ∪
L̄2(o)) is empty or it has only one connected com-

ponent.

Proof: we consider the domain S(s, t) and a
blocking pixel o such that o, s and t are not
aligned (in that case, the domain is empty). We

3

show that either L̄1(o) or L̄2(o) crosses the do-
main. We have different cases (cf figure 1-a) that
induce two components but the left and the mid-
dle cases are excluded because they imply that
the abscissa of o denoted xo is not between xs

and xt and thus, o is not a blocking pixel ac-
cording to definition 2. As the matter of fact, if
xo is between xs and xt, then the slope of L̄1(o)
is between the slope of L1(s) and the slope of
L1(t). By construction of the strips, the vertical
distance between L1 and L2 is equal to 1. Hence,
in figure 1-b, the intersection in a′ of L̄1 with the
vertical line going through b implies that b′ must
be outside the interval [a, b] on the vertical line.
Since the slope of L̄2 is greater than the slope of
the edge cb, L̄2 cannot cross the domain. Same
idea can be applied when L̄2 crosses the domain.
Hence, all cases of the figure 1-a are impossible.
Thus, S(s, t)) ∩ (L̄1(o) ∪ L̄2(o)) is equal either to
S(s, t))∩L̄1(o) or to S(s, t))∩L̄2(o). This domain
is the solution of a linear inequality system and
so has exactly one convex connected component.
�

(a)

�L1
�L2

a
b b0

a0
(b)

Figure 1. (a) Different cases that induce two con-
nected components, the left case and the mid-
dle case are impossible by definition of blocking
points. The third case must be taken into account
(b) illustration of the proof of lemma 2.

According to this lemma, if a straight line L̄1

(resp. L̄2) of an obstacle crosses the domain, the
other constraint L̄2 (resp. L̄1) can be removed
for the visibility problem. Geometrically, an ob-

stacle such that L̄1 crosses the domain is above
the Euclidean segment [s, t] and an obstacle such
that L̄2 crosses the S(s, t) domain is beneath the
segment [s, t] (cf figure 2 for an example).

b

s

t

a

c

d

�L2(b)
�L2(a)

�L1() �L1(d)

Figure 2. Visiblity domain associated to a set
of blocking pixels. The black feasible region in
the parameter space is the visibility domain asso-
ciated to grey pixels constrained with the black
blocking pixels.

In [27–29], Soille computes the visibility test
considering the digitization, using the Bresen-
ham’s algorithm [4], of the Euclidean segment [st]
and verifying that all pixels of this segment be-
long to the domain. In our proposal, we consider
all possible digital straight segment and thus we
increase the visibility domain. Beyond these dif-
ferent definitions, we present efficient algorithms
for both visibility labelling and geodesic distance
labelling.

2.3. Visibility algorithm
In this section, we present algorithms that com-

pute the equivalence class associated to the visi-
bility binary relationship of a source s.

We propose two algorithms, the first one com-
putes the equivalence class with the visibility defi-
nition given above, and the second one introduces
a new visibility definition that is a restriction of
the previous one but the associated algorithm
complexity justifies this new version of the vis-
ibility.

The first algorithm we propose is a really

4

straightforward computation of the visibility. In-
deed, we can use classical linear programming
tools to solve the linear inequation system given
by obstacle constraints. Such tools are for ex-
ample the Fourier-Motzkin [13] system simplifi-
cation algorithm, the Simplex algorithm or the
Megiddo’s algorithm [21]. Note that the com-
plexity of the Megiddo’s algorithm is linear in
the number of inequations but the problem comes
with the dimension of the system. In our case,
the constraint system is in dimension 2 and thus
the implementation of the Megiddo’s algorithm is
tractable with a complexity bounded by 4n where
n is the number of inequations.

We consider a source s, a domain D. We label
all pixels in D using a breadth-first tracking of
the domain using for example the 8-adjacency.
During the propagation process, if we meet an
obstacle we store its coordinates in a list O. At
each pixel visited in the breadth-first tracking, we
extract from O the set of blocking pixels and we
solve the visibility problem using the Megiddo’s
algorithm.

Straightforward visibility algorithm
Input: a domain D and a source s

Output: the set of pixels which satisfy v(s, t)

Let Q be a FIFO queue
Let O be the obstacle list
Append last(s,Q)
While Q is not empty

t:=remove first(Q)
For each 8-neighbor n of t not labelled closed or

visible

If n is an obstacle then

Append(n,O)
else

Let B be the set of blocking points of O
according to the pixel n

Compute the linear inequation system S

with L̄1 or L̄2 the constraints of each point of B
If Megiddo(S) 6= ∅ then

Label n as visible
Append last(n,Q)

else

Label n as closed //n is not visible and
the point is closed

endFor

endWhile

If we denote n the number of pixels in D and
m the number of obstacles in O, each step in
the while loop has got a complexity bounded by
O(m). Hence, the global cost of this algorithm is
O(nm).

Due to the difficulties to provide an efficient
data structure to propagate blocking points from
a point to its neighbors, this algorithm has a quite
important complexity and is not efficient for the
geodesic computation. Thus, we propose a new
definition of the discrete visibility which is a weak
version of the definition presented above but that
leads to an efficient algorithm for the visibility
computation and the discrete geodesic problem.

Definition 3 (Weak Discrete Visibility)
Let s and t two pixels in D, we define the

weak discrete visibility as a binary relationship

v∗ ⊆ D×D such that we have v∗(s, t) if and only

if there exists an Euclidean straight line going

through s and whose digitization contains t and

no pixels in D̄ between s and t.

Instead of considering the inequation associ-
ated to s, we constraint the set of Euclidean lines
to go through s. This new definition restricts the
previous one and make the visibility not be a sym-
metric binary relationship. However, this defini-
tion allows an efficient data structure for the visi-
bility test. We suppose that all the obstacle pixels
are sorted counterclockwise by polar angles using
s as the origin. Using this data structure and the
above definition, we have the following property.

Proposition 1 Given a set of obstacles sorted by

polar angles of center s and a point t, we denote

u the successor of t in the polar sort and l its

predecessor. We have:

v∗(s, t) ⇔ S∗(s, t) ∩ L̄1(u) ∩ L̄2(l) 6= ∅ (5)

where S∗ denotes the new domain associated
to the weak visibility which is now a segment in
the parameter space.

Hence, instead of considering all blocking pix-
els, we just have to test two characteristic pixels

5

given by a polar sort. The proof of this property
is a straightforward application of the visibility
definition. Note that the polar sort can be done
with integer arithmetic.

We can present the algorithm associated to
this definition:

Weak visibility algorithm
Input: a domain D and a source s

Output: the set of pixels which satisfy v(s, t)

Let Q be a FIFO queue
Let O be the obstacle list sorted in a polar trigonometric
order of center s
Append last(s,Q)
While Q is not empty

t:=remove first(Q)
For each 8-neighbor n of t not labelled closed or

visible

If n is an obstacle then

Append sort(n,O)
else

Let (u, l) be the localization of n in the
sorted list O

If S∗(s, t) ∩ L̄1(u) ∩ L̄2(l) 6= ∅ then

Label n as visible
Append last(n,Q)

else

Label n as closed //n is not visible and
the point is closed

endFor

endWhile

The visibility test has got a constant time cost
and according to the data structure, both lo-
calization and obstacle insertion have a cost in
O(log(m)). Thus, the global cost of this algo-
rithm is O(nlog(m)). Moreover, the cone (s, u, l)
associated to a point t can be propagated for both
localization and insertion to reduce the expected
complexity of the algorithm that makes this la-
belling very efficient.

3. Discrete shortest path and discrete
geodesic metric

Based on these definitions of visibility, we
can define discrete shortest paths and discrete
geodesic paths.

3.1. Definition and previous works
We first remind some classical facts on discrete

metrics that approximate the Euclidean one. All
discrete metrics are based on:

• either a mask approach where elemen-
tary steps in the neighborhood graph are
weighted in order to approximate the Eu-
clidean distance of these steps. For ex-
ample, elementary steps of the Manhattan
distance (or d4) are horizontal or vertical
moves weighted to 1, the chess-board dis-
tance (or d8) also considers diagonal moves
weighted to 1. More generally, chamfer
metrics first list elementary moves and then
associate weights to each move (see [2,31]
for initial works) ;

• or a vector approach that leads to exact
Euclidean metric where displacement vec-
tor (dx, dy) is stored and then the distance

can be exactly computed d =
√

dx2 + dy2

but the main goal is to design distance map
algorithm that only deal with the integer
displacements [7,24,6].

For the discrete geodesic problem, the mask
based approach leads to efficient algorithms be-
cause a weighted graph can be computed from the
metric and the adjacency graph of the domain D
and thus, classical shortest path algorithms can
be applied such as the Dijkstra’s graph search al-
gorithm [23].

In the following, we use the data structure and
the implementation of the geodesic mask given
by [30]. The authors describe a bucket sorting

implementation of the Dijkstra’s graph search al-
gorithm which leads to a uniform cost algorithm.

Cuisenaire [6] proposes a region growing Eu-
clidean distance transform using the same struc-
tures but the buckets are indexed by the square
distance dx2 +dy2. For all the visible pixels from
the source, this algorithm provides a good esti-
mation of the Euclidean distance metric. This al-
gorithm is not error-free but we will discuss this
point later. In [22,3], Moreau presents an algo-
rithm for the geodesic metric problem based on
a discrete arc chain code propagation scheme but
some operations to maintain the data structure

6

are expensive. In our case, we use a uniform
cost data structure from which we can extract
arc chain code but the visibility property is prop-
agated instead of iso-metric points.

3.2. Algorithm
The main idea of our discrete geodesic algo-

rithm is the following: for all pixels which are vis-
ible from the source, we do not have any problem
to compute their distance because it exists a dis-
crete straight line between the source and these
points and thus, we can compute the displace-
ment vector and return

√

dx2 + dy2. If a pixel p
is not visible, we start a new visibility computa-
tion such that p is a new source and each pixel t
such that v(p, t) will be labelled by the distance
from p to the source plus the distance between p
and t.

More formally, we have the following purely
discrete definition of a geodesic path in D:

Definition 4 (Discrete Geodesic Path) A

discrete geodesic path between a point t and a

source s is a sequence of pixels in D denoted

{pi}i=0..n+1 with p0 = s and pn+1 = t such that:

v(pi, pi+k) iff k = {−1, 0, 1} with i = 1..n

(6)

And such that the geodesic distance dgeodes(s, t)
is minimal. The proposed geodesic distance is de-

fined by:

dgeodes(s, t) =

n
∑

i=0

deuc(pi, pi+1) (7)

where deuc(a, b) denotes the Euclidean distance

between pixels a and b.

The discrete geodesic path is thus an 8-
connected curve that is segmented into DSS by
construction. The metric we associate to this
curve have been intensively studied and both the
stability and multigrid convergence have been
proved [18,17,5].

In order to design an efficient algorithm based
on the Verwer’s bucket structure [30], we consider
rounded geodesic distance to index the buckets:

a pixel p belongs to the bucket d if and only if:
⌈dgeodes(s, p)⌉ = d.

This estimated metric is still consistent for the
Verwer’s algorithm (A∗-algorithm) because it sat-
isfies the triangular inequality [22,3]:

for a, b, c ∈ R a+b ≥ c ⇒ ⌈a⌉+⌈b⌉ ≥ ⌈c⌉ (8)

For a computational efficiency of the algorithm,
we implement the v∗-visibility. Hence, at each
pixel p in the buckets d, we associate a data struc-
ture that contains: its coordinates, the current
source pixel pi such that v(pi, p) and the distance
dgeodes(s, pi).

We also have an obstacle data structure associ-
ated to each new source. Each obstacle list con-
tains the set of obstacles sorted by polar angles
met during the visibility propagation associated
to each source.

We can now present the discrete geodesic algo-
rithm. Note that some steps of this pseudo-code
are not detailed for sake of clarity.

Discrete Geodesic Algorithm
Input: a domain D, a source s and a goal g

Output: the geodesic distance for each pixel of D

Let Bucket[i] be an array of FIFO queues
Let O[i] be an array of double-linked list of obstacles
Let d denotes the current bucket (d:=0)
Append last(s,Bucket[d])
While there is no more pixel in buckets

If the bucket d is empty then increment(d)
t:=remove first(Bucket[d])
For each 8-neighbor n of t not labelled closed or

visible

If n is an obstacle then

Add n to the obstacle list associated to the
source of t

else

Let (u, l) be the localization of n in the
sorted list O[i] associated to the current source

If n is visible then

Label n as visible
Compute the geodesic distance d′ of n

Append last(n,Bucket[d’]) if d′ > d

else

Label n as closed
Initialization of new source n whose

obstacle list is empty

7

Compute the geodesic distance d′ of n

Append last(n,Bucket[d’]) if d′ > d

endFor

endWhile

4. Experiments and discussions

In our experiments, we compute the geodesic
distance labelling of a binary image according to
the coordinates of a source. In figure 3, we present
the distance labelling with three metrics: d4, d8

and dgeodes in various domains. Geodesic dis-
tances are represented using a circular gray scale
map in order to check the wave front propaga-
tions.

Source

Figure 3. From the left column to the right
column: the discrete domains and the source
point (isolated white pixels), the geodesic la-
belling using d8, the geodesic labelling using d4,
the geodesic labelling using dgeodes.

In figure 4, instead of labelling the pixels ac-

cording to their distance, pixels with the same
color belong to the same equivalence class for the
visibility problem.

Figure 4. Global visibility graph: each pixel with
the same color is in the same visibility equivalence
class, source points of domains are the same of
figure 3.

In figure 5, we present discrete geodesic metric
on a blood vessel network. The domain is com-
puted using a segmented angiography image.

Source

Figure 5. Application of the geodesic labelling
in medical imaging: left An angiography image,
middle binary image when blood vessels are seg-
mented and right the geodesic labelling.

Using this geodesic distance algorithm, we nat-
urally would like to apply this algorithm to com-
pute the discrete Voronoi diagram or the Eu-
clidean distance transform just considering multi-
ple sources. Since this algorithm use a local prop-
agation scheme (as the Cuisenaire’s algorithm

8

[6]), the classical Danielsson’s algorithm errors
are not solved in this approach. Hence, this al-
gorithm presents a solution to this problem but
errors may occur.

5. On an extension to 3D domains

A natural extension of these algorithms is to
define both visibility and geodesic paths in higher
dimensions and in particular to three dimensional
domains. Hence, in the following we consider the
domain D as a 26-connected set of voxels and D̄
the set of obstacle voxels.

In the case of mask based metrics, efficient al-
gorithms exist for the geodesic distance labelling
since the problem can be shifted to a classi-
cal shortest path on a weighted graph as in 2D
[16,10].

In our proposal of visibility based geodesic
paths, definitions of the visibility are the same
as in dimension 2, i.e., two points in D are said
to be visible if and only if there exists at least
one 26-connected 3D discrete straight segment
joining these points whose voxels belong to the
domain. In the literature, many algorithms ex-
ist for drawing 3D lines between points [4,15,1].
Based on an arithmetical definition of 3D discrete
straight lines [12], recognition and segmentation
of a 3D curve into digital straight segments algo-
rithms exist [5].

For the visibility labelling in non-convex do-
mains, the problem becomes more complex than
in 2D. As a matter of fact, the parameter space
analysis of a 3D straight line is more complicated
and the visibility test considering complementary
of domains associated to voxels is not so direct.
To illustrate these problems, we consider the weak
visibility in 3D. Hence, the visibility domain asso-
ciated to two points s and t, is the set of Euclidean
straight lines going through s whose digitization
contains t. Without loss of generality, we con-
sider ~st = (a, b, c)T such that a ≥ b ≥ c > 0. So,
in the primal space, the Euclidean 3D straight
lines go through s and cross the square centered
on t of size 1 parallel to the yz-plane (cf figure
6-a). Let us consider now the obstacle voxels and
their perspective projections of center s on the yz-
plane containing t. Hence, the visibility domain is

the set of lines going through s and crossing the
projected square associated to t at a point not
covered by obstacle projected square (cf figure 6-
b). During this weak visibility test, the number of
blocking voxels cannot be bounded by a constant
as in 2D. Furthermore, an efficient algorithm to
detect if there exists a subset of the projected
square of t which is not covered by blocking vox-
els is not straightforward.

z

x

y

s

t

(a) (b)

Figure 6. Illustration of the weak visibility ib 3D:
(a) primal space illustration of the visibility do-
main, (b) visibility test, gray pyramids represent
obstacle visibility domains and their projection
on the yz-plane containing t.

Despite these difficulties, we can present a first
solution based on a 3D generalization of the
Soille’s approach [27–29]. In that case, the vis-
ibility test between s and t is the following: we
construct a 3D discrete straight segment between
s and t using a 3D generalisation of Bresenham’s
algorithm [1,5] and we verify that all pixels of
this segment belong to D. Using this visibility la-
belling, we can use the same data structure as
in the 2D case based on Bucket list and thus
we can design a geodesic distance labelling algo-
rithm. Note that the computational cost of this
algorithm is high: the visibility test is done in
O(d) where d denotes the diameter of D and then
we have a global cost in O(nd) if n is the number
of voxels in D.

Figure 7 presents an illustration of the visibil-
ity labelling algorithm considering non-convex 3D
domains. Figure 8 illustrates the geodesic dis-

9

tance labelling using a circular gray scale map.
If we consider a discrete domain D as a voxel
based discrete surface, we can compute geodesic
distances on these objects (see figure 9).

Figure 7. Visibility labelling: left obstacles of a
3D domain, right result of the visibility labelling
where the source point is the lower corner.

 �� ��

Figure 8. Geodesic labelling on a 3D domain with
obstacle: left global labelling, right result when
the distances are thresholded.

6. Conclusion

In this article, we have presented a discrete
definition of the visibility well-known in classi-
cal computational geometry. This definition is

(a) (b)

(c)

Figure 9. (a) Geodesic distance labelling on a dis-
crete sphere surface, (b) on a rotated cube surface
and (c) on a table-like surface (the source point
is in the middle of the plate)

based on well known discrete objects (DSS) and
is computed only with integers. Based on this
definition, we have presented algorithms to solve
several problems: if we want to decide if there
exists at least one DSS between two pixels, we
have a linear cost in the number of obstacle pix-
els O(m) ; if we want to label all pixels in a do-
main which are visible from a source point, we
have an algorithm in O(nm). Using the weak
visibility definition, we reduce the complexity of
both algorithms respectively to O(log(m)) and
O(nlog(m)). We also have presented a definition
of discrete geodesic paths and an algorithm that
computes the geodesic distance of each point in
the domain according to a source.

This article also introduces open problems: is
it possible to find an efficient data structure for
the straightforward visibility algorithm ? How
to generalize this approach for 3D domains and

10

for discrete surfaces ? For this last problem, we
have presented a first solution but more efficient
algorithms similar to the 2D ones are expected.

Finally, an important future work consists in
comparing such an approach to classical numer-
ical solutions to differential wave-front propaga-
tion equations, especially to Fast Marching Level

Set method proposed in [26,25].

REFERENCES

1. J. Amanatides and A. Woo. A fast voxel
traversal algorithm for ray tracing. In Eu-

rographic’s 87, pages 3–12, 1987.
2. G. Borgefors. Distance transformations in

digital images. Computer Vision, Graphics,

and Image Processing, 34(3):344–371, June
1986.

3. J.P. Braquelaire and P. Moreau. Error free
construction of generalized euclidean distance
maps and generalized discrete voronöi dia-
grams. Technical Report 84094, Université
Bordeaux, Laboratoire LaBRI, 1994.

4. J.E. Bresenham. Algorithm for computer
control of a digital plotter. In IBM System

Journal, volume 4, pages 25–30, 1965.
5. D. Coeurjolly, I. Debled-Rennesson, and

O. Teytaud. Segmentation and length esti-
mation of 3d discrete curves. In Digital and

Image Geometry. Springer LNCS 2243, 2001.
6. O. Cuisenaire. Distance Transformations :

Fast Algorithms and Applications to Medi-

cal Image Processing. PhD thesis, Université
Catholique de Louvain, oct 1999.

7. P.E. Danielsson. Euclidean distance map-
ping. CGIP, 14:227–248, 1980.

8. I. Debled-Rennesson. Etude et reconnais-

sance des droites et plans discrets. PhD the-
sis, Université Pasteur, Strasbourg, 1995.

9. I. Debled-Rennesson and J.P. Reveillès. A
linear algorithm for segmentation of digital
curves. In IJPRAI, volume 9, pages 635–662,
1995.

10. G. Sanniti di Baja and S. Svensson. Detecting
centres of maximal discs. Discrete Geometry

for Computer Imagery, pages 443–452, 2000.
11. L. Dorst and A.W.M. Smeulders. Decomposi-

tion of discrete curves into piecewise straight

segments in linear time. In Contemporary

Mathematics, volume 119, 1991.
12. O. Figueiredo and J.P. Reveillès. A contri-

bution to 3d digital lines. In Proc. DCGI’5,
pages 187–198, 1995.

13. J. Françon, J.M. Schramm, and M. Tajine.
Recognizing arithmetic straight lines and
planes. Discrete Geometry for Computer Im-

agery, 1996.
14. A. Jonas and N. Kiryati. Digital representa-

tion schemes for 3d curves. Pattern Recogni-

tion, 30(11):1803–1816, 1997.
15. A. Kaufman and E. Shimony. 3-d scan con-

version algorithms for voxel-based graphics.
In ACM Workshop on Interactive 3D Graph-

ics, ACM Press, NY, pages 45–75, 1986.
16. N. Kiryati and G. Székely. Estimating short-

est paths and minimal distances on digitized
three-dimension surfaces. Pattern Recogni-

tion, 26(11):1623–1637, 1993.
17. R. Klette and J. Zunic. Convergence of cal-

culated features in image analysis. Techni-
cal Report CITR-TR-52, Computer Science
Departement of The University of Auckland,
1999.

18. V. Kovalevsky and S. Fuchs. Theoritical
and experimental analysis of the accuracy of
perimeter estimates. In Robust Computer Vi-

sion, pages 218–242, 1992.
19. M. Lindenbaum and A. Bruckstein. On recur-

sive, o(n) partitioning of a digitized curve into
digital straigth segments. IEEE Transactions

on PatternAnalysis and Machine Intelligence,
PAMI-15(9):949–953, september 1993.

20. M. D. McIlroy. A note on discrete represen-
tation of lines. Atandt Tech. J., 64(2, Pt.
2):481–490, February 1985.

21. N. Megiddo. Linear programming in linear
time when the dimension is fixed. Journal of

the ACM, 31(1):114–127, January 1984.
22. P. Moreau. Modélisation et génération de

dégradés dans le plan discret. PhD thesis,
Université Bordeaux I, 1995.

23. J. Piper and E. Granum. Computing distance
transformations in convex and non-convex
domains. Pattern Recognition, 20:599–615,
1987.

24. I. Ragnemalm. Contour processing distance

11

transforms, pages 204–211. World Scientific,
1990.

25. J. A. Sethian. A fast marching level set
method for monotonically advancing fronts.
Proc. Nat. Acad. Sci., 93:1591–1595, 1996.

26. J. A. Sethian. Level Set Methods. Cambridge
University Press, 1996.

27. P. Soille. Spatial distributions from con-
tour lines: an efficient methodology based
on distance transformations. Journal of Vi-

sual Communication and Image Representa-

tion, 2(2):138–150, June 1991.
28. P. Soille. Generalized geodesy via

geodesic time. Pattern Recognition Let-

ters, 15(12):1235–1240, December 1994.
29. P. Soille. Morphological Image Analysis.

Springer-Verlag, Berlin, Heidelberg, New
York, 1999.

30. B. J. H. Verwer, P. W. Verbeek, and S.T
Dekker. An efficient uniform cost algorithm
applied to distance transforms. IEEE Trans-

actions on Pattern Analysis and Machine In-

telligence, PAMI-11(4):425–429, April 1989.
31. B.J.H Verwer. Local distances for distance

transformations in two and three dimen-
sions. Pattern Recognition Letters, 12:671–
682, november 1991.

32. J. Vittone and J.M. Chassery. Recogni-
tion of digital naive planes and polyhediza-
tion. In Discrete Geometry for Computer Im-

agery, number 1953 in LNCS, pages 296–307.
Springer, 2000.

33. L.D. Wu. On the chain code of a line. IEEE

Trans. Pattern Analysis and Machine Intelli-

gence, 4:347–353, 1982.

