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EDICS: 2-ANAL, 3-TOMO
Abstract

Estimating the normal vector field on the boundary of discrete 3D objects is essential for render-
ing and image measurement problems. Most of the existing algorithms do not provide an accurate
determination of the normal vector field for shapes that present edges.

We propose here a new and simple computational method in order to obtain accurate results on all
types of shapes whatever their local convexity degree is. The presented method is based on the gradient
vector field analysis of the object distance map. This vector field is adaptively filtered around each
surface voxel using angle and symmetry criteria, so that as many relevant contributions as possible are
accounted for. This optimizes the smoothing of digitization effects while preserving relevant details of
the processed numerical object.

Thanks to the precise normal field obtained, a projection method can be proposed to derive imme-
diately the surface area from a raw discrete object. An empirical justification of the validity of such
an algorithm in the continuous limit is also provided. Some results on simulated data and snow images
from X-ray tomography are presented, compared to the Marching Cubes and Convex Hull results and

discussed.

Index Terms

adaptive filtering, discrete geometry, distance map, normal vectors, surface area, snow, X-ray tomog-

raphy.

I. INTRODUCTION

Once fallen on the ground, snow undergoes a structure metamorphism governed by local
temperature and humidity fields. Local 3D curvature is a governing parameter of metamorphism
[1], whereas surface area denotes the ability for a given snow to change its own microstructure.
To access these parameters, the normal vector field has to be known all along the digitized
surface of the snow sample.

The work presented below was designed for processing grey level images from X-ray absorption
microtomography of low-density snow samples that were prepared using a filling medium [2].
Such gray-level data present three different phases (ice, filler and air) along with some noise
and phase-contrast effects, and require a specific treatment to be contoured correctly [3]. The
starting point of the 3D image analysis is then two-level (binary) volume data.

To obtain the normal vector field, meshing the initial binary discrete image is the most pop-
ular approach. Generally, it uses methods related to the Marching Cubes algorithm [4]: the
easy derivation of normals from facets is used in many shading algorithms [5]. Although vari-

ous smoothing and decimation procedures exist [6], the initial accuracy of triangle positioning
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is essential. Many imaging scientists have developed normal vector estimation algorithms. A
synthesis of the works done until 1992 can be found in [7]. From this date, new approaches
considering the 3D neighborhood of the points have appeared. A first approach consists in
working on the volume of the image as in [8]. Other algorithms use the surfel (surface ele-
ment) decomposition of the digitized object [9], then average surfel elementary normals using
convenient weightings and neighborhoods [10], [11]. Other interesting approaches consist in
considering two-dimensional slices of a 3D image [12], [13].

All these techniques generally provide good and effective results on smooth surfaces such
as spheres, tori and infinite plane surfaces. However, they often do not provide an accurate
normal vector field for shapes that present edges: if the chosen neighborhood is too small, the
corresponding vector would be sensitive to digitization effects. On the other hand, if it is too
large, sharp shapes would be smoothed. This problem, discussed in [14], seems to be common
to all the existing algorithms.

We propose here a new and simple algorithm to obtain accurate results on all types of shapes
whatever their degree of local convexity is. A first approach, presented in [15], was completed to
obtain a fully adaptive algorithm: a discrete background distance map of the original 3D image
is first constructed. For each voxel of the object, an elementary gradient vector field is then
computed. The normal vector of a surface voxel is obtained by summing each gradient vector
in a neighborhood which is determined by angular and symmetry criteria. Thanks to these two
criteria, the shape and the size of the working neighborhood are automatically adapted to the
local geometry of the surface.

As a very precise vector field is computed on each surface voxel of the object, an accurate
estimation of the surface area can be obtained directly from this field: when the surfel decom-
position of the surface is available, this can be done by summing the projected area of each
surfel along the local normal vector [12], [16]. A method applicable to raw voxel data is detailed
in the paper.

After a short part where some definitions and basic properties are reminded, the determina-
tion of the normals is addressed with the detailed presentation of the adaptive algorithm. The
surface area estimation method is then described. For both methods, validations and multigrid
convergence tests are provided. An application to snow images from X-ray tomography is finally

presented.
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II. DEFINITIONS AND BASIC PROPERTIES
A. Basic definitions

In 3D, by analogy to 2D, a point in Z? is called a vozel and a discrete object is defined as a
connected set of voxels using a 6-, 18- or 26-connectivity. Based on this discrete object definition,
discrete topological properties can be designed [17]. In the following, we consider a 18-connected
discrete object, denoted by . We also define a discrete surface of such an object as the set of
voxels such that one of their 6-neighbors belongs to the complementary of the discrete object,
denoted by &. This surface definition proposed by Morgenthaler and Rosenfeld [18] verifies
some topological properties as the Jordan-Brouwer theorem that provides for example no holes
in the surface. Other discrete surface definitions exist considering for instance a cellular complex

decomposition [9] of the object. In this paper, we identify each voxel with its central point.

B. Background distance map

Definition 1: Let us consider two voxels p and ¢. Let d(p, ¢) be the distance from p to ¢. In

a numerical object O, the background distance dp on a point p € O is defined as follows:

Vg ¢ O,dy(p) = min[d(p, q)] (1)

In computer imagery, we only consider integer metrics. Hence, several approaches are possible;
some of them consider the distance between two points as the integer displacement (dz, dy) [19],
[20]. Another approach consists in using truncated metrics based on a fixed-size mask estimation
of the Euclidean metric. These metrics are called chamfer metrics [21], [22] and lead to efficient

distance map algorithms.
C. Mulligrid convergence

If we formalize the digital surface area estimation problem, we consider the Euclidean 3D-
space £ = (R dy), dy being the euclidean distance. We denote by S a Jordan surface in
&% and a digitization process denoted by dig,, where r denotes the resolution of the grid (the
distance between two grid points). Such a digitization process can be the Grid Intersect Quan-
tization scheme (GIQ for short), the Object Boundary Quantization scheme (OBQ for short)
or the Background Boundary Quantization scheme (BBQ for short) (see [23] for example of a
digitization scheme survey).

Let us consider a digitization-based surface area estimator F 4. An important property of

this estimator is its multigrid convergence [24]:

Definition 2: Let S be a Jordan surface in £, dig, be a digitization process and E4 be a
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surface area estimator based on dig,(S). F 4 is multigrid convergent with a convergence speed

v(r) if and only if there exists ro and r < rg such that:

EA(dig,(8)) — AS) < v(r) and lim u(r) = 0 @)

In the following, experimental evaluations of both normal vector and surface area estimation
are given using this framework. More precisely, digitizations of continuous objects on different
grid size are computed and the estimator values are compared to the known Euclidean values

on the underlying continuous objects.

ITI. NORMAL VECTOR ESTIMATION
A. Algorithm: Adaptive Distance Gradient Filtering

To compute normal vectors, we chose a volumic approach. Such an approach is time-
consuming, but allows to use all the information contained in the object and gives more accurate
results. Moreover, the presented method is simple and can be easily implemented by scientists
who are non-familiar with complex data structures. The key idea of the algorithm is to compute
the normal vector 7(p) by averaging the gradient vector orientations of the background distance

map on an appropriate neighborhood of a voxel p. In the following, this approach will be named

Adaptive Distance Gradient Filtering (ADGF for short).

A.1 Distance map

In order to build the background distance map, we chose a two-run iterative chamfer algo-
rithm. In summary, this algorithm increments at each run the discrete distance to the closest
already processed voxel of the object. Depending on the size of the used chamfer kernel, some
distortion with respect to the Euclidean distance map may occur in deeper parts of the map ;
however, this effect is negligible near the surface, i.e. on the first layers of voxels.

For the presented method, we used a second-neighbor chamfer distance ds_7_9_11-12-15 (d5
for short), which seems to be a good compromise between the fastness of the first-neighbor

chamfer distance d3_4_5 and the accuracy of the Euclidean distance [25], [26].

A.2 Gradient map

For each voxel p € O, 6db(p) is obtained by using a classical Prewitt first-neighbor mask
(Fig. 1). The gradient map obtained is very sensitive to each detail of the distance map. To
compute an accurate normal vector field on the surface S of O, the elementary gradient vectors

have to be summed on an appropriate neighborhood.
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Fig. 1. Obtaining the gradient map in 2D. Binary (a), distance map (b) and gradient map (c) images.

A.3 Summation on an adaptive shape neighborhood

A simple summation of the elementary gradient vectors in a fixed spherical neighborhood
leads to a bad description of the surface: if the radius of the neighborhood is too small, the
corresponding vector would be sensitive to digitization effects. On the other hand, if it is
too large, shapes would be smoothed. In this case, acute shapes like the vertices of a cube
would become rounded. In other words, finding out the optimal radius for a whole object is
a difficult compromise between smoothing enough the digitization steps and preserving its fine
details. This approach inevitably leads to a loss of information. In fact, an adaptive search
neighborhood is required to take into account the whole geometry of complex shapes.

The main idea of the presented method is to find, for each point p of the surface S, the
most convenient 3D neighborhood so that as many relevant contributions as possible would be
accounted for. It can be built starting from a spherical neighborhood whose radius is large
enough to obtain a normal vector field without digitization effects. To ensure that significant
details would not be smoothed, just a part of the gradient vectors belonging to the sphere has
to be taken into account.

To decide whether a gradient vector has to be counted or not, it has to be tested in terms of
angular and symmetry criteria.

Angular criterion:

Let p be a surface voxel of an object O. If p belongs to a smooth surface, the normal vector
orientation does not vary significantly from a voxel to its closest neighboring voxel. In this case,
all gradient vectors in a small spherical neighborhood around p are relevant for the normal
vector determination: the average orientation of these gradients will be a good approximation
of the normal orientation in p. This is not the case if p is close to a sharp edge, or close to an
other object: the normal vector orientation between p and its neighboring voxels can change

drastically. Here, only the gradient vectors whose orientations are close to that of p are relevant
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for the normal estimation. By discarding gradient vectors whose orientations are far from the
gradient vector orientation in p, we can construct an adapted shape neighborhood over which

the vectors can be summed.

The angular criterion to apply on gradient vectors is directly related to the maximal angle
that should be considered as an edge by the algorithm. Let us express this relationship:

Given 7i(p), the outward normal vector in p and ¢ an other voxel of O, we denote by 3 the
angle Z(7(p), —Vdy(q)). Let a be the aperture angle of an infinite cone C(p, @) of summit p
whose generatrices are tangential to the object’s surface.

Let us define a critical angle ag so that, for any angle o < «q, the surface is considered
as having an edge. Elementary geometrical laws imply that the corresponding critical angle
between 7(p) and —Vdy(¢) amounts to:

T — Qp

Po = 5 (3)

Thus, a local gradient vector whose angle 3 is wider than = has to be ignored in the

summation (Fig. 2). Hence, we have the following angular criterion:
Criterion 1 (angular criterion) vdb(q) has to be taken into account if and only if:
—Vdy(q)-i(p)
[Vdy(q)].|7i(p)]

with g = 752, ag being the critical angle.

< cos [y (4)

The control parameter «g is the angular width of the smoothest detail that should be ac-
counted for in the considered problem. Note that ag must be acute enough to obtain a smooth
vector field and wide enough to detect singularities. In our case, we chose ag = 120°. This
angle provides good results and is particularly relevant for snow images for physical reasons:
120° corresponds to the maximal angle of hexagonal ice crystals. As these shapes are common
in our images, we wanted to process them correctly.

Symmetry criterion:

If p belongs to a smooth surface, applying the angular criterion leads to average the gradient
vector orientations on a spherical neighborhood around p. On the contrary, if sharp variations
are detected in the gradient field, the neighborhood can be asymmetrical with regard to the
normal vector 77(p). In this case, summing the gradient vectors of such a neighborhood can
lead to a false normal vector: by taking into account too many selected contributions, this
neighorhood may not be representative of the surface in p. This phenomenon is particularly

visible when rounded shapes are close to wide flat surfaces (see Fig. 3).
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To ensure the validity of the normal vector at point p, the effective neighborhood V(p) should
be restricted to a 7(p)-symmetrical neighborhood (Fig. 2). Hence, we have the following
symmetry criterion:

Criterion 2 (symmetry criterion) Vdy(g) is taken into account if and only if:

sym(q,i(p)) € V(p) (5)

where sym(q, ii(p)) denotes the symmetric voxel of ¢ according to the vector 7(p).

—

nndp)

ﬂo a()

Fig. 2. Summation of gradient vectors in 2D. For each pixel, the gradient vector is represented by a
bar in a circle. A gray angular sector, depending on ag and 7i,_1(p), is plotted in each pixel. The bar is
embedded in this gray sector for the pixels verifying the angular criterion. The pixel area that is finally

retained for the determination of 7, (p) is filled in gray (angular and symmetry criteria).

Algorithm:

In order to determine 7i(p) on a point p € S, angular and symmetry criteria are tested on a
spherical neighborhood of radius r,,4,. Since these two criteria depend on 7(p), we chose an
iterative approach to obtain the normal vector at p.

Let 7, (p) be the estimation of the normal vector using an effective neighborhood included in
a r radius sphere.

—Vdy(p) is assumed to be the first estimation of the normal vector. 7, (p) is updated by sum-
ming each relevant contribution of the r-radius spherical cap to the previous normal estimation
ﬁr—l(p)-

Here is the general algorithm:
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w(p)o = —Vdy(p)
While (r < 7paz)

7(P)r,,., 18 normalized.

V. (p) = {q € O} so that:

d(p,q)=r
s(q) € O
—ﬁdﬂqyﬁr—ﬂp) < cos By

[Vdy()]-I7—1(p)]

—Vdy(s(q)).7tr -1 (p)
|Vds(s(a)) -7

with s(q) = sym(q,i,—1(p))

Note that if 7,4, = 0, the resulting normal vector in p is the original gradient vector.

A.4 Remarks on the ADGF algorithm: possible extensions

Here we propose some extensions that can improve the accuracy of the presented algorithm.
The counterpart of this accuracy is an increase of computation time.
Signed distance map:
In the ADGF algorithm, the normal vectors are computed from the inner side of the object.
This method can be extended to the whole image by computing a signed distance map [27],
[2], positive in the foreground and negative in the background. With such a distance map, the
computation of the gradient field can be carried out everywhere in the image. This has several
advantages:
o the gradient vectors belonging to S, which are used as the first estimates of the normal vectors,
are better estimated.
o taking into account the background gradients in the summation algorithm gives a more robust
estimation of the normal field on highly convex shapes.
o higher order derivatives (like mean curvature [2]) can be computed on S.
Fréchet expectation:

In the presented algorithm, each estimation of the normal vector 7, (p) is realized by summing
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fir—1(p) to the unit gradient vectors that belong to V,(p). A more rigorous, but computationaly
intensive approach can consist in estimating 7, (p) with a minimization process like the Fréchet
expectation [28], [29].

Connectivity criterion:

To be fully adaptive on all types of images, the algorithm should reject the points of V,(p) which
are disconnected from the points belonging to V,._1(p). For our snow images at a resolution
of 10 microns, the connectivity test can be easily avoided by choosing a relatively low value of
T'maz- FOT example r,,,, = 5 voxels gives very good results. The choice of r,, 4, will be discussed

in the experiment part.

B. Validations

The ADGF algorithm was tested on simulated data and compared to Marching Cubes algo-

rithms.

The Marching Cubes algorithms used are the following;:

o The simple Marching Cubes algorithm (MC for short) as presented in [4].

o The Smoothed Marching Cubes algorithm (SMC for short): it is obtained by preprocessing
the original black and white image in order to smooth the "steps” commonly produced by the
MC algorithm. In our case, black and white data were converted into grayscale images by
applying a classical 53-size mean kernel.

o The Gaussian Smoothed Marching Cubes algorithm (GSMC for short): it is obtained by
preprocessing the original black and white image with a 11%-size Gaussian kernel. The half-
width o of the chosen Gaussian function was set to 2 voxels.

These three MC methods were chosen to point out the ADGF adaptivity. The MC method
does not have any smoothing process and is highly sensitive to digitization effects. Nevertheless,
it gives accurate results on sharp edges. The GSMC method is weakly sensitive to digitization
effects but smoothes fine shapes (Fig. 7). The SMC algorithm is a fairly good compromise
between the two other methods.

To allow comparison with the ADGF algorithm, the facets obtained by Marching Cubes
algorithms are processed as follows:

For each facet:

o the barycenter of the facet is computed.

o the normal vector is obtained by calculating the half cross product of two vectors generating
the facet.

o the normal is assigned to the nearest center of the Marching Cubes grid (which is in fact a
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node of the voxel grid).

o the normal is weighted by a distance-depending Gaussian filter and this contribution is added
in the eight neighboring voxels of this center.

By summing all the facet contributions, one can obtain the appropriate normal vector in each
voxel. Then, for a voxel belonging to the surface of the object, the resulting normal vector is

considered as the Marching Cubes normal vector.

The quality evaluation of the normal vectors was realized in two ways:
e by comparing the obtained normal vectors to the theoretical normal vectors for synthetic
objects whose surface is differentiable.
o by visualizing them for other objects. For visualization, @ being the illumination vector, the
gray level in p was simply taken as proportional to —7(p).@+ 1.

Except for the first test where the effect of r,,,, was analyzed, 7,,,, was set to 5 voxels.

B.1 Effects of the neighborhood maximal size

For this test, an object whose normal vector field is well-known but relatively complex was
chosen. The surface equation of this object: 28 4 % + 26 = 35% allows to define the theoretical

normal vector field on each point of its surface as follows:
(2, y, 2) = 62°.7 +6y°.J + 62"k (6)

(;, 7, E) being the canonical basis of R3.

We name the objects defined by such a surface "rounded cubes”. To obtain a tilted rounded
cube, a rotation of the object and of its theoretical vector field was done (Fig. 4(b)). To
evidence the effects of the choice of r,,,., we chose a rotation in order to low tilt the plane parts
of the rounded cube with respect to the grid axes. In Fig. 3 are presented the results given by
the ADGF algorithm with and without the symmetry criterion. For each method, the mean
error and standard deviation are plotted versus r,,, from 0 to 24 voxels. Rendering images are
presented in Fig. 4.

From these figures, it appears clearly that:

o the symmetry criterion is necessary to have an adaptive algorithm on smooth shapes (Fig.
3).

o the normal vector needs to be computed from a sufficient number of gradient vectors. Other-
wise, it is corrupted by digitization effects (Fig. 4(c)). Nevertheless, a small neighborhood (4-5

voxels) is sufficient to obtain good results (Fig. 4(d)).
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mean - ADGF ——

standard deviation - ADGF ===

mean - ADGF without the symmetry criterion
10 I standard deviation - ADGF without the symmetry criterion ------

[ee]

Angular error (degree)
[}

0 . . . .
0 5 10 15 20 25

Maximal size of the neighborhood (voxel)

Fig. 3.  Angular error variation with the size of the neighborhood for a tilted rounded cube. Note
the importance of the symmetry criterion for the ADGF adaptivity. The considered rounded cube was

especially chosen to give high errors: generally, the errors are smaller (see Fig. 6(b)).

(a) Voxel image. (b) Theoretical vectors.

(¢) rmaz =0. (d) rmaz = 5. (€) rmaz = 24.

Fig. 4. ADGF algorithm with different effective neighborhood maximal sizes. Image renderings of the

surface of equation: % + y® + 28 = 355,
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o the maximal size of the neighborhood has to be close to the size of the smallest detail we
want to process correctly. Nevertheless, even if the neighborhood is very large, the error on the
normal vector field remains low (Fig. 3 and 4(e)).

These two last remarks point out the adaptivity of the method : by choosing a relatively high

value of 14z, the algorithm gives very good results on all types of shapes.

B.2 Multigrid tests on spheres

Here is empirically adressed the multigrid convergence of normals (see section II-C). Tests
were carried out on a set of digitized spheres from 1 to 80 voxels of radius. Spheres were
obtained according to the definition adopted in [11] and [13]: a sphere with an integer radius r
is defined by (z,y, z) € Z3 so that:

ac2—|—y2—|—z2<r.(r—|—1) (7)

The theoretical normal vector is the vector starting from the sphere center through the sphere
voxel centers. Errors obtained with the ADGF and MC algorithms are compared in Fig. 5.
We can note that the ADGF algorithm gives results close to those obtained with the GSMC
method, which is specially adapted to big spheres. This proves the convergence of the ADGF

algorithm in the continuous limit.

B.3 Sensitivity to the surface orientation

The sensitivity to the surface orientation was firstly estimated on digital planes of various
orientations. Planes were generated in thirty evenly spaced different orientations. Then, for each
voxel of each plane, the normal vector obtained was compared to the corresponding theoretical
normal vector. Counting, for the thirty planes, the number of error values corresponding to a
fixed error class leads to the graph of the Fig. 6(a).

The same test, applied on thirty tilted rounded cubes is presented in Fig. 6(b). Tilted
rounded cubes and theoretical vectors were obtained as explained above (see section I1I-B.1).

For such tests, the GSMC algorithm, weakly sensitive to digitization effects, is particularly
adapted and gives very good results. Note that, for infinite planes, the size of the ADGF
neighborhood is always maximal: the ADGF and the GSMC algorithms have then the same
neighborhood and this explains the similar histograms observed.

The test with rounded cubes shows the precision and the sensitivity of the ADGF method
when its adaptivity is activated. In this case, the ADGF peak is almost as sharp as the GSMC

peak: the ADGF algorithm is precise and weakly sensitive to the surface orientation.
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Fig. 5. Comparison of the angular error for multigrid spheres with the different algorithms.

B.4 Other geometrical shapes

Here are compared ADGF and MC algorithms on other simulated data. Rendering images

of the Fig. 7 point out the accuracy of ADGF method on convex, concave, flat, rounded and

sharp shapes.
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(b) Tilted rounded cubes.

Fig. 6. Sensitivity to the surface orientation: comparison of the angular error for objects taken in thirty
different orientations. The histogram was obtained by counting, for the thirty objects, the number of

error values corresponding to a fixed error class. Each class is (.2 degree wide.
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Cylinder  Hexagonal  Low-tilted Tilted

prism spherical cap cube

Voxel images

Image renderings obtained by the GSMC algorithm

Fig. 7. Comparison between the ADGF and MC algorithms on geometrical shapes.
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IV. SURFACE AREA ESTIMATION
A. From normal vectors to surface area estimation

We have presented a new and simple computational method to obtain accurate normal vectors
on the surface of a numerical object. This method is more time-consuming than the Marching
Cubes algorithms but allows to compute a high quality normal vector field. Such a vector
field can be used for image rendering, local curvature estimation [30] and many other purposes.
In particular, it can be used for estimating the surface area of a numerical object with high
accuracy. Classical approaches consider a polygonalization of the raw data and estimate the
surface area by summing the area of the facets. It is the case of the Convex Hull or the Marching
Cubes algorithms. In this section, we present a surface area estimator directly based on the

discrete model.

A.1 Statement of the problem

We consider the field of normal vectors N' = {7;} defined at each voxel of the discrete surface
dig,(S). The surface area of a discrete object can be obtained within the limits of the tangent
plane approximation, as a sum of the area contributions of each surface voxel. When a surfel
decomposition of the object is available, projecting all surfels of each voxel along 7 directly
provides the contributions [16], [12]. Such a projection along 7 cannot be simply extended for
voxel data: as the number of surfels per voxel depends on the local configuration [31], [32],
obtaining the surfel decomposition of the object is needed.

Here, we describe a method to obtain directly the surface area from raw voxels, without doing

the surfel decomposition.

A.2 Voxel projection algorithm

As the method of Lenoir [16], [12], this method is based on projections and assume the
tangent plane approximation. But rather than using a systematic surfel projection along 7, we
consider, for each surface voxel, a projection of the normal plane on an appropriate surfel.

Let P be a discrete plane and II the associated continuous plane so that IT is orthogonal to
ii. Let us define F, the coordinate plane such that P is functional to F [33] (i.e. there is a one
to one map between voxels belonging to P and their projection on F).

The projection P(Dp) of a domain Dp of P on F has the same area (denoted Ar in the
following) as the sum of surfels of Dp that are parallel to F (see Fig. 8).

Conversely, back-projecting this set of surfels and P(Dp) onto II perpendicularly to F pre-

serves the equality of areas: the area Ap, of the domain Dp is equal to the sum of the
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Fig. 8. Illustration of the voxel projections.

back-projected areas of functional surfels belonging to Dp. By definition, the projection ratio
ratio() of such a projection is:

. App(m
ratio(n) = Ay (7) (8)
Ar :
Let ng,n,,n, denote the coordinates of 7, X7 the outward unit normal of the functional

surfel s and ©ir the orthogonal projection of 7@ on Xr. Then, the above ratio can be expressed
as follows:

ratio(i) = H_TLH (9)
7]
By construction, we have: ||7ig|| = maxz(|ng|, |ny|,|n.|). Hence,
= 7]
ratio(f) = (10)
maz(|nz|, |nyl, [n2])

The surface area contribution of a surface voxel is given by multiplying this ratio by the area of

a surfel. This ratio only depends on 7: it is evaluated for each surface voxel of normal vector 7.
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The sum of each voxel contribution provides the area of the whole object in surfel units. Thus,
we obtain the following surface area estimator:
E4(dig,(S)) = Z ratio(f;) (11)
i eEN
B. Validations

The voxel projection estimator (VP for short) was tested on simulated data and compared
to other estimators. The quality evaluation of the surface area estimator was realized in two
ways:

o by comparing the convergence of the voxel projection estimator with other surface area estima-
tors (Convex Hull' [34] and MC methods) for objects whose surface area is known theoretically.

¢ by visualizing the area ratios calculated in each voxel of simple objects.

B.1 Convergence tests

Here is empirically adressed the multigrid convergence of surface area estimations (see section
[I-C). The convergence tests were carried out on spheres, cylinders and thick spherical caps.
Relative errors of surface area estimation are plotted against grid resolution.

The series of spheres are the same as defined in the first part of this article.

The cylinders verify the following conditions:

o the height amounts to twice the radius of the disk plus one voxel.

o the cylinder axis is colinear to the (Oz) axis.

Thick spherical caps were obtained as follows:

o the outer sphere radius is twice the inner sphere radius.

o the two spheres verify the equation 7.

o to make an easier theoretical estimation of this object, the two spheres were truncated so that
their surface area is the half part of a whole sphere surface area (see the voxel image of the
low-tilted spherical cap in Fig. 7).

The convergence rates of both Convex Hull and VP surface area estimators are better than
the convergence rates of the tested MC algorithms (Fig. 9). In addition, unlike the Convex Hull
method, the VP estimator allows to compute surface areas of non-convex objects. In Fig. 9(a),
the surface area estimator does not suffer from the ADGF normal vector estimation: curves

with theoretical normal vectors and ADGF-estimated vectors are similar.

! Convex Hull estimations were obtained with ” Qhull”. http://www.geom.uiuc.edu/software/download/qhull.html
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B.2 Local surface area ratio visualization

Local surface area ratio maps were obtained as follows: the ADGF normal determination
algorithm was applied to geometrical objects. Then the projection ratios were computed and

plotted in gray level for each point of the discrete surface (Fig. 10).

Fig. 10. Maps of surface area ratios estimated on geometric objects: sphere (a), cube ”in axes” (b) and

tilted rounded cube (c). Surface area ratios are ranged from 1 to V3.

V. APPLICATION ON SNOW SAMPLES: ADGF vERsus MC
A. Fstimation of the normals

Here are presented some image renderings of snow samples obtained by microtomography.
These samples correspond to different snow types at different resolutions: rounded grains (Fig.
11), fresh snow (Fig. 12) and melt-freeze crust (Fig. 13). These types of snow are constituted
of both rounded shapes and sharp angles and allow to check the effectiveness of the ADGF
algorithm by comparison with Marching Cubes methods. For fresh snow and melt-freeze crust,
the ADGF renderings are compared with image renderings obtained with the Marching Cubes
methods. The ADGF results are particularly impressive for fresh snow, where some plates are

only 3-4 voxel thick.

B. Surface area estimation

The surface area of three snow samples was computed by Marching Cubes and ADGF meth-
ods. The comparison of surface area estimations of snow sample images are presented in table
I. For these estimations, the whole numerical object was taken into account.

The three surface area estimators give relatively similar results, except for the GSMC method
on fresh snow: in this case, significant parts of the object are not properly processed due to
the size of the kernel used (see Fig. 12(c)). We can see from Fig. 13(b) that the roughness of

the surface described by the MC algorithm is high. Thus, the surface area using this method
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o

Fig. 11. Image renderings obtained by the ADGF algorithm on a sample of rounded grains. Image

frame: 2562 voxels.

(a) ADGF algorithm. (b) MC algorithm. (c) GSMC algorithm.

Fig. 12. Image renderings of a fresh snow sample with the three methods. Image frame: 128° voxels.
The MC algorithm (b) is highly sensitive to digitization effects. The GSMC (c) algorithm smoothes the
digitization steps but deletes significant data: fine snow plates are not properly processed due to the size
of the gaussian kernel used. Only the ADGF algorithm (a) preserves small details while smoothing the

digitization artefacts.
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(a) ADGF algorithm.

Fig. 13.

(b) MC algorithm.

(c) GSMC algorithm.

Image renderings of a snow sample (melt-freeze crust taken at le Col de Porte, France) with

the three methods (detail). Frame of the original image: 3013 voxels. The MC algorithm (b) is highly

sensitive to digitization effects. The GSMC algorithm (c) smoothes the digitization steps but deletes

relevant details (circle). Only the ADGF algorithm (a) preserves small details while smoothing the

digitization artefacts.

TABLE 1

SURFACE AREAS ESTIMATED ON THREE SNOW SAMPLES (FRESH SNOW, ROUNDED GRAINS AND

MELT-FREEZE CRUST) BY THE THREE ALGORITHMS. THE VP ALGORITHM WAS APPLIED TO THE

NORMALS OBTAINED BY THE ADGF METHOD. THE DEVIATION (DEV.) BETWEEN THE MARCHING

CUBES ESTIMATIONS AND THE VP ALGORITHM IS EXPRESSED IN PERCENT OF THE VP ESTIMATION.

Snow Fresh | Rounded | Melt-freeze
volume SIOW grains crust
Edge Size (voxel) 128 256 301
MC | area (pixel) | 107 998 | 923 001 | 1 069 650
dev. (%) +15 +9.9 +7.2
GSMC | area (pixel) | 33 845 | 748 517 931 917
dev. (%) —64 -10.9 —6.5
VP | area (pixel) | 93921 | 840 114 997 563
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is overestimated. The roughness of the surface processed by the GSMC algorithm (Fig. 13(c))
is much lower. However the surface area of sharp edges, due to edge smoothing, is generally
underestimated with this method. Note that the voxel projection estimator gives a surface
area value which is included between the two Marching Cubes estimations. This proves the

adaptivity of the ADGF algorithm on arbitrary shapes.

VI. CONCLUSION

A new numerical method to evaluate the field of normal vectors from binary voxel images was
presented. It uses volume information generated from the object’s surface to reduce digitization
effects. The gradient field of the discrete distance, which approximates the normal field, is
adaptively filtered around each surface voxel using angle and symmetry criteria, so that as many
relevant contributions as possible are accounted for. This allows to optimize the accuracy of
both sharp and smooth regions on the same image. Given this precise normal field, a projection
method was then proposed to derive immediately the surface area from a raw discrete object.
Both techniques were tested on smooth and sharp geometrical shapes, then applied to natural
snow tomographic data and compared to Marching Cubes results.

These successful numerical tests will be enforced by a more physical validation: a joint
experiment with glaciologists (LGGE, Grenoble) is planned to compare, on a same snow sample,
surface area values from the above presented method, and methane adsorption measurements
at 77K [35].

The two algorithms presented in this article offer interesting outlooks for modeling snow
metamorphism. Since the surface area is a ”bulk” geometrical property of a given type of snow,
a numerical measurement of surface area is expected to allow a simpler parametrization of the
thermodynamics of microstructures in large-scale snow cover models [36]. At the grain-scale,
a model of curvature-driven snow metamorphism (very low temperature gradient) has been
implemented [3]. The preliminary results [37] are in good agreement with real data from an

experiment of isothermal metamorphism hold in a cold room [2].
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13 Image renderings of a snow sample (melt-freeze crust taken at le Col de Porte,
France) with the three methods (detail). Frame of the original image: 301% voxels.
The MC algorithm (b) is highly sensitive to digitization effects. The GSMC algo-
rithm (c¢) smoothes the digitization steps but deletes relevant details (circle). Only
the ADGF algorithm (a) preserves small details while smoothing the digitization
artefacts. . . . . L 23
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I Surface areas estimated on three snow samples (fresh snow, rounded grains and
melt-freeze crust) by the three algorithms. The VP algorithm was applied to the
normals obtained by the ADGF method. The deviation (dev.) between the march-
ing cubes estimations and the VP algorithm is expressed in percent of the VP
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