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Abstract

In digital geometry, digital straightness is an important concept both for practical
motivations and theoretical interests. Concerning the digital straightness in dimen-
sion 2, many digital straight line characterizations exist and the digital straight
segment preimage is well known. In this article, we investigate the preimage as-
sociated to digital planes. More precisely, we present first structure theorems that
describe the preimage of a digital plane. Furthermore, we present a bound on the
number of preimage faces under some given hypotheses.

Key words: digital plane preimage, digital straight line, dual transformation.

1 Introduction

Digital straightness is an important concept in computer vision. In dimension
two, for nearly half a century many digital straight line characterizations have
been proposed with interactions with many fields such as arithmetic or theory
of words (refer to [1] for a survey on digital straight line). A classical way
to define a digital straight line is to consider the digitization of an Euclidean
straight line on a unit grid. Hence, given a finite subset of a digital straight
line, called digital segment, we can characterize the set of Euclidean straight
lines whose digitization contains the digital straight segment. Many authors
have discussed about this set of straight lines, also called preimage, of a digital
segment [2–4]. An important result is that such a preimage is a convex polygon
in the parameter space and this domain has got an important arithmetical
structure that limits to four the number of vertices. The interest of this result



is double: on one hand we have a better understanding of this simple digital
object and on the other hand, we can design very efficient digital straight line
recognition algorithms. Concerning digital planes, some algorithms exist in
order to decide if a set of grid points in dimension three is a part of a digital
plane [5–9]. However, no result has been proposed concerning the structure
of the digital plane preimage. In this article, we present several results that
describe the faces and the vertices of the preimage polyhedron in the parameter
space.

In Section 2, we present major results on the digital straight line preimages.
The structure theorems for straight lines are then used to characterize digital
plane preimage in Section 3. Finally, we present in Section 4 a bound on the
number of faces of the digital plane preimage under some given hypotheses.

2 Digital straight line preimage

In the following, we use the notations proposed by Lindenbaum and Bruck-
stein [4]. Consider a straight line y = α0x + β0 (without loss of generality,
(α0, β0) ∈ [0, 1] × [0, 1[), the digitization of this line using the Object Bound-
ary Quantization (see [10] for a survey on digitization schemes) on an unit grid
is the set of discrete points such that L0 = {(x, y) ∈ Z

2 | bα0x + β0 − yc = 0}.

The preimage of a set of pixels S is defined by the set of straight lines whose
digitization contains S. The preimage of S, denoted D(S), is the set of (α, β)
in the straight line parameter space satisfying:

D(S) = {(α, β) ∈ [0, 1] × [0, 1[ | ∀(x, y) ∈ S, y ≤ αx + β < y + 1} . (1)

If we decompose the previous equation, each pixel introduces two linear in-
equalities. Hence, the preimage of a set of pixels is given by intersection of the
linear inequalities associated to each pixel in the parameter space. If such an
intersection is non-empty, S is a digital straight segment. Indeed, in that case
there exist (α0, β0) such that S ⊂ L0.

Many works have been done concerning the preimage analysis. In the following,
we recall properties presented by Dorst and Smeulders [2], McIlroy [3] and
Lindenbaum and Bruckstein [4].

Proposition 1 Let S be a 8-connected set of pixels, the domain D(S) is either
empty or a convex polygon in the parameter space with at most four vertices.
If D(S) has four vertices, two of them have the same α coordinate which is
between the α coordinates of the other two vertices.
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The Figure 1 illustrates all the possible shapes of D(S) (see [4] and a simple
proof can be found in [3]).
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Fig. 1. Five possible shapes of the preimage D(S) of a digital straight segment.

Among all the various definitions of DSS, we retain the one proposed by
Reveillès [11] and based on the following definition:

Definition 2 An arithmetical naive straight line, denoted N(a, b, µ), with
a, b, µ ∈ Z and gcd(a, b) = 1 is defined by the set of pixels satisfying:

N(a, b, µ) = {(x, y) ∈ Z
2 | µ ≤ ax − by < µ + max(|a|, |b|)} . (2)

a/b is the slope of the digital line and µ is the lower bound.

If we consider a naive straight line such that 0 ≤ a < b and thus max(|a|, |b|) =
b, we have an equivalence between this characterization and the previous one:

Theorem 3 (Reveillès [11]) For all α0 and β0 in [0, 1]× [0, 1[, and all finite
set S ⊂ L0, there exist a, b, µ ∈ Z with 0 ≤ a < b such that S ⊂ N(a, b, µ).

In fact, many parameters {(ai, bi, µi)} such that S ⊂ N(ai, bi, µi) exist. How-
ever, we can only consider the minimal set of parameters (a, b, µ) such that
b = min({bi}). Note that the output of the arithmetical naive segment recog-
nition algorithm proposed in [12] is the minimal set of parameters. In the
following, when we consider a subset S of a naive straight line N(a, b, µ), we
suppose that (a, b, µ) is the minimal set of parameter for S.

We choose the Reveillès digital straight line representation scheme because
it allows simple illustration of the geometry in the primal space of preimage
vertices. More precisely, we can define some characteristic points, called leaning
points, defined as follows: upper leaning points (resp. lower leaning points) of
a digital straight line N(a, b, µ) are grid points (x, y) satisfying ax − by = µ
(resp. ax − by = µ + max(|a|, |b|) − 1).

Given a finite connected arithmetical naive segment S with minimal param-
eters N(a, b, µ), the segment contains at least three leaning points: one lower
leaning point, one upper leaning point and any third one (see [12]). Let us
first suppose that S has the following leaning points: U (resp. U’) the upper
leaning point of S with minimum x coordinate (resp. maximum x coordinate),
and L and L′ that are defined in the same way from lower leaning points. The
Figure 2-(a) illustrates these definitions. Using these arithmetical digital lines,
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Fig. 2. Illustration in the primal space of the preimage vertices using the arithmetical
digital line formalism: (a) a piece of the arithmetical digital straight line N(1, 3, 1)
with lower and upper leaning points, (b) its associated preimage and (c) illustration
in the primal space of the preimage vertices.

the preimage vertices can be expressed using U, U ′, L, L′ (see Figure 2):

• the vertex D corresponds to the straight line (UU ′) in the primal space ;
• the vertex B corresponds to the straight line (LT L′

T ) where LT (resp. L′

T )
is L (resp. L′) translated by the vector (0, 1)T ;

• the vertex A corresponds to the straight line (LT U ′) ;
• the vertex C corresponds to the straight line (L′

T U).
• the coordinates of D and B are respectively ( a

b
, µ

b
) and (a

b
, µ+1

b
).

If one of the four leaning points is missing, similar results can be derived and
the preimage D(S) has only three vertices. In a digital line recognition point
of view, the following results can be stated from [11] and [4]:

Lemma 4 Let S be a connected arithmetical naive segment with a minimal
set of parameters (a, b, µ). Consider a pixel p connected at the left (or right)
side of S and such that p belongs to this straight line. The preimage of S∪{p}
grid remains unchanged if and only if p is not a leaning point of N(a, b, µ).

PROOF. Let us denote D(S) the preimage of the digital naive line S. We
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refer to Figure 1 for the description of D(S). In [4], the authors prove that only
one of the two constraints associated to p can modify D(S). Furthermore, they
also prove that if the cutting line crosses D(S), it goes through the vertices B
or D (see figure 3). Since the segment contains at least three leaning points,
we have B = (a

b
, µ

b
) and D = (a

b
, µ+1

b
). According to the links between digital

naive lines and the preimage structure detailed above, only leaning points of
N(a, b, µ) can have a constraint that goes through B or D.2

A

B

C

B’

D

α

β

Fig. 3. Any cutting line goes through point B or D [4].

3 Digital plane preimage

3.1 Notations and definitions

Without loss of generality, we consider the Euclidean plane given by the pa-
rameters (α0, β0, γ0) ∈ [0, 1]2 × [0, 1[. The digitization P0 of this Euclidean
plane is the set of grid points (called voxels in 3D) satisfying:

P0 =
{

(x, y, z) ∈ Z
3 | bα0x + β0y + γ0 − zc = 0

}

. (3)

In the same manner as in 2D, let S be a set of voxels. We can define the preim-
age of S considering the set of parameters (α, β, γ) such that the digitization
of the associated plane contains S,

D3D(S) = {(α, β, γ) ∈ [0, 1]2 × [0, 1[ |

∀(x, y, z) ∈ S, z ≤ αx + βy + γ < z + 1} . (4)

The preimage, denoted D3D(S), is either empty or a convex polyhedron in
the (α, β, γ)-parameter space. Indeed, it is the intersection of linear inequal-
ities. We also consider a characterization of the digital plane based on the
arithmetical naive plane [11]:
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Definition 5 An arithmetical naive plane, denoted P (a, b, c, µ), with a, b, c, µ ∈
Z and gcd(a, b, c) = 1 is defined as the set of voxels satisfying

P (a, b, c, µ) = {(x, y, z) ∈ Z
3 | µ ≤ ax + by + cz < µ + max(|a|, |b|, |c|)} , (5)

where (a, b, c)T is the digital plane normal vector and µ is the lower bound.

In the following, we consider a naive plane such that 0 ≤ a ≤ b < c and thus
max(|a|, |b|, |c|) = c. As in dimension 2, for each finite subset of digital plane
S ⊂ P0 given by (α0, β0, γ0), there exist a, b, c, µ ∈ Z with 0 ≤ a ≤ b < c such
that S ⊂ P (a, b, c, µ). Among all possible naive plane parameterizations such
that S ⊂ P (a, b, c, µ), we only consider the minimal set of parameters such
that c is minimal.

In this arithmetical plane, we can also define special voxels, so called upper
and lower leaning points: the upper leaning points are the voxels satisfying
ax+by+cz = µ and lower leaning points are the voxels satisfying ax+by+cz =
µ + max(|a|, |b|, |c|) − 1. Since these points are respectively coplanar, we also
define the upper leaning polygon, denoted Lup (resp. lower leaning polygon
denoted Llow) as the 2D convex hull of upper leaning points (resp. lower leaning
points). The Figure 4 illustrates these definitions.

Given a finite set piece of digital plane S, if (a, b, c, µ) is the minimal set of
parameters for S, then S contains, at least, four leaning points of P (a, b, c, µ)
(two upper and two lower points, three upper and one lower points or one
upper and three lower points) [13]. In the following, when a digital naive plane
parametrization is considered for a set of voxels, we always suppose that the
parametrization is minimal.

In the next section, we present links between preimage faces and leaning poly-
gon vertices.

3.2 Digital plane preimage characterization

First of all, we suppose that the finite subset of digital plane S ⊂ P (a, b, c, µ)
contains at least three upper leaning points and three lower leaning points (this
point will be discussed below). Thus, we first introduce vertices and faces of
D3D(S) given by leaning polygons:

Proposition 6 Let S ⊂ P (a, b, c, µ) be a piece of naive plane. Then, the
polyhedron containing all the Euclidean planes D3D(S) in the parameter space
has the following properties :

• Two particular vertices with coordinates L∗

low(a
c
, b

c
, µ

c
) and L∗

up(
a
c
, b

c
, µ+1

c
) are
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Fig. 4. Illustration of an arithmetical digital plane P (7, 17, 57, 0), lower and upper
leaning points and lower and upper leaning polygons with n = 15.

identified. They correspond to the planes containing the leaning polygons
Lup and Llow in the primal space;

• The polyhedron’s faces adjacent to L∗

low (resp. L∗

up) result from the lower
(resp. upper) leaning polygon’s vertices.

PROOF. In the (α, β, γ)-parameter space, each point p(x, y, z) in S intro-
duces two linear constraints C1(p) : αx+βy+γ−z ≥ 0 and C2(p) : αx+βy+
γ − z − 1 < 0 with (α, β, γ) ∈ [0, 1]2 × [0, 1[. Since (α, β, γ) are positive and
according to Preparata and Shamos [14], the domain D3D(S) is given by com-
puting the lower envelope of constraints C2, the upper envelope of constraints
C1 and by merging these two envelopes. In other words, we can independently
analyze constraints C1 and C2.

Hence, we consider the constraints {C2} of points pi in S and the leaning plane
containing the upper leaning polygon Lup. Since all points pi are below the
leaning plane by definition of this plane, all half-planes defined by the con-
straints {C2(pi)} contain the point L∗

up in the parameter space. Thus, since all
upper leaning points have constraints C2 going through L∗

up, L∗

up is necessarily
a vertex of the lower envelope of constraints {C2} and so, L∗

up is necessarily a
vertex of the polyhedron D3D(S). Using same arguments, we prove that L∗

low is
a vertex, in the parameter space, of the upper envelope of constraints {C1(pi)}
and thus, L∗

low is also a vertex of D3D(S). The coordinates of L∗

up and L∗

low are
given by definition of leaning points.
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If we consider now the adjacent faces to the point L∗

up of D3D(S), each face
with normal vector (xi, yi, zi)

T is created by the upper leaning point with
coordinates (xi, yi, zi). We denote {ei}1...m the vertices of the leaning polygon
Lup and v a coplanar voxel to points {ei}1...m, inside the polygon. Since Lup is
the planar convex hull of upper leaning points, we have: v =

∑m
i=1 ωie

i, where
{ωi}1...m ∈ R are such that ωi ≥ 0 and

∑m
i=1 ωi = 1. Then, the constraint

generated by v in the dual space contains L∗

up and has a normal vector which
is linearly dependent with positive weights to normal vectors of faces {ei}1...m

(see Figure 5). Thus, v is not an adjacent face to L∗

up in D3D(S). Finally, all
the adjacent faces to L∗

up are only generated by the upper leaning polygon’s
vertices. Similarly, all the adjacent faces to L∗

low in the parameter space are
generated by lower leaning polygon’s vertices. 2

���

������
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�	�
�	�

� �

�

�
�
��
���

����
���

Fig. 5. Illustration of Proposition 6: (left) vertices {ei}1...m of the upper leaning
polygon and the point v lying inside this polygon, (right) the constraint generated
by v has a normal vector linearly dependent with positive weights to normal vectors
of faces {ei}1...m in the parameter space.

At this point, we have proved that the preimage D3D(S) has two characteristic
vertices associated to the leaning planes and particular faces created by the
leaning polygon’s vertices. We can now discuss on pathological cases when
the number of upper (resp. lower) leaning points is less than 3. If only two
upper (resp. lower) leaning points exist, the two associated faces belong to
D3D(S) and define an edge of D3D(S) that can be viewed as a degeneracy of
L∗

up (resp. L∗

low). If there is only one upper leaning point, only the associated
face belongs to D3D(S). In the following, we prove that, with some hypotheses
on the digital plane, the preimage D3D(S) does not contain other faces.

Definition 7 Let S ⊂ P (a, b, c, µ) be a piece of naive plane. We define the
double-cone in the parameter space associated to S and denoted by Dcone(S)
the domain where faces are generated by leaning polygons’ vertices.

For the sake of clarity, we suppose in the following that the leaning polygons
have at least three points.
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y

Fig. 6. Illustration of Theorem 8 hypotheses: the projection of the voxel v must
belong to the projections of the two leaning polygons.

As a corollary of Proposition 6 and whatever the digital plane, we have:

D3D(S) ⊆ Dcone(S) (6)

The following theorems show that we have an equality between these two
polyhedra if we add some hypotheses on S.

Theorem 8 Let S ⊂ P (a, b, c, µ) (with 0 ≤ a ≤ b < c) be a piece of naive
plane where each point (xi, yi, zi) is such that (xi, yi) lies inside the projections
onto the plane z = 0 of the two leaning polygons. Then we have D3D(S) =
Dcone(S).

PROOF. Let us consider a voxel v that belongs to the digital plane P (a, b, c, µ)
and that satisfies theorem hypothesis. We first consider the constraint C2(v)
and show that C2(v) does not intersect Dcone(S). The figure 6 illustrates the
hypotheses of the theorem.

Since v belongs to S, C2(v) necessarily contains the point L∗

up(
a
c
, b

c
, µ+1

c
) in

the parameter space. In other words, the plane C2(v) crosses the straight lines
(L∗

lowL∗

up) at a point p with γ- coordinate greater than the γ-coordinate of L∗

up

(see Figure 7). If C2(v) crosses the domain Dcone(S), then the translation of

C2(v) by the vector
−−→
pL∗

up crosses the domain too. This transformation trans-
lates the plane C2(v) into a plane C ′ that goes through L∗

up. In the primal
space, this translation corresponds to a vertical projection of the voxel v onto
the upper leaning plane. According to the hypothesis on the digital plane vox-
els, this vertical projection of v lies inside the upper leaning polygon. Thus,
using the same arguments as in the proof of Proposition 6, the normal vector
of C ′ is linearly dependent with positive weights of the face normal vectors cre-
ated by the upper leaning polygon’s vertices. Hence, C ′ does not belong to the
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lower envelope of constraints {C2} and does not cross the domain Dcone(S).
Then, C2(v) does not cross the domain too.

Considering the constraint C1(v), similar arguments are used with projection
onto the lower leaning plane. Finally, if all voxels of S are such that the vertical
projection of such points lies inside both leaning polygon projections, the voxel
v does not change the preimage and thus: D3D(S) = Dcone(S). 2

������

�

� �
	 � ��	� �	

��� � ��	 �����
� ������

���

Fig. 7. Illustration of the proof of Lemma 8 in the 2D case.

In the following we prove that for a digital plane containing at least three
leaning points on each line along the y axis or the x axis, D3D(S) does not
contain more faces than those described in Proposition 6. In order to prove
this statement, we use the Lemma 4 on digital line preimage presented in
Section 2 and the following decomposition of a digital plane into digital lines.

Proposition 9 Let S ⊂ P (a, b, c, µ) be a naive plane. Let us define the decom-
position of S into 3D digital straight lines along the y axis : Sj = {(x, y, z) ∈
S | y = j}. Then we have

S =
⋃

j

Sj and D3D(S) =
⋂

j

D3D(Sj) . (7)

We can map each set of voxels Sj to a digital naive line Proj(Sj) in the (Oxz)
plane. This mapping is one-to-one and onto, and, if we denote P (a, b, c, µ) the
digital naive plane, the digital line is exactly N(a,−c, µ− bj) (see [13]). In the
general case, i.e. on finite subset S of P (a, b, c, µ), Lemma 10 describes the
relation between the parameters of S and those of Proj(Sj). In the parameter
space, the preimage of Sj is a prism which basis (for β = 0 and β = 1) is the
preimage of N(a,−c, µ−bj) and which directional vector is (0, 1,−j)T . Figure
8 shows an example of a 3D line Sj preimage and figure 10 illustrates the digital
plane preimage computation based on the {Sj} preimage intersections.
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Fig. 8. Preimage of the 3D digital straight line defined by y = 1 in the plane
P (1, 3, 4, 0).
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Fig. 9. Illustration of the proof of theorem 10.

Lemma 10 Let S be a piece of digital plane of parameters (a, b, c, µ) and Sj

a line of its decomposition. Consider a voxel v of S which belongs to Sj, and
its projection Proj(v) onto the (Oxz) plane. Then v is a leaning point of S
if and only if Proj(v) is a leaning point for the parameters (a,−c, µ − bj).
Moreover, if Sj contains at least 3 leaning points of S, Proj(Sj) is the digital
line N(a,−c, µ − bj).

PROOF. Consider a point v(x, y, z) of S. Then we have ax+by+cz = µ+r,
with 0 ≤ r < c. If v belongs to Sj, then we have ax + cz = µ − bj + r. The
point Proj(v) = (x, z) is a leaning point for the parameters (a,−c, µ − bj) if
and only if ax + cz = µ − bj + c − 1 or ax + cz = µ − bj, i.e. if and only if v
is a leaning point of S.

Then, if Sj contains at least three leaning points of S, Proj(Sj) contains three
leaning points for the parameters (a,−c, µ − bj), and then Proj(Sj) is the
digital line N(a,−c, µ − bj). 2

Theorem 11 Let S ⊂ P (a, b, c, µ) a piece of discrete naive plane such that
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Fig. 10. (a) A piece of plane P (1, 3, 4, 0); (b) preimages of 3D digital straight lines
in parameter space (α, β, γ); (c)-(d) the preimage of the piece of plane is the inter-
section of the digital lines preimages, arrows aim at L∗

up (figure (c)) and L∗

low (figure
(d)).

S =
⋃

j Sj with Sj = {(x, y, z) ∈ S | y = j}. We assume that for all j, Sj is
connected. Then, if each Sj contains at least three leaning points (one lower
leaning point, one upper leaning point and any third one) we have D3D(S) =
Dcone(S).

PROOF. From Proposition 6, the preimage of S has two particular vertices
and the faces adjacent to those points correspond to the plane leaning points.
Let us consider a voxel v(x, y, z) connected to S which is not a leaning point
of S. We show that the preimage of S ∪ v is equal to the preimage of S, which
proves that any face of D3D(S) goes through either L∗

up or L∗

low.

Let us consider the decomposition of S into 3D digital lines {Sj}. Figure 9
gives an illustration of the notations used in this proof. v belongs to one and
only one line of this decomposition, Sy. Thus, only the preimage of Sy may
be reduced by v. Now we consider the projection of this line in the 2D space
(Oxz), and denote it Proj(Sy). Hence, the preimage of Sy is a prism which
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basis is the preimage of Proj(Sy). The whole prism is modified by a constraint
associated to v if and only if its basis is modified. From Lemma 10 we know
that the leaning points of Proj(Sy) are exactly those of Sy. As a consequence,
v is not a leaning point of Proj(Sy), and according to Lemma 4, the preimage
of Proj(Sy) (denoted D2D(Proj(Sy)) in Figure 9) does not change after the
insertion of the voxel v. Hence, the preimage of Sy does not change either.
This means that v does not modify the preimage Sy.

Finally, since D3D(S) is the intersection of all {Sj} preimages and since v does
not modify the Sy prism, v does not change the domain D3D(S). 2

4 Bounds on the number of faces

It has been proved in previous theorems how to construct the preimage of a
digital plane. In this section, we present a bound on the number of faces of this
preimage. Let us suppose a digital plane S ⊂ P (a, b, c, µ) satisfying hypothesis
of Theorems either 8 or 11 (or both). Hence, the number of faces of D3D is
exactly the number of both leaning polygons’ vertices. We also suppose that
S is a rectangular piece of digital plane. More precisely, there is a one-to-one
and onto mapping between the voxels of S and the points in the (Oxy) plane
contained in a [1,m] × [1, n] window.

As given in Definition 5, an arithmetical plane P (a, b, c, µ) is composed of a set
of arithmetical nets given by the solutions of the diophantine equation ax +
by + cz = r with r in {µ, . . . , µ+max(|a|, |b|, |c|)− 1}. Given a piece of digital
plane, the problem is to bound the number of vertices of the upper (resp.
lower) leaning point convex hull. First note that the upper (resp. lower) leaning
net can be projected onto the (Oxy) plane without changing the number of
vertices of the convex hull. The problem is to consider the convex hull size
of the bidimensional net ax + by = r (mod c) in a m × n window. We first
construct two vectors, denoted U(p, q) and V (s, t), that compose a basis of
the net using the classical Blankinship’s algorithm in number theory [15].
In other words, all upper leaning points are generated by these two vectors.
Using scale changes on the grid axis, we can construct a net defined by the
canonical vectors (0, h) and (1, g). This one-to-one and onto mapping from
the net generated by [U, V ] to the net generated by [(0, h), (1, g)] does not
change the number of convex hull vertices (given two vectors in the plane, the
transformation does not change the sign of the determinant of those vectors).

The net generated by [(0, h), (1, g)] in an h× h window (see Figure 11-(a)), is
exactly the points {(i, gi mod h)} with 0 < i < h. As proved by Reveillès and
Yaacoub in [16], the number of vertices of the convex hull of such points is
O(log(g)) (authors illustrate links between such a net and continued fraction
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of g/h). Hence, over a square [1, h − 1] × [1, h − 1], the complexity is known
(see figure 11-(a)). In the following, the net in [1, h − 1] × [1, h − 1] is called
a period.

The general problem concerns a window W of general size [1,m]× [1, n]. First
of all, if W is such that m = k.h − 1 and n = l.h − 1 with k, l in Z, the
convex hull of the net can be decomposed into the following elements: two
vertical straight segments defined by the horizontal extremal points of the
net, two horizontal straight segments joining the vertical extremal points and
four parts of the convex hull in one period (see figure 11-(b)). Hence, the
number of vertices of the convex hull over W is bounded by the number of
vertices in one period, i.e. O(log(g)).

If we consider a general window W , similar elements are present: we have four
straight segments to connect horizontal and vertical extremal points, and four
parts of convex hulls of net subsets over a period (see figure 11-(c)). Hence,
we have to study the size of the convex hull on windows [1, ε]× [1, ε′] with ε, ε′

in Z and ε, ε′ < h. In fact, Reveillès and Yaacoub also proved that the convex
hull size of the net {(i, (gi + ε mod h)} with ε in {0, . . . , h}, over a period is
also bounded by O(log(g)) [16]. In other words, we can shift the net by the
vector (0, ε), we do not change the size of the convex hull. Similarly, we can
prove that the translation by the vector (ε′, 0) do not change the complexity
of the convex hull too. Hence, the number of vertices of a piece of the convex
hull in a window [1, ε] × [1, ε′] is always bounded by O(log(g)). Finally, the
size of the overall convex hull in the window W is bounded by O(log(g)).

(a) (b)

...

...

......

(c)

Fig. 11. (a) set of points generated by {(i, gi mod h)} with g = 5 and h = 17;
(b) convex hull computation on a [1, k.h − 1] × [1, l.h − 1] window; (c) convex hull
computation on a general window.

Hence, given a m × n rectangular digital plane with minimal parameters
(a, b, c, µ), we first have 0 ≤ a ≤ b < c ≤ max (m,n). Since, g and h are
linear combinations of a, b and c, the size of both the upper and the lower
leaning polygon is bounded by O(log(max(m,n))).

Theorem 12 Let S be a rectangular m × n piece of digital plane satisfying
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hypothesis of either Theorem 8 or Theorem 11 (or both). Then the number of
faces of the preimage of S is bounded by O(log(max(m,n))).

5 Conclusion

In this paper we have presented some first results about digital plane preimage.
We have shown that with some hypothesis on the piece of digital plane, the
shape of the preimage is a double-cone whose structure is very similar to the
one of 2D digital straight segments preimages.

We have also introduced the decomposition of a digital plane segment into 3D
digital straight segments, which suggests interesting arithmetical properties
on the polyhedron’s faces and vertices. Indeed, each 3D digital line segment
preimage face is resulting from a side of a 2D digital segment preimage which
have known arithmetical structure.

Finally, we have shown that under some hypotheses, the number of faces
of a rectangular m × n digital plane segment preimage is bounded by
O(log(max(m,n))). As in 2D, such a result together with the other ones of
this paper can lead to the design of a very efficient digital plane recognition
algorithm. In future works, efforts must be made to enlarge the scope of the
theorems whole considering general pieces of plane without constraints.
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