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Abstract

Digital geometry is very different from Euclidean geometry in many ways and the
intersection of two digital lines or planes is often used to illustrate those differences.
Nevertheless, while digital lines and planes are widely studied in many areas, very
few works deal with the intersection of such objects. In this paper, we investigate
the geometrical and arithmetical properties of those objects. More precisely, we give
some new results about the connectivity, periodicity and minimal parameters of the
intersection of two digital lines or planes.
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1 Introduction

Digital straight lines and digital planes properties have been widely studied
in many fields like topology, geometry and arithmetics. Topologically, those
objects are well defined according to the digitization scheme used. On the
geometrical ground, connectivity features are known and a characterization
using convex hull properties [1] has been proposed. Finally, an arithmetical
definition [2,3] provides a general model to handle all the definitions proposed
so far.

Those properties led to many recognition algorithms. Geometric algorithms
[4] decide whether a set of pixels/voxels is a digital line/plane or not, and
arithmetical algorithms [5] also return, for a given digitization scheme, the
parameters of the Euclidean lines/planes containing the set of pixels/voxels
in their digitization.

Discrete geometry is different from Euclidean geometry in many ways, and
the differences between the intersection of two Euclidean lines and two digital
lines is often used to illustrate this difference. Indeed, while the intersection of
two Euclidean lines is a Euclidean point, the intersection of two digital lines
can be a discrete point, a set of discrete points or even empty on rectangular
grids. Examples of digital lines intersection are depicted in Figure 1.

In [6], an enumeration algorithm of the intersection pixels is proposed us-
ing quasi-affine applications. In [7], using the arithmetical definition of a dis-
crete line/plane, Debled et al. present a definition of the set of intersection
pixels/voxels of two digital lines/planes using an unimodular matrix. This
definition enables the design of an efficient algorithm to determine all the
pixels/voxels of an intersection given the parameters of the two lines/planes.
However, no results are given about the topology and arithmetics of this in-
tersection.

Our main contribution is summarized in two points:

e Analysis of the connectivity of two digital lines intersection;
e Characterization and algorithmic identification of the minimal digital line/plane
containing the set of pixels/voxels belonging to two digital lines/planes.

The paper is organized as follows: in section 2, we recall some definitions and
properties about the rational fractions which are the mathematical framework
used in this paper. Section 3 deals with the intersection of two digital lines. We
present a criterion to analyze the connectivity of the intersection of any two
digital lines, thus completing the results presented in [2] for lines with slopes
between 0 and 1. Then, we propose a study about the minimal arithmetic
parameters of digital lines intersection and we design an efficient algorithm



to find those parameters. To conclude this part on digital lines intersection,
a discussion about the extent of the intersection is proposed. In section 4 we
present some results on digital planes intersection: we prove that the intersec-
tion is periodic and give the minimal period. Finally, we define and determine
the minimal parameters of the intersection of two digital planes.

2 Rational Fractions

We recall in this part some mathematical definitions and properties about
rational fractions needed for this work. The link between those arithmetical
structures and digital lines will be exposed further in the paper.

2.1 Decomposition into Continued Fractions

The decomposition of a rational fraction into continued fractions is a mean to
describe a floating number using integers. Let us consider a rational fraction
3 Where a and b are two relatively prime integers. Then we call decomposition

into continued fractions of ¢ and denote [go, g1, g2, .., ¢n] the integers such
that £ = g + s L . The quotients g; are the integers given by
Q2+---+%
qn—1+q_

Euclid’s algorithm applied with a and b. For instance, the decomposition into
continued fractions of g is [0, 1,1, 2]. Similarly, we have g =1[1,1,2].

The decomposition into continued fractions can also be computed for an irra-
tional number, and in this case, the sequence of integers is infinite. In this pa-
per, we are only interested in rational fractions since real numbers are strangers
to finite discrete geometry.

2.2  Farey Series and Stern-Brocot Tree

The Farey series and the Stern-Brocot tree are two different methods to enu-
merate and represent all the positive rational fractions § where a and b are
relatively prime. The definitions proposed in this section can be found for

instance in [8] or [9].

The Farey series of order N, denoted Fy, is the series of ordered irreducible

rational fractions between 0 and 1 the with a denominator lower or equal to
01 11213234.]1

N. For 1nstance, we have: f5 = 1:574737572°5731475° 1"

This series is computed from F; = %, % as follows: the median of two rational



. I, . . ! .
fractions  and 7 is defined as the rational fraction Zig,; the Farey series of

order ¢ is computed iteratively from the Farey series of order ¢ — 1 adding all
the medians with a denominator lower or equal to ¢ of consecutive fractions
of Fq_1. Remark that if % and :j—,’ are two consecutive fractions of Fy then we
have u'v — uv' = 1 (This property will be useful in Section 3.2.2).

The Stern-Brocot tree is another way to represent all the irreducible rational
fractions (see [9] for a complete definition or [10] for a more informal approach).
An illustration of this tree is proposed in Figure 6(a). The idea behind its
construction is to begin with the two fractions % and % and to repeat the
insertion of the median of these two fractions. We call mothers of a fraction
o € Fy the two fractions 3 and 32 of Fy_; such that P52 = %,

Any positive irreducible rational fraction appears exactly one time in the
Stern-Brocot tree. This enables to map a binary code to any irreducible ratio-
nal fraction which corresponds to the path from the fraction % to the rational
fraction. Indeed, the unique path leading to a rational fraction § can be de-
fined with a sequence of left (code 0) and right (code 1) directions in the tree.
This encoding is a one-to-one and onto transformation from a rational fraction
to a binary word. For instance, the code 0011 means that we choose two times
the left son and then two times the right son in the tree, which leads the the

fraction % This representation raises two problems:

e how to compute the fraction corresponding to a given code ?
e how to compute the code corresponding to a given fraction ?

In [8], Graham et al. propose the two algorithms detailed in Algorithms 1
and 2 to solve those two problems. Algorithm 1 uses the fact that the Stern-
Brocot tree is a binary search tree (BST for short). Indeed, the algorithm is
very similar to the classical BST Search algorithm [11]. Algorithm 2 computes
recursively the two mothers of the rational fraction associated to a given code.
Those two fractions are represented with a 2 x 2 matrix which is initialized
to the identity matrix (representation of the two fractions  and 7) when the
function is called. Nevertheless, those algorithms use arithmetical properties
of the construction of the tree that we will not detail here. The interested
reader may read [8] for further explanations.

Finally, let us point out the link between the Stern-Brocot tree, the binary
encoding of rational fractions and the decomposition into continued fractions
defined in the previous section. Indeed if we denote f the function which maps
a binary word to a rational fraction, we have:

1
1%0611 1t12 L. 1qn—1 — + 1
f R — )

1
qg2+...+ o1 ¥l



Algorithm 1 Compute the binary code associated to a rational fraction ¢
CoMPUTE_CODE(a,b)

1. C =0

2: while ( a # b) do

3:  if (a < b) then

4 append(C,0); b = b — a;
5: else

6: append(C,1); a = a — b;
7

8:

9:

end if
end while
return C;

Algorithm 2 Compute the rational fraction associated to a binary code C
CompPUTE_FRrRACTION(C, k, i, res)

11 10
L= R =

b I

01 11

if (i=k) then

return res; {res is initially set to the identity 2 x 2 matrix}
else if (C[i] = 0) then

Compute_Fraction(C,k,i+1,res*L);
else

Compute_Fraction(C,k,i+1,res*R);
end if

—

In this equation, the notation a? denotes g successive repetitions of the letter

« in the binary word. For instance, f(0011) = f(1°0%1%?) = 0 + 2+L =3
211

Another algorithm to compute the fraction associated to a binary code may
be derived from this remark.

3 Digital Lines Intersection

In this section, we focus on the properties of digital lines intersections. A
digital naive line of parameters (a,b, ) is the set of integer points {(z,y)}
fulfilling the conditions 0 < ax — by + 4 < w. w is called the thickness of the
digital line. In this work, we focus on the thinnest 8-connected lines, called
naive lines, with w = max(|al, |b|). An illustration is proposed in Figure 1(a).
Such lines can be also defined using the Chain code depicted on Figure 1(b).
This encoding defines a set of eight directions that are used to describe the
movements between successive pixels of the digital line. A classical result is
that the Chain code of any digital naive line is composed of at most two
consecutive different directions. Thus, one can define 8 octants from those



eight directions, one digital line belonging to one octant. Nevertheless, only
4 octants remain if we consider symmetries around the central point. For
instance, the octant {4,5} is equivalent to the octant {0, 1}.

3.1 Connectivity

Let us consider two digital naive lines denoted L; and Lo. L; N Ly is a set of
pixels whose connectivity depends on the parameters of the two digital lines.

In 1991, J.-P. Reveilleés [2] proposed a criterion to determine whether the
intersection of two digital naive lines with slopes between 0 and 1 is connected
or not. However, he did not give any information about the intersection of any
two digital naive lines. First of all, let us recall the result of Reveilles in the
following theorem.

Theorem 1 ([2]) Let Ly and Ly be two digital naive lines with rational slopes
5 and ‘g—;, 0 < ‘;—,’ < 3 < 1. Suppose that the development into continued
fractions of § is given by § = (90,491,492, - - -,qn]. Then, L1 N Ly is 8-connected

if and only if one of the following inequalities holds:

rTllifmzlamdqg:O
ﬁl<< 2q11+1 ifgr > 1 and go =1
4 s 41> 2 and go > 2
(o3 =1 and gy > 2

Note that the coefficient gy is zero since 0 < % < 1. This condition defines a
neighborhood N of the rational fraction 7 such that the intersection is simply
8-connected if and only if & does not belong to N. Indeed, if the slopes of the
two lines are too close, the intersection may be not simply connected. With
the following proposition, we describe the connectivity of the intersection of

two digital lines lying in two different octants.
Proposition 2 Let L and Ly be two digital naive lines. Then:

e if they belong to the same octant, their intersection may be not connected,
and Theorem 1[2] gives a criterion to analyze exactly the connectivity;

e if they belong to two neighbor octants, their intersection is either empty or
connected;

e otherwnise, their intersection is either empty or reduced to a unique pizel.

In the following we denote Fj (resp. F») the set of directions composing the
Chain code of L; (resp. Ly). An illustration is given Figure 1.



PROOF. Let L; and Ly be two digital naive lines. If L; and Ly belong to the
same octant, |F; N Fy| = 2. If they belong to neighbor octants, |F; N Fy| = 1.
Otherwise |F1NF,| = 0. Without loss of generality, we suppose that L; belongs
to the octant {0, 1}. Let us give a classification of the pixels of L; and L,. We
denote pi y = pa2x = pi the pixel of L; N Ly with minimal x-coordinate if there
exist one (there is at most one pixel verifying the property since a digital line
of the octant {0, 1} does not contain two pixels with the same x-coordinate).
Then, p; 41 is the successor of py along L; according to the Chain code F;.

o if |[Fi NFy| =0 (Figure 1(c)), then py k11 # pok+1 as they are the successors
of the same point using two different directions. Suppose that L, is com-
posed of 2 and 3. The other cases are symmetrical. Then, let us consider a
pixel py(zp, Yp,) € L1 with x, greater that the xz-coordinate zj of py, and
D2(Zp, Yp,) € Lo. Then, y,, > yp and y,, < yp— (2, — k) < i, since x, > xy.
Hence, the two lines do not have any common point after py.

o if [FiNFy| =1 (Figure 1(d)) then let us denote «y; (resp. ay;) the direction
used from D1 to DP1i+1 (I'GSp. P2 to pQ,H_l). Hence, while 1, = Oy, ) 2 k,
Pii+1 = D2,+1- Both pixels p;; and p; ;i1 belong to the intersection and
are 8-connected. Unless the two lines are confounded, there exist j such
that ay; # agj. Hence, pij11 # D2jt1. Suppose that Ly is composed of
1 and 2. The other cases are symmetrical. Then, let us consider a pixel
P1(Zp, Yp,) € Ly with z, greater that the z-coordinate z; of p; ; = po;, and
Pty Yp) € Lo. Then, p, < y; + (ap — ; — 1) and g, > y; + (1, — 3,).
Hence, the two lines do not have any common point after p; ;.

e if |[F1 N Fy| =2 (Figure 1(e)) , we refer to [2] to analyze the connectivity.

O

Figure 2 summarizes the connectivity of the intersection between a given dig-
ital line with slope 0 < 3 < 1 and any other digital line with a rational

slope.

3.2 Minimal Parameters

The intersection of two digital lines is a set of collinear discrete points. To
characterize this set of points, it is interesting to know the straight lines con-
taining all the intersection pixels in their digitization. Obviously, the two lines
we are studying are solutions.

Definition 3 (minimal parameters) Let P be a given set of discrete points
and let S be the set of parameters of naive straight lines containing P. We
have S = {(a,b, ) | P C {(z,y) | 0 < ax—by+ p < maz(|a|,|b])}}. Then the



minimal parameters of P are the values (a, b, p) of S with minimal maz(|al, |b|)
and minimum L.

In other words, the minimal parameters are chosen among the parameters of
the digital lines which contain the intersection pixels. An illustration of this
definition is given in Figure 3: the digital line represented with black squares
contains all the pixels (double squared) of the two other lines intersection.

In the following, we propose a characterization and an algorithm to find the
minimal parameters of the intersection of any two digital naive lines using two
different methods and emphasizing the links between them.

3.2.1 Preimage Study

This first method shows how to find the directional vector of the minimal
parameters studying the structure of the intersection preimage.

Consider a straight line y = apx+ 5y, 0 < ay, By < 1. Its digitization according
to the Object Boundary Quantization (OBQ for short, see [12] for instance)
is the set of discrete points lying on or just under the line: {(z,y) € Z* | y =

laoxr + Bo|} ={(z,y) € Z? | 0 <z + By —y < 1}.

Now consider a set of pixels P of a digital line (a, b, ) such that 0 < a < b.
The preimage of P represents all the Euclidean linesy = ax+ 5,0 < a,8 < 1
containing P in their OBQ digitization. This set, denoted D(P), is defined
as: D(P) = {(o,8) € [0,1] x [0,1] | V(z,y) € P, 0 < ax + B —y < 1}. This
preimage lies in a parameter (dual) space (a, §) where a point (ag, fy) maps
the line y = apx + [y in the Euclidean space and conversely a line 8 = za+ vy
in the parameter space maps the point (z,y) in the Euclidean one.

For instance, in this parameter space, the preimage of a infinite digital line
a 1

of parameters (a,b,0), with 0 < a < b is the vertical segment [(%,0), (%, 3)[:
indeed, the set of straight lines containing the digital line in their OBQ digi-

tization is a set of parallel lines of slope .

The parameter space and preimage definitions that have been defined for
lines with slopes between 0 and 1 can be directly used for lines with slopes
between -1 and 0. Conversely, a direct transcription of those definitions for
lines with slopes greater than 1 or lower than -1 leads to the definition of
another parameter space where a point (ag, 5y) maps to the line z = apy + 5o
in the Euclidean space.

However, to study the intersection of any two digital lines, we need to work in
the same straight line parameter space for any slope. In [13], Veelaert shows
that the transformation between those two spaces can be done with a central



symmetry in a 3D space. Thus, if the two lines we study have slopes between -1
and 1, we work in the straight line parameter space P; where a point (ay, 5o)
represents the line y = agx + [By. If they have slopes greater than 1 or lower
than -1, we work in the straight line parameter space P, where a point (v, 5)
represents the line x = apy + [y. In mixed cases, we use the parameter space
P;. In the following the parameter space considered is P;.

In this parameter space, the preimage of a digital straight line of slope ¥
with 0 < b < a and no remainder is the segment [(%,0), (%, —3)[. In partic-
ular, the preimage of the line of parameters (1,1,0) is the vertical segment
[(1,-1),(1,1)] in the parameter space. Some examples are depicted in Figure

4.
Definition 3 can be rewritten using the preimage structure:

Definition 4 Let P be a set of discrete points and D(P) its preimage. The
minimal parameters of P are the values ($,%) € D(P) such that b and p are
minimal.

We consider two digital naive lines L; and L, with slopes ¢ and $ and no
remainder, and their intersection I = L; N Ly. Without loss of generality, we
assume that ¢ < 5. We denote D(L;) (resp. D(Ls)) the preimage of L, (resp.
L,). The preimage of any set of discrete points is a convex polygon since it
is defined by the intersection of half-spaces. Moreover, the set of pixels [ is
included in L; and in Ly which implies that the preimage of I contains L,
and L, preimages. Those properties imply that D(I) includes the segment
[(£,0),(5,0)] (see Figure 5 for illustrations). Furthermore, as I contains all
the discrete points belonging simultaneously to L; and Ly, adding one more
pixel of Ly or Ly to I cuts D(I) into two parts, one including D(L;) and the
other including D(L,).

Theorem 5 The minimal parameters slope of the intersection of two lines of
slopes ¢ and § (% < §) is given by the rational fraction * lying between § and

g with minimal denominator v.

PROOF. Consider the set of discrete points belonging to L; and Lo, I =
Li N Ly and call D(I) its preimage. We divide the proof of the theorem into
3 cases that are depicted in Figure 5.

e Assume that 5 < 0and 7 > 0. Then, the fraction % lies between ¢ and 3.
Consequently, the line with slope % is a solution, and obviously the solution
with minimal denominator (cf. Figure 5(a)).

e Assume that % < 1 and (—Ci > 1. Then, the fraction % lies between % and
<, and from what we said before, we deduce that the line with slope % is
a solution, and by the way the one with minimal denominator (cf. Figure

10



5(b)).
e Assume that 0 < % < g < 1. We know that any fraction between % and
< is a solution. By the way, the fraction with minimal denominator lying

between  and £ is a solution. We show that there does not exist a solution
fraction with a smaller denominator outside the segment defined by 3 and
<. Suppose that there exist such a fraction denoted . Then, v < b and

v < d. Suppose that * < ¢ and that |§ — %[ is minimal for the set of
irreducible fractions smaller than 3 with denominator v. The case ? > £ is
symmetrical.

Consider the discrete point p(—v, —u — 1). Adding this point to L; N Ly
implies two new half-spaces constraints given by 0 < —av4+u+14+ 8 < 1in
the parameter space. This strip is delimited by two lines [, : —av+u+1+8 =

0 and ly : —av+u+1+8 = 1. [; cuts the x-coordinate axis for z = =L and [,

v
for z = % (see Figure 5(c)).Thus, since v is smaller than any denominators

of the fractions lying between § and £, "T“ is either greater than £ or
smaller than . But since we assume that I was the closest fraction with
denominator v smaller than f, we get that I < ¢ < £ < “TH Finally,
D(I Up) includes at the same time D(L;) and D(Ls), which leads to the

contradiction.

All the remaining cases can be treated as one of those three. O

3.2.2 Geometrical Method

The preimage study characterizes the value of the minimal directional vector
of the intersection of two digital lines. We propose here a geometrical point of
view that leads to an algorithm to find both the minimal directional vector
and the corresponding remainder.

To do so, we use the structure called Stern-Brocot tree that was defined and
studied in section 2.2. Many works deal with the relations between irreducible
rational fractions and digital lines. In [14,12], a characterization of the preim-
age with Farey series is proposed. Indeed, they prove that the preimage of
a digital segment has at most 4 vertices whose z-coordinates are consecutive
terms of a Farey series. In [15], a link between the convex hull of a discrete
segment, and the decomposition of a fraction into continued fractions is de-
scribed. In [5], Debled first introduced the link between this tree and digital
lines. She noticed that recognizing a piece of digital line is like going down
the Stern-Brocot tree until the directional vector of the line is reached. In the
following, we call Stern-Brocot tree root the two fractions % and %.

Theorem 6 Let L be a digital line of slope §, and S(}) be the path going

Jrom the Stern-Brocot tree root to the fraction 3.

Then, for each fraction Z—Z lying on S(%), there exist a subset of b; + 1 pizels

11



of L having a minimal directional vector %f
Moreover, for any other fraction, there does not exist such a subset of L.

This theorem means that the path leading to the fraction § represents all the
patterns of length smaller than b included in L. If b = 0 for a given digital
line, then we consider the fraction g and the same results hold.

The proof of this theorem needs a few lemmas. Lemma 7 was proved by Dorst
and Duin in [16].

Lemma 7 Let Ly and Ly be two digital naive lines of slope % and “j such
that usvy — uive = 1. Let Cy (resp. Co) be the Chain code assoczated to a
period of Ly (resp. Ly) of length vi + 1 (resp. vo + 1). Then, the Chain code
associated to a period of the digital naive line of slope % 1s C1Cy of length
v; + vg + 1.

An illustration of this lemma is given in Figure 6(b).

We recall that the mothers of a fraction § € F, are the two fractions } and
+2 of Fy_1 such that “1+“2 = 2. Hence, we have the following result:

Lemma 8 Let § an irreducible rational fraction and S(3) its related path.
Then, the mothers of § lie on S(§). Moreover, if we denote A() the set of

ancestors of § according to the definition of mothers, we have S(}) = A(%).

This lemma is directly derived from the definition and construction of the
Stern-Brocot tree.

PROOF. [Theorem 6] Let § be an irreducible rational fraction and S(%) its
related path. Let € S(§) be another rational fraction. Two possibilities:

e if 2 is one of § mothers, then we derive the result from lemma 7;
e otherwise, according to lemma 8, ¥ is one of  ancestors, and the result is
obtained by induction.

#’s ancestors represent all the connected subsets of discrete points that appear
in the digital line of slope §. As S(}) = A(%), there is no fraction corresponding
to a connected pattern of the digital line of slope § outside the path S($). O

Hence, each node of the tree matches with a pattern. Since the intersection
of two digital lines is composed of patterns appearing in the two lines, we
just have to look for the closest common ancestor of the two corresponding
fractions to find the minimal parameters of the intersection.

12



Theorem 9 Let Ly and Lo be two digital lines of slopes Z—i and ?—; Then, the
minimal parameters of L1N Ly are given by 3+ and 3% closest common ancestor
in the Stern-Brocot tree.

If the two digital lines studied are such that b = 0 and ay; = 0, then the
corresponding nodes are the root of the Stern-Brocot tree, and the minimal
parameters are any of the two fractions of the root.

Originally, the Stern-Brocot tree defines only the positive irreducible ratio-
nal fractions. In order to study the intersection of any two digital lines, we
generalize this tree adding its negative symmetrical as shown on Figure 6(a).

It is easy to see with the preimage study or the geometrical method that the
directional vector found for two digital lines with no remainder is also solution
for any remainder. Nevertheless, if the cardinality of the intersection is smaller
than the length of the common pattern described by the directional vector
found, there exist smaller parameters. In that case, the minimal directional
vector can be found among the common ancestors of the two fractions in the
Stern-Brocot tree, looking for the one with the smallest denominator greater
than or equal to the intersection cardinality minus 1.

Theorems 5 and 9 are equivalent since looking for the closest common ancestor
of two fractions is the Stern-Brocot tree is like looking for the fraction with
minimal denominator lying between those two fractions. Nevertheless, this
geometrical point of view is useful to design an efficient algorithm to determine
the minimal directional vector (see next section). Moreover, we show that this
method enables to find the minimal remainder associated to this minimal
directional vector.

Let us define the following labelling £ of the Stern-Brocot tree nodes: £() =
by + ap'. This labelling is constructed recursively as follows:

o £(%) = pand £(3) = i
e let ¢ be a node and * and %2 its mothers: then £(}) = L(2) 4+ L(32).

v1 V9 V1 Vo
Each node label thus depends on only two variables. Now let us consider the
intersection of two digital lines L (a, —b, u1) and Lg(c, —d, p2). Mapping the

remainder values with the corresponding nodes labels, we get the following
system:

b+ ap’ =
dp + cp’ = pig

Hence, we can deduce the values of y and 4, and injecting those values in

13



the label of the node corresponding to the intersection parameters, we get
the remainder of the intersection. If this remainder is not an integer, we take
its lower integer part if it is a positive number, and its upper integer part
otherwise. Figure 7 illustrates this with an example.

3.2.8 Minimal parameters search algorithm

We propose in this section an algorithm to find the minimal parameters of the
intersection of any two digital naive lines using the framework presented in the
previous section. Theorem 9 shows that searching the minimal parameters of
the intersection of two digital lines and searching the nearest common ancestor
of two nodes in a binary tree is the same problem.

In the following, we use the binary code defined in section 2.2 to identify the
rational fraction position in the Stern-Brocot tree.

The proposed algorithm is composed of three parts, related two three different
problems:

(1) from a given rational fraction, find the corresponding binary code in the
Stern-Brocot tree;

(2) from a given binary code, find the corresponding rational fraction;

(3) from two binary codes, find the binary code of the nearest common an-
cestor.

The two first questions have already been answered in section 2.2 with Algo-
rithms 1 and 2. The third problem have a simple solution that can be directly
derived from the solution proposed in [17].

Algorithm 3 describes the different steps to compute the nearest common
ancestor (NCA for short) of two rational fractions. After the computation of
the two binary codes using Algorithm 1, we check if one fraction is an ancestor
of the other. In this case, the NCA is the ancestor. Otherwise, we look for the
position % of the first difference between the two codes (the function MSB
means Most Significant Bit which is the position of the first non-zero bit).
Then, we use Algorithm 2 to compute the fraction which has the same code
as Cy (or Cy) until position k. Algorithm 2 returns the two mothers of the
fraction we look for, and thus, a simple median calculus leads to the solution.

Algorithm 4 is the general algorithm to compute the minimal parameters of
the intersection of two digital lines. If the two fractions ¢ and ¢ have different
signs, then we know from Proposition 2 that the intersection of the two lines
is one pixel or empty, and thus, that the minimal slope is % Otherwise, if the
two fractions are positive (resp. negative), then the binary codes are computed

from the fraction 1 (resp. —1).
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Algorithm 3 Compute the nearest common ancestor of two rational fractions
2 and £
b d

NCA(a,b,c,d)

1:

—_
<

10

01/

C; = Compute_Code(a, b);

Cy = Compute_Code(c, d);

if (C; = prefix(Cs)) then {resp. (Cy = prefix(C}))}
return(a, b); {resp. return(c, d)}

else
k = MSB(Cl XOR 02),
res = Compute_Fraction(C1,k,0,I); {res is a 2 x 2 matrix}
return(res[1,0] + res[1,1], res[0,0] + res[0,1]);

end if

I =

Algorithm 4 Compute the minimal parameters of two digital lines of param-
eters (a,b, u) and (c, d, i').

MINIMAL_PARAMETERS(a, b, i1, ¢, d, ii')

9:

10:
11:
12:
13:
14:

1
2
3
4
5:
6
7
8

: if (a = ¢ AND b = d) then

return (a, b, min(u, u'));
: end if
. if (sgn(§) # sgn(5)) then

(uv) = (0,1);
: else
. (u,w) = NCA(a, —b,c,—d);
: end if

) bk + ak’ =

Find k£ and &' such that:
dk + ck' = i

if (vk + uk’ > 0) then

return(u,—v,|vk + uk'|);
else

return(u,—v,[vk + uk']);
end if

Let us look at a run of Algorithm 4 for the two digital lines illustrated in
Figure 3: D;(4,—5,0) and D,(5, —8,2). First, the conditions on lines 1 and 4
are not fulfilled, therefore we have to compute NC A(4, 5,5, 8) using Algorithm
3. We enter the NCA function, and get C; = 0111 and C, = 0101. The
first difference between C; and C, appears in position 2 (denoted by k in
Algorithm 3). Thus, the call (line 8 of Algorithm 3) of the Compute_Fraction

11

function presented in Algorithm 2 returns the matrix . Hence we get

12
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(u,v) = NCA(4,5,5,8) = (2,3): 2 is the slope of the minimal parameters line.

The resolution of the system on line 9 returns £ = % and k' = —%. Finally, we
get that vk 4+ uk' = % and the final result is (2, —3,0) as depicted on Figure
3.

It is quite easy to see that all the operations of those four algorithms can either
be executed in constant time or in linear time in the length of the binary codes.
Let us consider an irreducible rational fraction § = [qo,q1,...,qs]. From the
result of section 2.2 Equation 1, we derive that the length of its binary code is
L(%) = Xo<i<n ¢- So considering two rational fractions  and §, if we denote

M = max(L(§), L(5)), Algorithm 4 has a time complexity in O(M).

3.3 Eaxtent of the intersection

In order to have a complete description of the intersection of two digital lines,
a knowledge of the number of intersection points, some bounds on their coor-
dinates and an enumeration algorithm are required.

As said in the introduction, an enumeration algorithm have been proposed in
[6]. This algorithm uses the fact that the intersection of two digital lines is
equivalent to a quasi-affine application.

From this algorithm, it is obviously possible to derive the number of intersec-
tion pixels. Nevertheless, a straightforward counting of the intersection pixels
is possible using a geometrical approach. Indeed, from the definition of naive
line, we derive that the intersection of two digital lines can be represented as a
parallelogram with rational vertices (intersection of two strips). Counting the
intersection pixels is then equivalent to counting the number of integral points
in a polygon with rational vertices. A method using Ehrhart polynomials and
the related program are proposed in [18].

Finally, it may be also interesting to have bounds on the coordinates of the
intersection pixels. Using the same polygonal representation of the intersection
as before, finding a bound on a coordinate is equivalent to solving an integer
linear program which is generally a NP-hard problem. But since our problem
lies in dimension 2, an heuristical algorithm may be designed for this particular
optimization problem. Nevertheless the enumeration algorithm proposed in [6]
enables to get such an information.
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4 Digital planes intersection

In this part, we extend the properties found on digital lines intersection for dig-
ital planes intersection and present some properties peculiar to planes. A dig-
ital naive plane of parameters (a, b, ¢, i) is the set of integer points {(z,y, 2)}
fulfilling the condition 0 < az + by + cz + p < max(|al, |b], |c|). As for naive
lines, digital naive planes are the thinnest 18-connected digital planes without
6-connected holes. See Figure 8(a) for an illustration of the intersection of two
naive planes.

4.1 Periodicity

Proposition 10 Let Pi(a,b,c, u) and Py(d,e, f,v) be two digital planes. Let
v = (v1,v9,v3)T be the cross product of (a,b,c)t and (d,e, f)T. Let g =
ged(vy, va,v3) and v' = %v. Then Py N P, is periodic of period v'.

PROOF. Let ri(x,y,2) = ax+by+cz+p and ry(z,y, 2) = dr+ey+ fz+v be
the remainder functions of the two planes. Let (z s, yar, 217) be the coordinates
of a voxel M € P, N Py. It is straightforward to prove that M + tv' is not an
integer point if ¢ is not integer. First, let us prove that r (M + v") = r1(M):

ri(M +v") = axp + byn + czy + 1
+§(abf — ace + bdc — abf + ace — bed)
=1 (M)

Similarly, ro(M +v") = ro(M). This proves that M +v' € P;N P, which means
that P, N P, is periodic of period v'. O

Since the proof of this proposition does not depend on the thickness of the
planes, this result holds for the intersection of any digital planes with any
thickness.

4.2 Minimal parameters

In this part, we focus on the minimal parameters of the intersection of two
digital planes. To work in the same parameter space for any parameters, we
use the same trick as the one proposed by Veelaert [13] for lines, presented in
section 3.2.1. Hence, we work in the parameter space (o, 3,7) where a point
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(c, Bo, 7o) stands for the plane gz + Boy + 2z + 70 = 0 in the Cartesian space
for any value of g, £y and p.

Given two digital planes P; and Py, we look for the plane parameters (u, v, w, u)
with minimal w and p containing all the voxels of P, N P, in their OBQ digi-
tization.

In the following, we consider digital naive planes with no remainder. First of
all, Proposition 11 gives a description of the intersection preimage.

Proposition 11 Let Pi(a,b,c,0) and Py(d, e, f,0) be two digital naive planes.
We denote I = P, N Py. Then the preimage of I, denoted D(I), is a polygon

included in the plane perpendicular to v = 0 and containing the points (2,2,0)

crer
and (4,%,0).

PROOF. Since the two planes have no remainder, the point (0, 0, 0) is a lower
leaning point of the two digital planes. As I is periodic of period v (Theorem
10), for every integer t, the point tv belongs to P, N P, and is a lower leaning
point of the two digital planes. In the dual space, the point tv corresponds to
the two constraints 0 < atv; + Stvy + tvg + v < 1. Since tv is a lower leaning
point for the two digital planes, the constraint atv, + Stvy + tvg + v = 0
goes through the two points (2, %,0) and (%, %,0). Hence, for all ¢, D(I) is
constrained by the plane atv, + Stvs + tvz + v = 0, equivalent to avy + Bvs +
vz + %7 = 0 for t # 0. When ¢ increases to +o0o, the normal vector of this
plane tends to the value (v, vq,0) with positive values of ¢ and with negative
values of ¢ when ¢ goes to —oc. Then, for infinite planes, D(I) is reduced to
a polygon included in the plane with normal vector (v, ve,0) which contains

the two points (¢,2,0) and (%, £,0). O

An example of an intersection preimage is given Figure 8(a).
This description enables to characterize the minimal parameters of I:

Theorem 12 Let Pi(a,b,c,0) and Py(d,e, f,0) be two digital naive planes.
We denote A(%, %, 0) and B(%, 1 0) the corresponding points in the parameter
space, and I = P; N P,. Then, the minimal normal vector of I is given by the
point (=, 2. 0) on [AB] with minimal w.

PROOF.

Without loss of generality, we suppose that ¢ < 4 To prove this theorem, we
use the results obtained for digital lines using a digital plane decomposition
into digital lines presented in [19]. Indeed, we can decompose any digital plane
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P(a,b,c, ) into digital 3D lines: for instance, a decomposition along the y axis
gives the set of lines S,;(P) = {(zo, Yo, 20) € Plyo = j},Vj € Z. For two out
of these three possible decompositions, those lines are naive lines, and for the
third one, they are thicker than naive lines.

Since I is a piece of naive plane, we can use this decomposition. Consider
the decomposition of I along the y axis. We denote S,,;(I) the 3D digital
lines of this decomposition. Then we have D(I) = ; D(Sy;(I)). Moreover,
Syi(I) = Sy;(Pr N Py) = S,y;(P1) N Sy;(P2) as Sy;(I) is the set of pixels of
P, N P, whose the y-coordinate is j.

Let us consider the set Syo(1) = Syo(P1) N Syo(F>). Then, we get two cases:

o if Syo(P;) and Syo(P») are naive lines, we denote them Nspi(a,c,0) and
N3pa(d, f,0). Then, Syo(I) = N3p,1 N N3po.

e otherwise, Syo(Py) or Syo(P%) is thicker than a naive line but contains the
naive line of the previous case. Thus we have Syo(I) D N3p1 N N3pa.

If we consider the preimages of those sets, we then get the following property:
D(SyO(I)) - D(N3D,1 N N3D,2)-

N3p,1 N N3po is a piece of 3D naive line and its preimage is a prism such that
the basis in the plane 5 = 0 is the preimage of the intersection of the two 2D
naive lines Nop 1(a, ¢, 0) and Nopo(d, f,0) and such that the directional vector
is (1,0,0)7.

Let p(2, Z,0) be a point of D(I) as illustrated on Figure 8. Then p € D(Sy([))
and thus p € D(N3p1 N N3p2). The projection of p along the prism previ-
ously described onto the plane 3 = 0 is the point proj(p)(:,0,0). proj(p) €
D(Nsp1 N Nypo) and according to the results about the preimage of the in-

tersection of two digital 2D naive lines, if w < c and w < f, then ¢ < 2 < %.

If 2 = %, then % # £ and the same argument can be applied using a decompo-
sition along the x axis. Otherwise, finally, we derive that, if w < cand w < f,
thus p belongs to [AB] from the structure of D(I) presented in Proposition

11. This shows that the minimal parameters are to be found on [AB]. O

5 Conclusion

In this paper, we present new results about the intersection of two digital lines
or two digital planes. We introduce criteria to analyze its connectivity and we
propose a characterization of the minimal parameters of a given intersection
in function of the parameters of the two lines/planes.
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Although the properties are enounced and proved for digital naive lines and
planes, those results are also true or can be easily transcribed for standard lines
(thinnest 4-connected lines without 8-connected holes) or planes (thinnest 6-
connected planes without 18-connected holes). For instance, the connectivity
results for lines intersections can be adapted transforming any diagonal moving
into an horizontal and a vertical one. Moreover, all the results about minimal
parameters are based on the intersection preimage features, which depend on
the lines or planes preimage shape. But the preimage of a standard line or
plane is a translated copy of the preimage of the naive line or plane having
the same parameters. So the extension to standard objects is easy.

The transcription of the minimal parameters search algorithm can be easily
done for more than two lines. Indeed, the same arguments hold to prove that
the minimal slope is the nearest common ancestor of the n rational fractions
corresponding to n digital lines.

Those properties will be used for instance in the polygonalization process for
digital curves and digital surfaces to define edges and vertices. A complemen-
tary study to design an efficient algorithm for the computation of the minimal
parameters of digital planes intersection is an interesting perspective for this
application.
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