
HAL Id: hal-00185063
https://hal.science/hal-00185063v1

Submitted on 6 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discrete analytical curve reconstruction without patches
Isabelle Sivignon, Rodolphe Breton, Florent Dupont, Eric Andres

To cite this version:
Isabelle Sivignon, Rodolphe Breton, Florent Dupont, Eric Andres. Discrete analytical curve
reconstruction without patches. Image and Vision Computing, 2005, 23 (02), pp.191-202.
�10.1016/j.imavis.2004.06.014�. �hal-00185063�

https://hal.science/hal-00185063v1
https://hal.archives-ouvertes.fr

Discrete Analytical Curve Reconstruction

without patches

Isabelle Sivignon a,∗,
Rodolphe Breton b,Florent Dupont c,Eric Andrès b,

aLaboratoire LIS - Grenoble

UMR 5083 CNRS

961, rue de la Houille Blanche

38402 St Martin D’Hères, France

bLaboratoire SIC, Université de Poitiers

FRE 2731 CNRS

BP 30179

86962 Futuroscope Chasseneuil Cedex, France

cLaboratoire LIRIS - Université Claude Bernard Lyon 1

FRE 2672 CNRS

Bâtiment Nautibus - 8 boulevard Niels Bohr

69622 Villeurbanne Cedex, France

Abstract

Invertible Euclidean reconstruction methods without patches for 2D and 3D discrete
curves are proposed. From a discrete 4-connected curve in 2D, or 6-connected curve
in 3D, the proposed algorithms compute a polygonal line which digitization with
the standard model is equal to all the pixels or voxels of the curve. The framework
of this method is the discrete analytical geometry and parameter spaces are used
in order to simplify the algorithms. Moreover, the reconstructed polyline is more
compact than classical methods such as the Marching Cubes.

Key words: discrete object, invertible Euclidean reconstruction.

∗ Corresponding Author. E-mail: sivignon@lis.inpg.fr - Tel: +33 476826467 - Fax:
+33 476826384

Preprint submitted to Image Vision and Computing 2 September 2004

1 Introduction

The reconstruction of discrete objects is mainly performed in practice with
the “Marching Cubes” method [1] (and all its follow ups). For a couple of
years another approach, based on discrete analytical geometry, is investigated
in the discrete geometry community. The aim is to decompose the boundary
of a discrete object into discrete analytical polygons and then these polygons
into Euclidean polygons. The method has to be invertible, i.e. the discretiza-
tion of the reconstructed boundary has to be equal to the original discrete
object. We do not want any information to be added nor lost. The aim of
this new approach is to provide a more compact reconstruction. Several other
attempts have already been made in this direction that are not satisfying and
usually not invertible (see [2] for details). Indeed, most the algorithms consist
in decomposing a discrete curve (surface) into discrete segments (planes) [3]
[4] without looking for an exact Euclidean equivalent of the discrete object.

Our method is based on Vittone’s recognition algorithm [5] for the decompo-
sition of the discrete boundary into discrete line pieces in 2D. The analytical
framework is provided by the standard discrete analytical model that defines
2D and 3D discrete polygons [6].

In [7], we proposed a working algorithm for the 2D case and some hints on
how to tackle the 3D surface reconstruction problem. The method we proposed
for 2D curves worked basically as follows: a discrete 4-connected boundary is
decomposed with Vittone’s algorithm [5] into discrete line segments in 2D.
For each discrete segment a corresponding Euclidean line segment was chosen
in the set of all possible solutions (set provided by Vittone’s algorithm). The
problem we faced then was that these different Euclidean lines could intersect
outside the discrete line segments losing the reversibility property. To avoid
that, patches (small line segments) where added that force the different Eu-
clidean lines to intersect inside the vertex pixels of the discrete line segments
preserving the reversibility property. Nevertheless, extension to dimension 3
is not straightforward. Indeed, the equivalent of patches in 3D is small poly-
gons which are a lot more difficult to define than segments. Although some
3D solutions where proposed in [7], they are not very easy to set up.

For that reason we propose in this paper another way of reconstructing a
discrete 4-connected curve without patches. The method works basically as
follows: we still use Vittone’s algorithm. Instead, this time, of performing a
recognition of discrete line segments and then replacing them with Euclidean
line segments, both are performed at the same time. Indeed, the main idea is
to force the first extremity of the segments of the reconstructed polyline to lie
inside the discrete curve. Hence, the discrete segment recognition algorithm is
constrained by this fixed point. Finally, post-treatments are no more needed

2

to ensure the reversibility of the solution.

A second part of this work shows how to extend this algorithm to the polyg-
onalization of 6-connected 3D discrete lines. We first propose an algorithm to
recognize 3D standard line segments and show how the polygonalization pro-
cess induces many simplifications of this algorithm. Basically, the recognition
algorithm relies on three simultaneous 2D recognitions on the projections of
the 3D curve. We show that an extra condition has to be settled in order to
ensure the correctness of the algorithm. As to the polygonalization process for
3D curves, it works mainly as for the 2D curves.

This paper is organized as follows: Section 2 presents some recalls on the
tools of discrete geometry we need. In Section 3, the new polygonalization
algorithm for 2D standard curves is presented and results are given. Section 4
deals with the 3D curve polygonalization problem: we present a new algorithm
to polygonalize in an invertible way any 3D 6-connected curve. Some results
are proposed.

2 Recalls on discrete geometry

In this section, we present some basic notions of discrete geometry that are
used in this work. We first introduce the standard digitization model and then
present the notion of duality we use to recognize discrete segments.

2.1 The standard model

The standard digitization of a Euclidean object consists in all the pixels (resp.
voxels) that are cut by the object. The standard lines (resp. planes) can be
defined arithmetically [8].

Definition 1 A discrete standard line (resp. plane) of parameters (a, b, µ)
(resp. (a, b, c, µ)) is the set of integer points (x, y) (resp. (x, y, z)) verifying:

−ω ≤ ax + by(resp. + cy) + µ < ω

where ω = |a|+|b| (resp.+|c|)
2

. A standard line (resp. plane) is a 4-connected line
(resp. 6-connected plane).

Remark that the standard digitization requires a so-called orientation conven-
tion since the inequalities are not strictly symmetric. This is done by ensuring
that a > 0 or if a = 0 that b > 0 or, in the case of planes, if a = b = 0 that
c > 0. An illustration of this definition is given in Figure 1.

3

y

x

(a) (b)

Fig. 1. (a) A standard line of parameters (2,−5, 0); (b) A standard plane of param-
eters (2, 3, 5, 0).

A 3D standard line is a 6-connected discrete line which projections are 2D
standard lines. The exact analytical definition together with an example are
given in Section 4.

If we denote St(O) the standard digitization of the object O, the following
useful properties can be derived from the geometrical definition of this model:
St(O1 ∩ O2) ⊆ St(O1) ∩ St(O2) and St(O1 ∪ O2) = St(O1) ∪ St(O2).

2.2 Parameter space

In image processing and especially pattern recognition, the dual transforma-
tion called Hough Transform [9] is classically used (see [10] for an overview on
this method). This transformation is indeed very efficient to recognize para-
metric shapes in a given image. The general principle of this transformation
is to work in a parameter space where each point represents a shape of given
parameters. Thus, each selected point in an image is represented by all the
shapes that go through it in the parameter space.

In this work, we use a parameter space (0αβ) where a point (α0, β0) stands for
the Euclidean line of equation α0x − y + β0 = 0. Then, each point (x0, y0) in
the Cartesian space maps to the line αx0− y0 +β = 0 in the parameter space.
Figure 2 illustrates the properties [11] which link the Cartesian space with
this parameter space. More recently, many geometrical properties on Hough
transforms have been studied (see for instance [12] and [13]).

This parameter space P is also very useful in the framework of discrete geome-
try. Indeed, consider a straight line y = α0x+β0 (0 ≤ α0 ≤ 1), the digitization

4

y

x

y

x

β

α

y

x

(x, y)

β

α

αx− y + β = 0

ax− by + r = 0
(a

b
, r

b
)

Parameter space P

1

2

3

4

1
2

3

4
α

β

Cartesian space C

Fig. 2. Illustration of the links between the Cartesian space and the parameter
space.

of this line along the Object Boundary Quantization (see [14]) on an n × n

grid is the set of grid point L = {(x, y) ∈ n× n | ⌊α0x + β0 − y⌋ = 0}. Then
we can define the domain of a set of discrete points.

Definition 2 Let S be a set of discrete points. The domain of S denoted
Dom(S) is the set of parameters (α, β) verifying:

Dom(S) = {(α, β) | ∀(x, y) ∈ S, 0 ≤ αx− y + β < 1}

Then, the domain of a set of pixels is either empty (if the pixels are not
collinear) or a convex set since it is defined as the intersection of linear in-
equalities in the parameter space. Many works have been achieved in order
to characterize this domain [15–17], and an important result is that if S is
a connected discrete segment, then the domain is a (3 or 4)-vertex convex
polygon that can only have one of the five shapes illustrated in Figure 3.

5

β β β β β

α α α α α

Fig. 3. The 5 possible shapes of the solution set.

3 Reconstruction of a 2D discrete simple curve

3.1 Principle

The reconstruction algorithm works on 4-connected curves P = (P1, . . . , Pn).
The algorithm starts with a Euclidean point p inside the starting point pixel P1

of the discrete curve. A recognition direction is chosen once and for all. There
is a need to choose a recognition direction especially in case of a closed curve
since you can choose two directions from a given starting point. A recognition
process determines if a set of pixels is a discrete line segment and if there
exists a Euclidean line d that passes through p and through all the pixels of
the discrete segment. As long as that holds, a new point Pk of the curve, in
the recognition direction, is added. Once it does not, a new Euclidean point
on the Euclidean line d and inside the last but one pixel is chosen, and the
recognition process is started over along the curve until we reach Pn.

3.2 Starting point and Recognition direction

The method presented in this paper depends on the starting point and on the
recognition direction. For each different choice of starting point and recog-
nition direction we get a different reconstruction. We propose a convention
which defines a starting point and a recognition direction for any curve. Thus,
applying this convention, the reconstruction process always provides the same
solution for a given discrete curve. Open and closed simple curves lead to
different conventions:

• an open simple curve: the starting point is the curve end-point with lowest
abscissa and lowest ordinate in the case of two end-points having the same
abscissa. Moreover, the starting point chosen actually induces the recogni-
tion direction.
• a closed simple curve: the starting point is the curve point with lowest

abscissa and lowest ordinate in the case of multiple points having the same
abscissa. The clockwise direction is chosen as recognition direction.

6

This strategy can of course be improved. Different alternative solutions are
under investigation. One improvement could be provided by choosing discrete
cusps as starting points as in [7]. Other cases such as closed non simple curves
or open curves with vertices of degree 3 or 4 (a discrete point has at most 4
4-connected neighbours) can be treated pretty much in the same way, as what
is presented in section 3.3.2 except that there are more constraints. This is
however still under investigation because for multiple neighbouring regions,
topological information is helpful.

3.3 Recognition process

The recognition process is based on the recognition algorithm proposed by
Vittone [18]. This algorithm tells if a set of 8-connected pixels is a discrete
line segment and provides the domain of this set of pixels in the parameter
space (see Section 2 and [19] for more details).

The recognition algorithm proposed by Vittone updates the domain in the
parameter space as new points of the discrete curve are added. When the
parameter space polygon is empty, the given set of pixels in not a discrete
straight line segment anymore.

Different modifications to Vittone’s algorithm needed however to be done to
adapt it to our problem. Firstly, Vittone’s algorithm works with 8-connected
curves whereas we consider 4-connected curves. A simple shear transform maps
the pixels of a 4-connected curve to the pixels of a 8-connected curve: for
instance, a pixel (x, y) of a curve lying in the first octant maps to the pixel
(x+y, y). Secondly, Vittone’s algorithm provides parameter values that do not
correspond to what’s usual for a discretization. Let’s consider the first octant.
Vittone’s algorithm recognizes a discrete straight line 0 ≤ ax − by + µ < b

(with b ≥ a ≥ 0) as a line with parameters (a
b
, µ

b
). If we have a Euclidean

line ax − by + µ = 0 (with b ≥ a ≥ 0) the 8-connected discretization of this
line provides the following discrete analytical line: − b

2
≤ ax − by + µ < b

2
.

It is a centered solution. Vittone’s algorithm would therefore recognize the
discretization of the straight line ax−by+µ = 0 as a straight line of parameter
(a

b
, µ

b
+ 1

2
) and not (a

b
, µ

b
) as expected. A translation of the solutions is needed

to correct this. Table 1 presents these corrections. These transformations lead
to translations of the domain’s vertices, and in the following, the so-called
“domain” stands for this translated polygon.

3.3.1 Polygonalization algorithm

The polygonalization algorithm is described in Algorithm 1. We detail each
step of this algorithm referring to its line numbers.

7

8-connected shear trans. 4-connected

Vittone’s settings 0 ≤ ax− by + µ < b
b=b−a
−→ 0 ≤ ax− (b− a)y + µ < b

↓ µ = µ− b
2 ↓ µ = µ− b

2

After translation 0 ≤ ax−by + µ− b
2 < b

b=b−a
−→ 0 ≤ ax−(b−a)y + µ− b

2 < b

Table 1
Résumé of the different translations from a 8-connected curve to a 4-connected one.

The aim is to reconstruct a Euclidean polyline (p1, . . . , pj) from a 4-connected
simple curve given by the ordered set of pixels P = (P1, P2, . . . , Pn). The first
point P1 is the starting point of the discrete curve. A Euclidean point p1 is
chosen inside the pixel P1 (line 2). Usually the center of the pixel is chosen
unless other constraints exist.

Let us suppose that we have already reconstructed the discrete points (P1, . . . , Pi)
into the Euclidean polyline (p1, . . . , pk). Then the discrete points (Pi, . . . , Pn)
remain (line 4). The Euclidean point pk is inside the pixel Pi.

A few transformations are needed before the recognition step. Vittone’s al-
gorithm works on lines lying in the first octant (for lines ax − by + µ = 0
where b ≥ a ≥ 0). But the serie of 4-connected discrete points can have an
arbitrary direction. The general direction (octant) of the discrete point serie is
determined using the Chain code of the set of pixels. Indeed, it is well known
that the Chain code of a discrete segment is composed of at most two different
directions [20]. From those two directions we derive the octant in which the
line lies (line 5). A symmetry is then applied in order to transpose the set of
pixels into the first octant. Next the shear transform defined in Section 3.3 is
applied and transforms the 4-connected set of pixels (Pi, Pi+1, . . . , Pn) into the

8-connected one
(

P ′
i , P

′
i+1, . . . , Pn

)

. The same transformation is also applied

to the Euclidean point pk which results in p′k (line 6). The Euclidean point
p′k = (uk, vk) corresponds to the Euclidean line dk : ukx+y−vk = 0 in P (line
7). Each point of dk corresponds to a Euclidean line in C that goes through
p′k.

We can now use Vittone’s algorithm. The points P ′
i+j, j > 0 are added one by

one in the discrete segment sk until the domain of sk does not intersect the
Euclidean line dk anymore (lines 8 to 12). When that happens, if we denote
P ′

i+m the last solution pixel, we know that the discrete points (P ′
i , . . . , P

′
i+m)

are recognized as a discrete straight line segment. The intersection between the
polygon and the straight line dk in P (denoted I in Algorithm 1) corresponds
to all the Euclidean lines in C going through p′k and containing (P ′

i , . . . , P
′
i+m)

in their digitization (see Fig. 4(a) and (b)).

We choose the middle point π′
k of I as the Euclidean reconstruction of the

discrete points (P ′
i , . . . , P

′
i+m) (line 17). The point π′

k in P corresponds to a

8

(a) (b) (c)

dk dk

π′
k

p′k

P ′
i

P ′
i+m

Fig. 4. (a) A set of pixels that has been recognized as a discrete line segment. (b) The
domain of the pixels and the Euclidean line corresponding to p′k in the parameter
space. (c) The solution π′

k in the parameter space is a Euclidean line (in (a)) going
through p′k.

Euclidean line that contains p′k in C (Fig. 4). The transformations described
in Table 1 are applied back so that we get a Euclidean straight line D that
passes through pk and all the pixels Pi, . . . , Pi+m (line 18). The straight line
D intersects the pixel Pi+m as an interval. The center of this interval is the
point pk+1 in the reconstruction process (line 19). The recognition steps start
then all over with the discrete points (Pi+m, Pi+m+1, . . . , Pn) and the Euclidean
point pk+1 (line 20).

3.3.2 End of the polygonalization process

For a simple curve the recognition process ends simply when we have reached
the last discrete point Pn of the curve. A Euclidean vertex is set inside the last
pixel as last point of the reconstructed polyline. The matter becomes however
a little more difficult when we deal with a closed curve. For a closed curve we
have P1 = Pn. It is of course reasonable to expect a close Euclidean polyline
as result of a closed discrete curve. This means that the last discrete straight
line segment that is reconstructed has to have pk+1 = p1. This corresponds
to an additional condition that has to be setup is Vittone’s algorithm. When
we reach the last discrete points of the curve (when Pn = P1 is one of the
possible points that will be recognized at this step), we have to ensure that
both the Euclidean line dk (corresponding to p′k) and the Euclidean line d1

(corresponding to p′1) intersect the polygon in the parameter space (see Figure
5). The recognition algorithm progresses as long as the intersection point of
both lines belongs to the parameter polygon. If this goes as far as point Pn =
P1 then the reconstruction process is finished. If this condition is not verified
it means that the Euclidean line pkp1 does not contain the discrete points
(Pi+m−1, . . . , Pn) and we start over with pk+1.

Figure 6 presents a result obtained with this algorithm.

9

Algorithm 1 Polygonalization of a 2D 4-connected curve

Polygonalization 2Dcurve(ordered set of pixels P)
1: i← 1, k ← 1
2: Choose a real point p1 inside P1.
3: while (i ≤ n) do
4: sk ← {Pi}
5: Find the current octant with Chain codes.
6: {Pi, . . . Pn} become {P ′

i , . . . P
′
n} and pk becomes p′k with the shear trans-

form.
7: I = Dom(sk) ∩ dk

8: while (I 6= ∅ and i ≤ n) do
9: i ← i+1

10: sk ← sk ∪ {P
′
i}

11: Compute the reduction of I according to the constraints of P ′
i .

12: end while
13: if (I = ∅) then
14: sk ← sk − {P

′
i} and retrieve I before the addition of P ′

i .
15: i← i− 1
16: end if
17: Choose a solution π′

k in I.
18: Apply the inverse shear transform: π′

k becomes πk.
19: Choose a real point pk+1 such that pk+1 belongs to the line of parameters

πk and pk+1 ∈ Pi.
20: k ← k + 1
21: end while

(a) (b) (c)

d1

d1

dk dk

p′1

p′k

Fig. 5. Same comments as in Figure 4 except that we look for a Euclidean line
joining both points p′k and p′1. In (b) and (c) we can see how this translates in the
parameter space.

4 3D Discrete curve polygonalization

In the previous section, we have presented a new algorithm to polygonalize
any 2D discrete 4-connected curve without post-processing treatments in an

10

Fig. 6. Result of the polygonalization algorithm: on the left, a discrete curve and a
zoom on the woman hand; on the right, the polygonal curve computed by Algorithm
1 and the same hand detail.

invertible way. In this section, we extend this method to 6-connected 3D curves
in a three-dimensional cubic grid.

4.1 Principle

The principle of the algorithm is exactly the same as in the 2D case. The
reconstruction algorithm works on 3D 6-connected curves V = (V1, . . . , Vn).
The algorithm starts with a Euclidean point p inside the starting voxel V1

of the discrete curve. A recognition direction is chosen, and a 3D digital line
recognition process is applied: it determines if a set of voxels is a discrete 3D
line segment and if there exists a Euclidean line d that passes through p and
through all the voxels of this segment. The voxels are added one by one along
the recognition direction as long as this holds. Once this condition fails, a new
Euclidean point is chosen inside the last but one voxel and the recognition
process starts over along the curve until the voxel Vn.

11

4.2 Parameter Spaces and Domains

The parameter space used in the 2D case has been presented in Section 2, and
we present here the parameter spaces (extensions of the 2D parameter space)
used in this part.

We denote by C the usual Cartesian space and by (x, y, z) a point in this
space. In 3D, we can define three parameter spaces Px, Py and Pz and the
three polymorphic operators Cx, Cy and Cz which link the parameter spaces
with the Cartesian space. Their definitions are given in Table 2. The operators
C from P to C link one basic geometrical object of P with its representation
in C: a point maps to a plane, a plane maps to a point and finally a line maps
to a line.

Cx : Px → C

(α, β, γ) 7→ x + αy + βz + γ = 0

x + αy + βz + γ = 0 7→ (x, y, z)

Cy : Py → C

(α, β, γ) 7→ αx + y + βz + γ = 0

αx + y + βz + γ = 0 7→ (x, y, z)

Cz : Pz → C

(α, β, γ) 7→ αx + βy + z + γ = 0

αx + βy + γ + z = 0 7→ (x, y, z)

Table 2
Definitions of the three three-dimensional parameter spaces.

Let us also consider the intersection between those spaces and the planes
α = 0 and β = 0. Those intersections define six two-dimensional parameter
spaces (Table 3) included in the three three-dimensional parameter spaces.
For instance, the two-dimensional parameter space Pxz is equal to Px ∩ (α =
0). Those spaces can be considered either as restrictions of a 3D parameter
space or as two-dimensional parameter spaces. Thus, one point of Pxz can
be considered either as a plane perpendicular to the plane y = 0 in C or as
a line in the 2D Cartesian space (0xz). An example which illustrates those
definitions is depicted in Figure 7.

The preimage or domain of a set of voxels is defined according to those spaces
and the standard digitization scheme St presented in Section 2.

12

x

z

β

γ

α

Px

Pxz

Pxy p0 = (0, β0, γ0)

x

y

z

Cxz(p0)

C

Cx(p0)

Fig. 7. Illustration of the parameter spaces and operators definitions : the image of
the point p0 ∈ Px (left) by the operator Cx is the plane x + β0z + γ0 = 0. This
equation is either the equation of a plane in the 3D space (0xyz) (upper right) or
the equation of a line is the 2D space (0xz) (lower right).

Cxz : Pxz → C

(β, γ) 7→ x + βz + γ = 0

Cxy : Pxy → C

(α, γ) 7→ x + αy + γ = 0

Cyz : Pyz → C

(β, γ) 7→ y + βz + γ = 0

Cyx : Pyx → C

(α, γ) 7→ αx + y + γ = 0

Czy : Pzy → C

(β, γ) 7→ βy + z + γ = 0

Czx : Pzx → C

(α, γ) 7→ αx + z + γ = 0

Table 3
Definitions of the six two-dimensional parameter spaces in 3D.

Definition 3 (domain) Consider a set of voxels V . The preimage or domain
of V along the x coordinate, denoted Domx(V) is:

Domx(V) = {(α, β, γ) ∈ Px | V ⊂ St(Cx(α, β, γ))}

where St denotes the standard digitization scheme. Domy(V) and Domz(V)
can be defined in the same way according to Py and Pz.

The domain of a given set V is the set of Cartesian planes containing V in
their standard digitization. This set of planes can be represented in the three
three-dimensional parameter spaces up to a projection operation (see [19]) and

13

in the following, we use the notation Dom(V) when no particular parameter
space needs to be precised or when we deal with the domains of 2D standard
lines (see Section 2).

4.3 3D Standard line segment recognition

Let us first recall the definition of a standard 3D line [6,8].

Definition 4 (3D standard line) Consider a 3D straight line of directional
vector (a, b, c), and going through the point (x0, y0, z0). Then the standard dig-
itization of this line is the set of integer points fulfilling the conditions given
by the following double inequalities:

− |a|+|b|
2
≤ bx− ay + ay0 − bx0 <

|a|+|b|
2

− |a|+|c|
2
≤ cx− az + az0 − cx0 <

|a|+|c|
2

− |b|+|c|
2
≤ cy − bz + bz0 − cy0 < |b|+|c|

2

where the double inequalities are oriented along the standard convention (see
Section 2 and [6,8]).

In order to design a 3D standard line recognition algorithm, we rewrite this
definition using the operators of projection in the Cartesian and discrete spaces
and the notion of compatible parameters.

Consider a set of voxels V in Z
3 and an Euclidean object F ⊂ R

3. We define
three projection operators denoted by π for the discrete space and three others
denoted by p for the Euclidean space as:

πx(V) = {(y, z) ∈ Z
2 | ∃(x, y, z) ∈ V }

πy(V) = {(x, z) ∈ Z
2 | ∃(x, y, z) ∈ V }

πz(V) = {(x, y) ∈ Z
2 | ∃(x, y, z) ∈ V }

px(V) = {(y, z) ∈ R
2 | ∃(x, y, z) ∈ F}

py(V) = {(x, z) ∈ R
2 | ∃(x, y, z) ∈ F}

pz(V) = {(x, y) ∈ R
2 | ∃(x, y, z) ∈ F}

An illustration of a 3D standard line, a 3D straight line and their projections
is given in figure 8.

Definition 5 (compatible) Consider the three projections πx(S), πy(S) and
πz(S) of a 3D discrete segment S. Those projections have compatible param-
eters if and only if there exists a 3D straight line L such that for the three
coordinates c ∈ {x, y, z}, the standard digitization of pc(L) contains the pixels

14

z

y

x

L

py(L)

pz(L)

px(L)πy(S)

πx(S)

πz(S)

S

Fig. 8. Illustration of a discrete and a straight line and their projections.

of πc(S). In other words, the parameters of pc(L) have to belong to the 2D
domain (see Section 2) of the set of pixels πc(S).

Hence, a 6-connected 3D discrete curve S is a standard 3D line segment if and
only if:

(1) the three projections πx(S), πy(S) and πz(S) are 2D standard line seg-
ments

(2) the parameters of those 2D standard line segments are compatible.

As a consequence, the recognition of a 3D standard line is done in two steps:
first check that the projections of this line are 2D standard lines, and next,
ensure that there exists a solution 3D straight line.

We use the 2D standard line recognition algorithm presented in the previous
section to compute the domains related to the three projections of S. Each
point of the 3D curve may induce a modification of two out of the three
projections.

Each domain of the projections is a convex polygon (see Section 2) that can be
represented in two out of the six two-dimensional parameter spaces presented
in part 4.2. For instance, the domain of the projection πz(S) can be represented
in Pxy and in Pyx. Hence, two out of the three projections’ domains can be
represented in each three-dimensional parameter space. Figure 9 illustrates the
embedding of the projections’ domains in the parameter spaces for a given set
of voxels S.

In order to ensure the compatibility property in the parameter spaces (i.e.
during the recognition process), a characterization of the preimage of a 3D
Euclidean line is required.

15

β

γ

α

Px

Pxz

Pxy

Dom(πy(S))

Dom(πz(S))

β

γ

α

Py

Pyz

Pyx

Dom(πz(S))

Dom(πx(S))

β

γ

α

Pz

Pzy

Pzx

Dom(πy(S))

Dom(πx(S))

Fig. 9. Representation of the projections’ domains of S in the three parameter spaces
Px, Py and Pz.

Proposition 6 Let LC be a straight line in the Cartesian space of direction
(a, b, c), with b 6= 0 and c 6= 0, and let LP be the image of LC in the parameter
space Px (LP = C−1(LC)). Then the point LP ∩ (α = 0) maps to the line
py(LC), and the point LP ∩ (β = 0) maps to the line pz(LC).

PROOF. Let be LC the 3D straight line defined by LC = {(x, y, z) ∈ R
3 | ∃t ∈

R, (x, y, z) = (x0, y0, z0)+t(a, b, c)}, with b 6= 0 and c 6= 0. Then the projection
of LC onto the plane (0xy) is the line pz(LC) : bx−ay+ay0−bx0 = 0. Similarly,
its projection onto the plane (0xz) is the line py(LC) : cx−az+az0−cx0 = 0. In
the parameter space Px, those lines map to the two points mz = (−a

b
, 0, a

b
y0−

x0) and my = (0,−a
c
, a

c
z0 − x0) respectively. The two equations of pz(LC) and

py(LC) are also the equation of two planes in which the 3D line LC lies. Since
the domain of the 3D straight line LC is the 3D straight line LP representing
all the planes containing LC, the two points my and mz lie on LP . Finally, we

16

have my = LP ∩ (α = 0) and mz = LP ∩ (β = 0), which ends the proof. 2

py(LC)

C

LC

y

z

x
pz(LC)

(a)

β

γ

α

Px

Pxy

Pxz

mz

my

LP

(b)

πy(S)

py(LC)
LC

S

y

z

x
πz(S)

pz(LC)

C

(c)

Dom(πy(S))

Dom(πz(S))

β

γ

α

Px

Pxy

Pxz

my

LP

mz

(d)

Fig. 10. Illustration of Propositions 6 and 7: (a) a straight line LC in the Carte-
sian space and its projections; (b) representation of LC and its projections in the
parameter space; (c) same as (a) plus a discrete segment S, part of LC standard
digitization, and its projections; (d) the points my and mz which represent the
projections of LC belong to Dom(πy(S)) and Dom(πz(S)) respectively.

This Proposition is illustrated in Figure 10 (a) and (b). We can now give the
following result :

Proposition 7 Let S be a 3D discrete segment. Then any line in the pa-
rameter space Px that crosses both Dom(πz(S)) and Dom(πy(S)) represents a

17

3D line L in the Cartesian space such that pz(L) belongs to Dom(πz(S)) and
py(L) belongs to Dom(πy(S)).

The proof of this proposition is straightforward using Proposition 6. Figure
10 (c) and (d) illustrates this result.

Then, according to Proposition 7, any 3D line which crosses the domains
of the projections of S in the parameter space maps to a 3D line LC such
that two out of its three projections are solutions for the projections of S.
But to ensure the compatibility of the domains, px(LC) must also belong to
Dom(πx(S)). It is not straightforward to check this condition algorithmically
in the parameter spaces we have presented by now. Indeed, such a verification
implies to check every couple of points in Dom(πz(S)) and Dom(πy(S)) - this
defines a line in the Cartesian space -, then to compute the parameters of
the third projection of this line and finally to check whether those parameters
belong to Dom(πx(S)) or not. If the answer is “yes” for one couple, then the
domains are compatible. Otherwise, S is not a 3D standard line segment. This
checking has to be exhaustive to give the exact result.

In the next part, we see how the compatibility checking can actually be sim-
plified in a 3D curve segmentation process.

4.4 Polygonalization of a 3D curve

The segmentation process aims at decomposing the 3D discrete curve into 3D
discrete segments sk with corresponding straight line segments rk of extremal
points r1

k and r2
k. As for the 2D case, the main idea is to fix the first extremity

of each real segment rk to a given real point vk. In the parameter spaces, a
point v is represented by a plane as illustrated in Figure 11. Seeing that, for a
given segment sk, all the solution 3D lines have to contain vk, this condition
is transposed in the parameter space saying that we only consider the lines
included in C−1

x (vk). Consequently, the domains are no more polygons but
simply segments (see Figure 11).

Consider the two domains Dom(πz(S)) and Dom(πy(S)). As said previously,
any couple of points in those domains defines a Cartesian line LC. To ensure
the compatibility, we have to check that there exist two points m1 and m2

in the parameter space, the first one in Dom(πz(S)) and the second one in
Dom(πy(S)) such that the third projection of the line LC defined by m1 and
m2 lies in Dom(πx(S)). The computation of the third projection’s parameters
from the two points m1 and m2 is given by the following property :

Proposition 8 Let LC be a Cartesian line, and let m1 = (α1, β1) (resp. m2 =
(α2, β2)) be the point in Pxy (resp. Pxz) associated to pz(LC) (resp. py(LC)).

18

Dom(πy(L))

β

γ

α

Dom(πz(L))

C−1

x (v)

Px

Pxz

Pxy

β

γ

α

Dom(πz(L))

Dom(πy(L))

C−1

x (v)

Px

Pxz

Pxy

Fig. 11. Representation of what happens in the parameter space when a point v is
fixed: on the right, the domains we consider are now straight line segments.

Then, the projection px(LC) maps to the point (−α2

α1

, β1−β2

α1

) in the parameter
space Pyz.

PROOF. The line LC is defined by the two points m1 and m2, which cor-

respond to the system of equations

x + α1y + β1 = 0

x + α2z + β2 = 0
. Then we get α1y −

α2z + β1 − β2 = 0. If α1 6= 0, we can divide by α1, and this equation becomes
y− α2

α1

z + β1−β2

α1

= 0, which corresponds to the point (−α2

α1

, β1−β2

α1

) in Pyz. Oth-
erwise, if α1 = 0 and α2 6= 0, we can divide by α2 and get the same result in
the parameter space Pzy. Finally, the case α1 = 0 and α2 = 0 is a degenerate
case which can be handled algorithmically using infinite domains. 2

Since all the domains are embedded in a plane, all the parameters of the third
projection computed from any m1 and m2 in Pxy and Pxz lie on the same line
in Pyz. Moreover, this plane is not perpendicular to the (0αβ) plane. Then,
all the domains, which are segments, can be defined by the α-coordinates of
their extremities. For instance, Dom(πz(S)) which is equal to the segment
[Az, Bz] in Pxy is defined by the interval Iz = [αzA, αzB] where αzA is the
α-coordinate of point Az and αzB is the α-coordinate of point Bz. In the same
way, if Dom(πy(S)) = [Ay, By], we denote it by the interval Iy = [αyA, αyB] in
Pxz. Then we have the following property:

Proposition 9 Consider a discrete segment S and the domains of its pro-
jections in Pxy, Pxz and Pyz denoted Iz, Iy and Ix. Let f be the function
defined as: f(α, α′) = −α′

α
. Then the domains are compatible if and only if

Ix ∩ [min(f(α1, α2)),max(f(α1, α2))] 6= ∅ where α1 = αzA or α1 = αzB and

19

α2 = αyA or α2 = αyB.

The proof of this proposition is straightforward seeing that the function f ,
which is part of the function defined in Proposition 8, is continuous and mono-
tonic over positive or negative intervals. If Iz or Iy contains both positive and
negative values, then it is simply split into one negative and one positive in-
tervals.

Algorithm 2 describes the global polygonalization algorithm for a 3D curve
taking into account all the elements presented so far. This algorithm requires
an ordered set of voxels denoted V = {V1, . . . Vn} as input parameter. This
curve may be open or closed. The output of this algorithm is a set of ordered
discrete segments sk together with a corresponding real segment rk which
standard digitization is sk.

Let us give some precisions and explanations on this algorithm.

In the first line, two variables are set: i is used to track all the voxels of the
curve and k counts the number of segments found by the algorithm. On line
2, the first extremity of the first real segment is chosen: this real point v1 has
to belong to the voxel V1.

The “while” loop that begins in line 3 and ends in line 29 is the global tracking
of the voxels of the curve. Inside this loop, the discrete segment sk is initialized
with the current voxel Vi (line 4). The extremity of the first real segment rk is
set to the current fixed real point vk (line 5). The last initializations are those
of the domains: as illustrated in Figure 11, those domains are first lines and
then segments after the first voxel addition (lines 6 to 8).

While those domains are not empty, the parameters are compatible and the
end of the curve is not reached, the following voxel of the curve is added to
the current discrete segment sk (line 12). The projections of the new voxel
induce some reductions of the three domains (line 13). Next, the image of the
two intervals Iz and Iy is computed and intersected with Ix in order to check
the compatibility of the domains (lines 14 to 19). When one condition of the
while loop (line 10) is no more fulfilled, if Vi is not the last voxel of the curve,
then the voxel Vi−1 is defined as the last voxel of the segment sk (line 22). One
solution lk is chosen for the 3D line and the real point vk+1 (line 26) is both
rk last point and rk+1 first point (lines 25 to 27).

Finally, the recognition process starts all over from line 3 with Vi−1 as first
voxel of the next segment sk+1 and vk+1 as first extremity of the real segment
rk+1.

In the case of closed curves, the same trick as for the 2D case can be used
for the end of the recognition process. Indeed, if the discrete curve is closed,

20

Algorithm 2 Polygonalization of a 3D 6-connected curve

Polygonalization 3Dcurve(ordered set of voxels V)
1: i← 1, k ← 1
2: Choose a real point v1 belonging to V1.
3: while (i ≤ n) do
4: sk ← {Vi}
5: r1

k ← vk

6: Dom(πx(sk)) = Pyz ∩ C−1
y (vk) = Ix

7: Dom(πy(sk)) = Pxz ∩ C−1
x (vk) = Iy

8: Dom(πz(sk)) = Pxy ∩ C−1
x (vk) = Iz

9: compatible← true

10: while (Ix 6= ∅ and Iy 6= ∅ and Iz 6= ∅ and compatible = true and i ≤ n)
do

11: i ← i+1
12: sk ← sk ∪ {Vi}
13: Compute the reductions of the three intervals according to the con-

straints related to πx(Vi), πy(Vi) and πz(Vi).
14: if (Ix 6= ∅ and Iy 6= ∅ and Iz 6= ∅) then
15: Compute f(Iz, Iy).
16: if (Ix ∩ f(Iz, Iy) = ∅) then
17: compatible← false

18: end if
19: end if
20: end while
21: if (Ix = ∅ or Iy = ∅ or Iz = ∅ or compatible = false) then
22: sk ← sk − {Vi} and retrieve Ix, Iy and Iz before the addition of Vi.
23: i← i− 1
24: end if
25: Choose a solution lk in the domains.
26: Choose a real point vk+1 such that vk+1 ∈ lk and vk+1 ∈ Vi.
27: r2

k = vk+1

28: k ← k + 1
29: end while

the Euclidean curve reconstructed should also be a closed curve. This can be
achieved fixing not one extremity but the two extremities of the maybe last
real segment and check if its discretization contains the set of last pixels (see
section 3.3.2 for details).

Finally, let us study the complexity of this algorithm. All the operations on
lines 2, 4 to 9 and 11 to 12 can be done in constant time. The reductions of
the intervals on line 13 are done either in constant time with a simple line/line
intersection computation, or in logarithmic time if the same trick as in [18]
is used. In practice, this second method is often the fastest mean to compute
the intersection of two rational lines. Operations on lines 14 to 19 can also

21

be done in constant time since f(Iz, Iy) is an interval. In line 25, the choice
of the solution is also done in constant time taking the middle point of the
solution interval. In line 26, the new real point is computed as the middle of
the segment lk∩Vi (Vi is the last voxel of the discrete segment) which is done in
constant time. At last, the global complexity of this algorithm is O(n log(n))
where n is the length of the curve.

4.5 Results

Algorithm 2 has been implemented in C using the multi-precision arithmetic
library called GMP [21]. Using this library enables to work with rational num-
bers of any precision without rounding any value. The Figures 12 and 13
present some results on synthetic curves.

(a) (b)

Fig. 12. Result of the polygonalization algorithm for 3D 6-connected curves.

The algorithm decomposes the curves into discrete and Cartesian segments,
one Cartesian segment for one discrete segment. The polygonal line computed
is represented by a polygonal dark line, and its digitization is exactly the input
discrete curve. The darkest voxels are the extremities of the discrete segments
recognized. Remark that each dark voxel contains one extremity of a Cartesian
segment.

22

The curve of Figure 12 (a) and (b) are respectively decomposed into 12 and
13 segments and the curve of Figure 13 (a) is divided into 6 segments.

(a) (b)

Fig. 13. Influence of the fixed real points chosen.

Note that the curve of Figure 13 could theoretically be decomposed into 3
discrete segments only. Indeed, the choice of a fixed real point extremity for
each Cartesian segment (used to ensure the reversibility) constraints also the
discrete segments. In Figure 13 (a), the first real point chosen is the point
of coordinates (x0, y0, z0) which are the coordinates of the first voxel center,
whereas in Figure 13 (a), the first real point chosen is the point of coordinates
(x0 + 1

4
, y0−

1
4
, z0 + 1

4
). Even if the number of segments computed is the same

for the two cases here (it could be different), note that the extremities of the
segments are different.

5 Conclusions and future work

In this paper we described a framework to find a polygonal curve from a dis-
crete curve with an invertible method in dimension two and three. In 2D,
the method proposed in [7] has been improved and leads to a new algorithm
to vectorize a discrete curve without post-treatment patches. We use the Vit-
tone’s algorithm for line recognition and force the vertices of the reconstructed
polygon to be inside the curve setting one extremity of each real segment to a
chosen point before the recognition process. This ensures the reversibility of
the reconstruction.

Then, we extended this algorithm for 3D curves. As in 2D, one extremity
of each segment of the reconstructed curve is set before the recognition pro-
cess. This process is composed of three 2D discrete segments recognitions
which are done simultaneously. Moreover, a new constraint, called compati-
bility constraint, ensures that those three recognitions can lead to a solution
3D line.

23

The results for the polygonalization of 2D curves are good, but we can no-
tice that the number of real segments obtained is greater than what we got
with the algorithm presented in [7]. Nevertheless this could be improve by
relaxing the constraint of a fix extremity for each real segment while keeping
the reversibility property: for instance, we may force each real segment to go
through one part of the previous segment which is inside the curve instead of
one given point. This should give better results.

In 3D, we presented first results for this problem. We can consider implement-
ing the same improvements as in the 2D case in order to reduce the number of
segments found. Moreover, in the context of surface polygonalization, this algo-
rithm may be adapted to polygonalize the border of a discrete plane (coplanar
curve). From a discrete surface segmentation into discrete plane pieces, such
an algorithm would give an analytical modeling of a discrete surface.

References

[1] W. Lorensen, H. Cline, Marching cubes : a high resolution 3D surface
construction algorithm, in: SIGGRAPH ’87, Computer Graphics J., Vol. 21,
Anaheim, USA, 1987, pp. 163–169.

[2] D. Cœurjolly, Algorithmique et géométrie discrète pour la caractérisation des
courbes et des surfaces, Ph.D. thesis, Université Lumière, Lyon 2, France
(December 2002).

[3] I. Debled-Rennesson, Étude et reconnaissance des droites et plans discrets,
Ph.D. thesis, Universit Louis Pasteur, Strasbourg, France (December 1995).

[4] R. Klette, H. J. Sun, Digital planar segment based polyhedrization for surface
area estimation, in: C. Arcelli, L. P. Cordella, G. S. di Baja (Eds.), International
Workshop on Visual Form 4, Vol. 2059 of Lecture Notes in Computer Science,
Springer-Verlag, 2001, pp. 356–366.

[5] J. Vittone, J.-M. Chassery, Recognition of digital naive planes and
polyhedrization, in: Discrete Geometry for Computer Imagery, Vol. 1953 of
Lecture Notes in Computer Science, Springer-Verlag, 2000, pp. 296–307.

[6] E. Andrès, Discrete linear objects in dimension n: the standard model,
Graphical Models 65 (1–3) (2003) 92–111, Special Issue DGCI 2002.

[7] R. Breton, I. Sivignon, F. Dupont, E. Andrès, Towards an invertible euclidean
reconstruction of a discrete object, in: I. Nyström, G. Sanniti di Baja,
S. Svensson (Eds.), Discrete Geometry for Computer Imagery, Vol. 2886 of
Lecture Notes in Computer Science, Springer-Verlag, 2003, pp. 246–256.

[8] E. Andrès, Defining discrete objects for polygonalization : the standard model,
in: A. Braquelaire, J.-O. Lachaud, A. Vialard (Eds.), Discrete Geometry for

24

Computer Imagery 2002, Vol. 2301 of Lecture Notes in Computer Science,
Springer-Verlag, Bordeaux, France, 2002, pp. 313–325.

[9] P. V. C. Hough, Method and means for recognizing complex patterns., United
States Patent, n3, 069, 654 (December 1962).

[10] H. Mâıtre, Un panorama de la transformation de Hough, Traitement du Signal
2 (4) (1985) 305–317.

[11] R. O. Duda, P. E. Hart, Use of the Hough transformation to detect lines and
curves in pictures., Communications of the ACM 15 (1) (1972) 11–15.

[12] A. Rosenfeld, I. Weiss, A convex polygon is determined by its Hough transform,
Pattern Recognition Letters 16 (1995) 305–306.

[13] P. Milanfar, On the Hough transform of a polygon, Pattern Recognition Letters
17 (1996) 209–210.

[14] A. Jonas, N. Kiryati, Digital representation schemes for 3D curves, Pattern
Recognition 30 (11) (1997) 1803–1816.

[15] L. Dorst, A. N. M. Smeulders, Discrete representation of straight lines, IEEE
Trans. on Pattern Analysis and Machine Intelligence 6 (1984) 450–463.

[16] M. D. McIlroy, A note on discrete representation of lines, AT&T Technical
Journal 64 (2) (1985) 481–490.

[17] M. Lindenbaum, A. Bruckstein, On recursive, O(n) partitioning of a digitized
curve into digital straight segments, IEEE Trans. on Pattern Analysis and
Machine Intelligence 15 (9) (1993) 949–953.

[18] J. Vittone, Caractérisation et reconnaissance de droites et de plans en géométrie
discrète., Ph.D. thesis, Université Joseph Fourier (December 1999).

[19] P. Veelaert, Geometric constructions in the digital plane, Journal of
Mathematical Imaging and Vision 11 (1999) 99–118.

[20] H. Freeman, Boundary encoding and processing, Picture Processing and
Psychopictorics (1970) 241–266.

[21] GMP library.
URL http://www.swox.com/gmp/

25

