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Abstra
t

On the 
lassi
al dis
rete grid, the analysis of digital straight lines (DSL for short) has

been intensively studied for nearly half a 
entury. In this arti
le, we are interested in a

dis
rete geometry on irregular grids. More pre
isely, our goal is to de�ne geometri
al

properties on irregular isotheti
 grids that are tilings of the Eu
lidean plane with

di�erent sized axis parallel re
tangles. On these irregular isotheti
 grids, we de�ne

digital straight lines with re
ognition algorithms and a pro
ess to re
onstru
t an

invertible polygonal representation of an irregular dis
rete 
urve.

1 Introdu
tion

When a straight line is digitized on a square grid, we obtain a sequen
e of grid

points de�ning a digital straight-line segment. This 
omputer representation

of su
h a simple Eu
lidean obje
t has drawn 
onsiderable attention in many

appli
ations (drawing [3℄, shape 
hara
terization [15,13,9℄, ...). The stru
ture

of DSL is now well known and links have been illustrated between DSL and

obje
ts from number theory or theory of words (see Rosenfeld and Klette

[24℄ for a survey on digital straightness). Beyond this 
hara
terization, an

important task in 
omputer vision 
onsists in the re
ognition of DSL segments.

More pre
isely, given a set of pixels, we have to de
ide if there exists a DSL

segment that 
ontains the given pixels. Many e�
ient algorithms exist to

implement su
h a re
ognition pro
ess [16,18,11,5℄. Based on a digital straight

line re
ognition algorithm, we 
an also de�ne a segmentation pro
ess that

de
omposes a dis
rete 
urve into maximal DSL segments. The next step of

the segmentation pro
ess is to re
onstru
t a polygonal 
urve from the dis
rete



data su
h that its digitization is equal to the original dis
rete 
urve. This

pro
ess is 
alled an invertible re
onstru
tion of a dis
rete 
urve [4,26,12℄. The

invertible property is an important one in dis
rete geometry sin
e it allows to


onvert dis
rete data to Eu
lidean ones su
h that no information is added nor

lost.

In this arti
le, we are interested in de�ning a geometry on irregular isotheti


grids. More pre
isely, we 
onsider grids de�ned by a tiling of the plane using

axis parallel re
tangles. Su
h a grid model in
ludes, for example, the 
lassi
al

dis
rete grid, the elongated grids [25℄ and the quadtree based grids [17℄. In [8℄,

a general framework has been proposed that de�nes elementary obje
ts and

a digitization framework, the super
over model. An important aspe
t of this

general framework is the 
onsisten
y with 
lassi
al de�nitions if the dis
rete

spa
e is 
onsidered.

Many appli
ations may bene�t from these developments. For example, we 
an


ite the analysis of quadtree 
ompressed shapes, or the use of geometri
al

properties in obje
ts represented by interval or a�ne arithmeti
s (see dis
us-

sion in [8℄). Based on this irregular model, we de�ne digital straight lines with

re
ognition algorithms and a pro
ess to re
onstru
t an invertible polygonal

representation of an irregular dis
rete 
urve.

Se
tion 2 presents more formal de�nitions in the irregular grids: adja
en
y re-

lations, obje
ts, ar
s, 
urves and the super
over model. Based on a de�nition

of the irregular isotheti
 digital straight lines, we present algorithms to re
og-

nize maximal irregular dis
rete straight segments and to re
onstru
t invertible

polygonal ar
s and 
urves (Se
tion 3). Experiments and results are shown in

Se
tion 4.

2 Preliminary de�nitions

2.1 The irregular isotheti
 model

First of all, we de�ne an irregular isotheti
 grid, denoted I, as a tiling of the

plane with isotheti
 re
tangles. In this framework, the re
tangles have not

ne
essarily the same size but we 
an noti
e that the 
lassi
al digital spa
e is a

parti
ular irregular isotheti
 grid. In that 
ase, all squares are 
entered in Z
2

points and have a border size equal to 1. Figure 1 illustrates some examples

of irregular isotheti
 grids. A re
tangle of an isotheti
 grid is 
alled a pixel.

Ea
h pixel P is de�ned by its 
enter (xP , yP ) ∈ R
2 and a size (lxP , l

y
P ) ∈ R

2.

Before we introdu
e obje
ts and straight lines in su
h grids, we need adja
en
y

relations between pixels.
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Fig. 1. Examples of irregular isotheti
 grids: (from left to right) the 
lassi
al dis
rete

grid ((xP , yP ) ∈ Z
2 and lxP = l

y
P = 1), an elongated grid (lxP = λ, l

y
P = µ and

(xP , yP ) = (λi, µj) with (i, j) ∈ Z
2), a quadtree de
omposition (for a 
ell of level

k, (xP , yP ) = ( m
2k , n

2k ) and lxP = l
y
P = 1

2k−1 for some m, n ∈ Z); a unilateral and

equitransitive tiling by squares: the size of the biggest square is equal to the sum of

the two other square sizes; �nally a general irregular isotheti
 grid.

De�nition 1 (ve−adja
en
y, e−adja
en
y) Let P and Q be two pixels. P

and Q are ve-adja
ent if:

|xP − xQ| =
lxP + lxQ

2
and |yP − yQ| ≤

l
y
P + l

y
Q

2
,

or

|yP − yQ| =
l
y
P + l

y
Q

2
and |xP − xQ| ≤

lxP + lxQ

2
.

P and Q are e-adja
ent if we 
onsider an ex
lusive �or� and stri
t inequalities

in the above ve-adja
ent de�nition.

In the following de�nitions, we use the notation k-adja
en
y in order to express

either the ve-adja
en
y or the e-adja
en
y. Using these adja
en
y de�nitions,

several basi
 obje
ts 
an be de�ned:

De�nition 2 (k−path) Let us 
onsider a set of pixels E = {Pi, i ∈ {1, . . . , n}}
and a relation of k−adja
en
y. E is a k− path if and only if for ea
h element

Pi of E, Pi is k−adja
ent to Pi−1.

De�nition 3 (k−obje
t) Let E be a set of pixels, E is a k−obje
t if and only

if for ea
h 
ouple of pixels (P,Q) belonging to E × E, there exists a k−path

between P and Q in E.

De�nition 4 (k-ar
) Let E be a set of pixels, E is a k−ar
 if and only if for

ea
h the element of E = {Pi, i ∈ {1, . . . , n}}, Pi has exa
tly two k−adja
ent

pixels, ex
ept P1 and Pn whi
h are 
alled the extremities of the k−ar
.

De�nition 5 (k-
urve) Let E be a set of pixels, E is a k-
urve if and only

if E is a k-ar
 and P1 = Pn.

If we 
onsider pixels su
h that lxP = l
y
P = 1 and (xP , yP ) ∈ Z

2 (i.e. a 2D digital

spa
e), all these de�nitions 
oin
ide with the 
lassi
al ones [22,23℄. More pre-


isely, the ve−adja
en
y (resp. e−adja
en
y) is exa
tly the 8-adja
en
y (resp.

the 4-adja
en
y). In the following, we only 
onsider geometri
al properties of
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su
h obje
ts. A 
omplete topologi
al analysis of k−
urves and k−obje
ts is

not addressed here.

2.2 Super
over model on the irregular isotheti
 grids

Before de�ning the digital straight lines on the irregular isotheti
 grids, we

have to 
onsider a digitization model. In the following, we 
hoose to extend the

super
over model. This model was �rst introdu
ed by Cohen-Or and Kaufman

in [10℄ on the 
lassi
al dis
rete grid and then widely used sin
e it provides an

analyti
al 
hara
terization of basi
 super
over obje
ts (e.g. lines, planes, 3D

polygons, ...) [2,1℄.

De�nition 6 (Super
over on irregular isotheti
 grids) Let F be an Eu-


lidean obje
t in R
2. The super
over S(F ) is de�ned on an irregular isotheti


grid I by:

S(F ) = {P ∈ I | B(P ) ∩ F 6= ∅} (1)

= {P ∈ I | ∃(x, y) ∈ F, |xP − x| ≤
lxP
2

and |yP − y| ≤
l
y
P

2
} . (2)

where B(P ) is the re
tangle 
entered in (xP , yP ) of size (lxP , l
y
P ) (if lxP = l

y
P ,

B(P ) is the ball 
entered in (xP , yP ) of size lxP for the L∞ norm).

Properties of this model are dis
ussed in [8℄.

Fig. 2. Illustration of the super
over digitization of a 
urve (left) and of a straight

line (right).

Figure 2 illustrates some examples of the super
over digitization of Eu
lidean

obje
ts. If I is the 
lassi
al digital spa
e (i.e. (xP , yP ) ∈ Z
2 and lxP = l

y
P =

1), many links exist between the super
over of an Eu
lidean straight line

and 
lassi
al digital straight line de�nitions [1,24℄. Sin
e we have not any

assumption on the irregular grid, no strong topologi
al property 
an be stated

on the super
over of an Eu
lidean straight line.

Proposition 1 ([8℄) Let l be an Eu
lidean straight line and a I-grid, the S(l)
is a single ve−obje
t.
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3 Irregular isotheti
 digital straight line de�nition and re
ognition

3.1 De�nitions and IDSL Re
ognition

De�nition 7 (Irregular isotheti
 digital straight line) Let S be a set of

pixels in I, S is 
alled a pie
e of irregular digital straight line (IDSL for short)

i� there exists an Eu
lidean straight line l su
h that:

S ⊆ S(l) . (3)

In other words, S is a pie
e of IDSL i� there exists l su
h that for all P ∈ S,

B
∞(P ) ∩ l 6= ∅.

To dete
t if B
∞(P )∩l is empty or not, we use the notations presented in Figure

3. Hen
e, B
∞(P ) ∩ l is not empty i� l 
rosses either (or both) the diagonals

d1 or d2 of P .

l

(xP , yP )

d1

d2

Fig. 3. Notations used to dete
t if the pixel of 
enter (xP , yP ) belongs to the super-


over of a straight line l (d1 and d2 are the diagonals of the re
tangle P ).

Without loss of generality, we suppose that l is given by y = αx + β with

(α, β) ∈ R
2 (an appropriate treatment 
an be design to handle the straight

lines x = k with k ∈ R). To solve the re
ognition problem, we use the following

statement:

B
∞(P ) ∩ l 6= ∅ ⇔ l ∩ d1 6= ∅ and α ≥ 0 (4)

or l ∩ d2 6= ∅ and α < 0 (5)

During a re
ognition pro
ess, it is 
onvenient to 
onsider the set of Eu
lidean

straight lines whose digitization 
ontains the set of pixels S: if su
h a set is

empty, we 
an 
on
lude that S is not a dis
rete straight line segment. In the

literature, the set of Eu
lidean straight lines whose digitization 
ontains S is


alled the preimage of S. Many works have been done 
on
erning the preimage

analysis in the 
lassi
al dis
rete grid [14,18,19℄.
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Given a pixel P , Equation (4) 
an be represented by two inequalities in the

(α, β)−parameter spa
e:

E+(P ) =











α
(

xP −
lx
P

2

)

+ β − yP −
l
y

P

2
≤ 0

α
(

xP +
lx
P

2

)

+ β − yP +
l
y

P

2
≥ 0

. (6)

Details on the 
omputation of these inequalities 
an be found in [8℄. If we


onsider Equation (5), we may obtain the following inequalities:

E−(P ) =











α
(

xP −
lx
P

2

)

+ β − yP +
l
y

P

2
≥ 0

α
(

xP +
lx
P

2

)

+ β − yP −
l
y

P

2
≤ 0

. (7)

E+(P ) is de�ned for α ≥ 0 and E−(P ) for α < 0. We 
an now de�ne the

preimages of a pie
e of IDSL:

De�nition 8 (Preimages of an IDSL) Let S be a pie
e of IDSL, the two

preimages P+ and P− of S are given by:

P+(S) =
⋂

P∈S

E+(P ) and P−(S) =
⋂

P∈S

E−(P ) . (8)

Hen
e, the re
ognition pro
ess 
an be des
ribed as follows:

Proposition 2 Let S be a set of pixels in a I-grid. S is a pie
e of IDSL i�

P+(S) 6= ∅ or P−(S) 6= ∅.

Using Proposition 2, the re
ognition of a pie
e IDSL leads to a linear pro-

gramming problem: we have to de
ide whether a linear inequality system has

a solution or not. To solve this problem, two di�erent 
lasses of algorithms

exist: the IDSL identi�
ation algorithms whi
h de
ide if S is an IDSL or not,

and the IDSL re
ognition algorithms whi
h return the 
omplete preimages

(maybe empty) of the re
ognized IDSL. To solve the identi�
ation problem,

in
remental O(n) solutions exist if n is the number of linear 
onstraints (i.e.

the number of irregular pixels in our 
ase) [20,6℄. To 
ompletely des
ribe the

preimages, the in
remental Preparata and Shamos algorithm [21℄ may be used

whose 
omputational 
ost is optimal in O(n log n). In [8℄, an algorithm based

on a linear programming pro
edure is proposed to re
ognize IDSL given a set

of pixels. This algorithm 
an also be used to segment an irregular ar
, i.e. to

de
ompose the ar
 into maximal pie
e of IDSL (see Figure 4).

The segmentation of a 
urve gives information 
on
erning the geometry of

the 
urve. In the next se
tion, we detail an algorithm to obtain an invertible

polyline from the irregular set of pixels.
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Fig. 4. Illustration of the segmentation algorithm on a general irregular 
urve. The

Eu
lidean straight lines are manually extra
ted from the preimages asso
iated to

ea
h IDSL segment [8℄.

3.2 Invertible re
onstru
tion of irregular ar
s and 
urves

In the following, we propose an algorithm to 
onstru
t an Eu
lidean polyline

from a dis
rete 
urve su
h that its digitization is equal to the original dis
rete


urve. If we 
onsider the super
over digitization model, a polyline L is an

invertible re
onstru
tion of a dis
rete 
urve S if it lies inside the dis
rete


urve. More pre
isely, for ea
h Eu
lidean point p on L, there exists a pixel P

in S su
h that p belongs to P .

Usually, the re
onstru
tion task is a post-treatment of a DSL segmentation

algorithm: �rst we de
ompose the dis
rete 
urve into maximal DSL, then, for

ea
h pie
e of DSL, we 
ompute a representative Eu
lidean segment. The main

drawba
k of this approa
h is that it is di�
ult to ensure the reversibility of

the polyline verti
es [4,12℄. In the 
lassi
al dis
rete grid, Sivignon et. al. [26℄

propose an invertible re
onstru
tion algorithm in whi
h both the re
ognition

and the Eu
lidean segment extra
tion are performed at the same time. More

pre
isely, the authors redu
e the problem for
ing the �rst extremity of the

segments to be inside the dis
rete 
urve. Then, they perform an analysis on

the preimage of the segment to 
ompute the se
ond extremity.

In the following, we propose a similar algorithm without the 
omputation of

the preimages that would have required 
omplex linear programming pro
e-

dures. The main idea is to use a visibility test te
hnique 
ommonly used in


omputational geometry to solve shortest path extra
tion problems [7℄.

3.2.1 Visibility 
one based approa
h

First, we de�ne the predi
ate TurnPositive(a, b, c) whi
h is true if the points

{a, b, c} in the plane are sorted 
ounter
lo
kwise. Note that su
h a predi
ate


an be 
omputed a

ording to the sign of the determinant det(~ab, ~bc).
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Let S = {Pi}i=0..n be a k−ar
, we �rst �x the �rst extremity p0 of the �rst

segment su
h that p0 ∈ P0. Given the pixel P1 k−adja
ent to P0, we denote e0

the Eu
lidean segment shared by the two pixels P0 and P1. We 
onsider the

�rst 
one C0(p0, s, t) with 
enter p0 and de�ned by the two points s and t su
h

that {p0, t, s} is sorted 
ounter
lo
kwise (i.e. TurnPositive(p0, t, s) is true)
and su
h that s and t 
oin
ide with the extremities of e0 (see Figure 5-(left)).

C0 is a visibility 
one sin
e for ea
h point p in the interse
tion between C0

and the pixels of S, the segment [p0p] lies exa
tly in S. In other words, the

super
over digitization of [p0p] is a subset of S.

A

ording to the previous de�nitions, the 
one C0 des
ribes a subset of the

preimages P+({P0, P1}) and P−({P0, P1}) in the parameter spa
e. Indeed,

ea
h straight line (p0p) 
rosses the pixels P0 and P1. More pre
isely, the set of

straight lines 
ontained in the 
one C0 is the segment in the (α, β)-parameter

spa
e whi
h 
orresponds to the interse
tion between the preimages P+ and

P− and the straight line de�ned by the point p0. Hen
e, as proposed in [26℄,

we 
ould have performed all 
omputations in the parameter spa
e (α, β) but

the analysis using visibility 
ones leads to a more e�
ient algorithm.

Fig. 5. Illustration of the visibility 
one based algorithm: (from left to right) the �rst


one C0, the update of the 
one 
onsidering the pixel P2 and an example when the

visibility fails.

The algorithm 
an be sket
hed as follows: for ea
h pixel Pi, we 
onsider

the shared segment ei between Pi−1 and Pi. Then, we have a simple pro-


edure to update the 
urrent 
one Cj(pj, s, t) a

ording to ei(u, l) (su
h that

TurnPositive(p0, l, u) is true). The di�erent 
ases are presented in Figure 6.

Note that using the predi
ate TurnPositive, Algorithm 1 is valid whatever

the orientation of the 
urve and the segment [ul] is not ne
essarily verti
al nor

horizontal.

From the di�erent 
ases presented in Figure 6, we 
an design a simple algo-

rithm (Algorithm 1) with three possible outputs: the visibility fails, the 
one

is updated or the 
one remains un
hanged.

When the update pro
edure fails, it means that there is no eu
lidean straight

line going through pj and 
rossing the pixel Pi. In that 
ase, we need to start

a new re
ognition pro
ess. Hen
e, we set up a new 
one Cj+1(pj+1, s, t) where
s and t are given by the edge ei. To 
ompute the new 
enter of the 
one

pj+1 we use a similar strategy as in [26℄: we 
onsider the bise
tor of the 
one

8
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Fig. 6. Illustration of the di�erent 
ases when we update a 
one: (from left to right)

the 
one is not modi�ed, only the point t is moved, only the point s is moved, both

s and t are moved, and �nally, the visibility fails.

Algorithm 1 Visibility 
one update pro
edure

Let Cj(pj , s, t) be the 
urrent 
one and ei(u, l) the shared segment between Pi and Pi−1

if (not TurnPositive(p, t, u)) or TurnPositive(p, s, l) then
return ∅ {the visibility test fails}

else
if TurnPositive(p, t, l) then

t← l

return Cj(pj , s, t)
end if
if not TurnPositive(p, s, u) then

s← u

return Cj(pj , s, t)
end if

end if

(dashed straight lines in Figure 5) and we de�ne pj+1 as the midpoint of the

interse
tion between the bise
tor and the pixel Pi−1 (this interse
tion is not

empty sin
e Pi−1 has already been 
onsidered). The idea of this strategy is to

obtain a polyline as 
entered as possible in the dis
rete 
urve. By de�nition

of Algorithm 1 , the segment [pj, pj+1] lies inside the irregular dis
rete 
urve.

Hen
e, if we repeat the above pro
ess for ea
h pixel of the k−ar
, the �nal

polyline is an invertible re
onstru
tion of the ar
 (see Figure 5-(right) and 7).

3.2.2 Overall algorithm

Algorithm 2 Invertible re
onstru
tion of a k-ar


Let S = {Pi}i=0..n be a k−ar
 and p0 the �rst point in P0

Set j=0
Initialization of the 
one Cj(pj , s, t) using P0 and P1 su
h that TurnPositive(pj , t, s) is true
pj is the �rst vertex of the �nal polyline
for i from 2 to n do
Compute the shared segment ei between Pi and Pi−1

C′ ← Update the visibility 
one using algorithm 1
if C′ = ∅ then
Compute the point pj+1 using the bise
tor of Cj and the pixel Pi−1

Initialization of a new 
one Cj+1 with pj+1 and ei

Mark pj as a vertex of the �nal polyline
else

Cj ← C′

end if
end for

Algorithm 2 presents the 
omplete in
remental re
onstru
tion algorithm based

on the visibility 
one update pro
edure. Sin
e Algorithm 1 updates the 
one

is O(1), the overall 
omputational 
ost of Algorithm 2 is O(n) if n is the

number of irregular pixels. Compared to the segmentation algorithm based on
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the 
omplete preimages, the IDSL segments may be shorter sin
e subsets of

the preimages are 
onsidered. However, this restri
tion allows us to 
onstru
t

an invertible polyline.

Fig. 7. Illustration of the re
onstru
tion algorithm: (left) the sequen
e of 
ones during

the visibility test and (right), the re
onstru
ted polygonal 
urve.

3.2.3 Invertible re
onstru
tion of k−
urves

If we 
onsider an irregular k−
urve S = {Pi}i=0..n, the re
onstru
ted polyline

must be 
losed and thus de�nes a simple polygon. Hen
e, we 
an use Algorithm

2 for the pixels P0 to Pn and add a spe
i�
 analysis to handle the adja
en
y

between Pn and P0 that 
reates as few as possible new verti
es. Let Cj(pj, s, t)
be the last visibility 
one su
h that the interse
tion between Pn and this 
one

is not empty. Several 
ases o

ur (see Figure 8): for example, if p0 ∈ Cj, we


lose the polyline using the segment [pjp0]. Otherwise, we may move p0 along

(p0p1) if there exists an interse
tion between Cj and the straight line (p0p1)
that lies inside P0 (see Figure 8-(b)). In that 
ase, we still 
lose the 
urve using

[pjp
′
0] and the global reversibility of the polygonal 
urve 
an be easily proved.

Other 
ases 
an be derived (for example using the visibility from p0 to Pn) but

additionnal verti
es may be inserted to the polygonal 
urve (see Figure 8).

Fig. 8. Di�erent 
ases to end the re
onstru
tion of a k−
urve: (a) and (b) we 
an


lose the 
urve using [p0pj ] or [p′0, pj ], (c) a new vertex pj+1 must be inserted, and

(d) we have to test 
ases (a), (b) or (c) using the 
one Cj+1 
entered in pj+1.

10



4 Experiments

We have 
onstru
ted a C++ library to handle elementary irregular obje
ts (ir-

regular pixels, k−ar
s and k-
urves). Using this library, we have implemented

the re
onstru
tion algorithm des
ribed in the previous se
tion (the 
ode is

available on the following web page: http://liris.
nrs.fr/~d
oeurjo/

Code/Re
onstru
tion). Figure 10 presents the result of Algorithm 2 on an

irregular k−ar
. Sin
e the 
lassi
al digital grid is a spe
i�
 irregular isotheti


grid, Algorithm 2 
an also be used to re
onstru
t a polygonal 
urve from a


lassi
al 4-
onne
ted 
urve (see Figure 10). In this 
ase, results are similar to

[26℄.

Fig. 9. Result of Algorithm 2 on an irregular ve−ar
: the input ve−
urve and the

invertible re
onstru
tion using Algorithm 2.

Fig. 10. Result of Algorithm 1 on a 
lassi
al 4-
onne
ted 
urve: the input 4-
onne
ted


urve and the invertible re
onstru
tion using Alg. 2.

5 Con
lusion

In this arti
le, we have presented a global digitization framework on irregu-

lar isotheti
 grids: the super
over model. Based on this digitization s
heme,

we have de�ned the digital straight lines and brie�y presented algorithmi


solutions to solve the re
ognition and segmentation problem. We have also

presented an O(n) on-line algorithm to re
onstru
t a polygonal 
urve from

a dis
rete irregular ar
 or 
urve. Sin
e the 
lassi
al regular digital grid 
an

be seen as a parti
ular irregular grid, all the presented framework is 
onsis-

tent with 
lassi
al de�nitions and algorithms. To a
hieve the linear in time


omputational 
ost, we have only 
onsidered spe
i�
 subsets of the preimages
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de�ned by the visibility 
ones. Thus, the re
onstru
tion may not be optimal

in the number of segments. Additional pro
esses similar to [12℄ in the 
lassi
al

dis
rete 
ase 
ould be investigated.

Sin
e adaptive grids or QuadTree based de
ompositions are spe
i�
 irregular

isotheti
 models, an important future work is to use the proposed framework

to provide geometri
 tools to 
hara
terize obje
t boundaries in su
h grids.

Furthermore, topologi
al de�nitions and data stru
ture to handle irregular

obje
ts is an important on going resear
h topi
.
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