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Abstract

On the classical discrete grid, the analysis of digital straight lines (DSL for short) has
been intensively studied for nearly half a century. In this article, we are interested in a
discrete geometry on irregular grids. More precisely, our goal is to define geometrical
properties on irregular isothetic grids that are tilings of the Euclidean plane with
different sized axis parallel rectangles. On these irregular isothetic grids, we define
digital straight lines with recognition algorithms and a process to reconstruct an
invertible polygonal representation of an irregular discrete curve.

1 Introduction

When a straight line is digitized on a square grid, we obtain a sequence of grid
points defining a digital straight-line segment. This computer representation
of such a simple Euclidean object has drawn considerable attention in many
applications (drawing |[3|, shape characterization [15,13,9], ...). The structure
of DSL is now well known and links have been illustrated between DSL and
objects from number theory or theory of words (see Rosenfeld and Klette
[24] for a survey on digital straightness). Beyond this characterization, an
important task in computer vision consists in the recognition of DSL segments.
More precisely, given a set of pixels, we have to decide if there exists a DSL
segment that contains the given pixels. Many efficient algorithms exist to
implement such a recognition process [16,18,11,5]. Based on a digital straight
line recognition algorithm, we can also define a segmentation process that
decomposes a discrete curve into maximal DSL segments. The next step of
the segmentation process is to reconstruct a polygonal curve from the discrete



data such that its digitization is equal to the original discrete curve. This
process is called an invertible reconstruction of a discrete curve [4,26,12]. The
invertible property is an important one in discrete geometry since it allows to
convert discrete data to Fuclidean ones such that no information is added nor
lost.

In this article, we are interested in defining a geometry on irregular isothetic
grids. More precisely, we consider grids defined by a tiling of the plane using
axis parallel rectangles. Such a grid model includes, for example, the classical
discrete grid, the elongated grids [25] and the quadtree based grids [17]. In [8],
a general framework has been proposed that defines elementary objects and
a digitization framework, the supercover model. An important aspect of this
general framework is the consistency with classical definitions if the discrete
space is considered.

Many applications may benefit from these developments. For example, we can
cite the analysis of quadtree compressed shapes, or the use of geometrical
properties in objects represented by interval or affine arithmetics (see discus-
sion in [8]). Based on this irregular model, we define digital straight lines with
recognition algorithms and a process to reconstruct an invertible polygonal
representation of an irregular discrete curve.

Section 2 presents more formal definitions in the irregular grids: adjacency re-
lations, objects, arcs, curves and the supercover model. Based on a definition
of the irregular isothetic digital straight lines, we present algorithms to recog-
nize maximal irregular discrete straight segments and to reconstruct invertible
polygonal arcs and curves (Section 3). Experiments and results are shown in
Section 4.

2 Preliminary definitions

2.1 The irreqular isothetic model

First of all, we define an irreqular isothetic grid, denoted I, as a tiling of the
plane with isothetic rectangles. In this framework, the rectangles have not
necessarily the same size but we can notice that the classical digital space is a
particular irregular isothetic grid. In that case, all squares are centered in Z2
points and have a border size equal to 1. Figure 1 illustrates some examples
of irregular isothetic grids. A rectangle of an isothetic grid is called a pizel.
Each pixel P is defined by its center (xp,yp) € R? and a size (I%,1%) € R2
Before we introduce objects and straight lines in such grids, we need adjacency
relations between pixels.



Fig. 1. Examples of irregular isothetic grids: (from left to right) the classical discrete
grid ((zp,yp) € Z* and 1% = 1% = 1), an elongated grid (I% = A, I% = p and
(xp,yp) = (N, uj) with (i,§) € Z?), a quadtree decomposition (for a cell of level
k, (xp,yp) = (3%, 55) and Ip = I} = 2,%1 for some m,n € Z); a unilateral and
equitransitive tiling by squares: the size of the biggest square is equal to the sum of
the two other square sizes; finally a general irregular isothetic grid.

Definition 1 (ve—adjacency, e—adjacency) Let P and Q) be two pizels. P
and Q) are ve-adjacent if:

1%+ 17 1%+ 17
lzp — 2q| = P2 © and |yp — yo| < P2 9,
or y y
. 5+ 12
lyp — Yol = P2 < and |zp — wq| < P2 <.

P and () are e-adjacent if we consider an exclusive “or” and strict inequalities
in the above ve-adjacent definition.

In the following definitions, we use the notation k-adjacency in order to express
either the ve-adjacency or the e-adjacency. Using these adjacency definitions,
several basic objects can be defined:

Definition 2 (k—path) Let us consider a set of pizels E = {P;;i € {1,...,n}}
and a relation of k—adjacency. € is a k — path if and only if for each element
P, of £, P; is k—adjacent to P;_1.

Definition 3 (k—object) Let & be a set of pizels, £ is a k—object if and only
if for each couple of pizels (P, Q) belonging to € x &, there ezists a k—path
between P and @ in &.

Definition 4 (k-arc) Let & be a set of pizels, £ is a k—arc if and only if for
each the element of € = {P;,i € {1,...,n}}, P; has exactly two k—adjacent
pizels, except Py and P, which are called the extremities of the k—arc.

Definition 5 (k-curve) Let € be a set of pizels, € is a k-curve if and only
if € is a k-arc and P, = P,.

If we consider pixels such that (% = [% = 1 and (zp,yp) € Z* (i.e. a 2D digital
space), all these definitions coincide with the classical ones [22,23]. More pre-
cisely, the ve—adjacency (resp. e—adjacency) is exactly the 8-adjacency (resp.
the 4-adjacency). In the following, we only consider geometrical properties of



such objects. A complete topological analysis of k—curves and k—objects is
not addressed here.

2.2 Supercover model on the irreqular isothetic grids

Before defining the digital straight lines on the irregular isothetic grids, we
have to consider a digitization model. In the following, we choose to extend the
supercover model. This model was first introduced by Cohen-Or and Kaufman
in [10] on the classical discrete grid and then widely used since it provides an
analytical characterization of basic supercover objects (e.g. lines, planes, 3D

polygons, ...) [2,1].

Definition 6 (Supercover on irregular isothetic grids) Let F' be an Eu-
clidean object in R?. The supercover S(F) is defined on an irreqular isothetic
grid T by:

S(F)={Pel | B(P)NF #0} (1)

l 14

where B(P) is the rectangle centered in (xp,yp) of size (I%,1%) (if % = 1%,
B(P) is the ball centered in (xp,yp) of size I} for the Lo, morm,).

Properties of this model are discussed in [8].
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Fig. 2. llustration of the supercover digitization of a curve (left) and of a straight
line (right).

Figure 2 illustrates some examples of the supercover digitization of Euclidean
objects. If T is the classical digital space (i.e. (xp,yp) € Z* and 1% = 1% =
1), many links exist between the supercover of an Euclidean straight line
and classical digital straight line definitions [1,24]|. Since we have not any
assumption on the irregular grid, no strong topological property can be stated
on the supercover of an Euclidean straight line.

Proposition 1 (|8]) Let! be an Fuclidean straight line and a I-grid, the S(I)
18 a single ve—object.



3 Irregular isothetic digital straight line definition and recognition

3.1 Definitions and IDSL Recognition

Definition 7 (Irregular isothetic digital straight line) Let S be a set of
pizels in 1, S is called a piece of irregular digital straight line (IDSL for short)
iff there exists an Fuclidean straight line | such that:

SCS(). (3)

In other words, S is a piece of IDSL iff there exists | such that for all P € S,
B>°(P)N1+#0.

To detect if B> (P)NI is empty or not, we use the notations presented in Figure
3. Hence, B>(P) N1 is not empty iff [ crosses either (or both) the diagonals
dy or dy of P.

dy l

p,1
4 (zp,yp)

Fig. 3. Notations used to detect if the pixel of center (zp,yp) belongs to the super-
cover of a straight line [ (d; and ds are the diagonals of the rectangle P).

Without loss of generality, we suppose that [ is given by y = ax + § with
(o, 3) € R? (an appropriate treatment can be design to handle the straight
lines z = k with £ € R). To solve the recognition problem, we use the following
statement:

BX(P)Nl#0 < INnd #0anda >0 (4)
or INdy#@Pand a<0 (5)

During a recognition process, it is convenient to consider the set of Euclidean
straight lines whose digitization contains the set of pixels S: if such a set is
empty, we can conclude that S is not a discrete straight line segment. In the
literature, the set of Euclidean straight lines whose digitization contains S is
called the preimage of S. Many works have been done concerning the preimage
analysis in the classical discrete grid [14,18,19|.



Given a pizel P, Equation (4) can be represented by two inequalities in the
(o, B)—parameter space:

£+(P) = Oz(xp—%)ﬂtﬁ—yp—%’éo ©)
a(zp+B)+B8—yp+ %2 >0

Details on the computation of these inequalities can be found in [8]. If we
consider Equation (5), we may obtain the following inequalities:

1% 14
_ alep—%)+F-yp+5 20
a(zp+ %) +B—yp— £ <0

ET(P) is defined for « > 0 and £ (P) for a < 0. We can now define the
preimages of a piece of IDSL:

Definition 8 (Preimages of an IDSL) Let S be a piece of IDSL, the two
preimages P and P~ of S are given by:

PHS)= () ET(P) and P (S)=[) E(P). (8)

pPeS pPesS

Hence, the recognition process can be described as follows:

Proposition 2 Let S be a set of pizels in a I-grid. S is a piece of IDSL iff
PH(S) #0 or P~(S) # 0.

Using Proposition 2, the recognition of a piece IDSL leads to a linear pro-
gramming problem: we have to decide whether a linear inequality system has
a solution or not. To solve this problem, two different classes of algorithms
exist: the IDSL identification algorithms which decide if S is an IDSL or not,
and the IDSL recognition algorithms which return the complete preimages
(maybe empty) of the recognized IDSL. To solve the identification problem,
incremental O(n) solutions exist if n is the number of linear constraints (i.e.
the number of irregular pixels in our case) [20,6]. To completely describe the
preimages, the incremental Preparata and Shamos algorithm [21| may be used
whose computational cost is optimal in O(nlogn). In [8], an algorithm based
on a linear programming procedure is proposed to recognize IDSL given a set
of pixels. This algorithm can also be used to segment an irregular arc, i.e. to
decompose the arc into maximal piece of IDSL (see Figure 4).

The segmentation of a curve gives information concerning the geometry of
the curve. In the next section, we detail an algorithm to obtain an invertible
polyline from the irregular set of pixels.



Fig. 4. Illustration of the segmentation algorithm on a general irregular curve. The
Euclidean straight lines are manually extracted from the preimages associated to
each IDSL segment [8].

3.2 Invertible reconstruction of irreqular arcs and curves

In the following, we propose an algorithm to construct an Euclidean polyline
from a discrete curve such that its digitization is equal to the original discrete
curve. If we consider the supercover digitization model, a polyline £ is an
invertible reconstruction of a discrete curve S if it lies inside the discrete
curve. More precisely, for each Euclidean point p on L, there exists a pixel P
in S such that p belongs to P.

Usually, the reconstruction task is a post-treatment of a DSL segmentation
algorithm: first we decompose the discrete curve into maximal DSL, then, for
each piece of DSL, we compute a representative Euclidean segment. The main
drawback of this approach is that it is difficult to ensure the reversibility of
the polyline vertices [4,12]. In the classical discrete grid, Sivignon et. al. [26]
propose an invertible reconstruction algorithm in which both the recognition
and the Euclidean segment extraction are performed at the same time. More
precisely, the authors reduce the problem forcing the first extremity of the
segments to be inside the discrete curve. Then, they perform an analysis on
the preimage of the segment to compute the second extremity.

In the following, we propose a similar algorithm without the computation of
the preimages that would have required complex linear programming proce-
dures. The main idea is to use a visibility test technique commonly used in
computational geometry to solve shortest path extraction problems [7].

3.2.1 Visibility cone based approach

First, we define the predicate TURNPOSITIVE(a, b, ¢) which is true if the points
{a,b,c} in the plane are sorted counterclockwise. Note that such a predicate
can be computed according to the sign of the determinant det(ab, bc).



Let S = {P;}i—o.n be a k—arc, we first fix the first extremity po of the first
segment such that py € Fy. Given the pixel P, k—adjacent to Py, we denote ¢
the Fuclidean segment shared by the two pixels Fy and P;. We consider the
first cone Cy(po, s,t) with center py and defined by the two points s and ¢ such
that {po,t, s} is sorted counterclockwise (i.e. TURNPOSITIVE(py, ¢, s) is true)
and such that s and ¢ coincide with the extremities of e, (see Figure 5-(left)).
Cy is a visibility cone since for each point p in the intersection between C
and the pixels of S, the segment [pgp| lies exactly in S. In other words, the
supercover digitization of [pop] is a subset of S.

According to the previous definitions, the cone Cj describes a subset of the
preimages P+ ({Fy, P1}) and P~ ({F, P.}) in the parameter space. Indeed,
each straight line (pop) crosses the pixels Py and P;. More precisely, the set of
straight lines contained in the cone Cj is the segment in the («, 3)-parameter
space which corresponds to the intersection between the preimages P+ and
P~ and the straight line defined by the point pg. Hence, as proposed in [26],
we could have performed all computations in the parameter space (¢, 3) but
the analysis using visibility cones leads to a more efficient algorithm.

Po €0

Fig. 5. Illustration of the visibility cone based algorithm: (from left to right) the first
cone Cp, the update of the cone considering the pixel P» and an example when the
visibility fails.

The algorithm can be sketched as follows: for each pixel P;, we consider
the shared segment e; between P, ; and P;. Then, we have a simple pro-
cedure to update the current cone Cj(p;,s,t) according to e;(u,l) (such that
TURNPOSITIVE(po, [, u) is true). The different cases are presented in Figure 6.
Note that using the predicate TURNPOSITIVE, Algorithm 1 is valid whatever
the orientation of the curve and the segment [ul] is not necessarily vertical nor
horizontal.

From the different cases presented in Figure 6, we can design a simple algo-
rithm (Algorithm 1) with three possible outputs: the visibility fails, the cone
is updated or the cone remains unchanged.

When the update procedure fails, it means that there is no euclidean straight
line going through p; and crossing the pixel F;. In that case, we need to start
a new recognition process. Hence, we set up a new cone Cj1(p;+1, s,t) where
s and t are given by the edge e;. To compute the new center of the cone
pj+1 We use a similar strategy as in |26]: we consider the bisector of the cone
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Fig. 6. Illustration of the different cases when we update a cone: (from left to right)
the cone is not modified, only the point ¢ is moved, only the point s is moved, both
s and t are moved, and finally, the visibility fails.

Algorithm 1 Visibility cone update procedure

Let C;(pj,s,t) be the current cone and e;(u,!) the shared segment between P; and P;_1
if (not Tur~nPosiTive(p,t,u)) or TurRNPoOSITIVE(p, 5,1) then
return  {the visibility test fails}
else
if TurNPosITIVE(p,t,1) then
t—1
return Cj(pj,s,t)
end if
if not TurNPosITIVE(p, s,u) then
s—u
return Cj(p;,s,t)
end if
end if

(dashed straight lines in Figure 5) and we define p;;; as the midpoint of the
intersection between the bisector and the pixel P;_; (this intersection is not
empty since P;_; has already been considered). The idea of this strategy is to
obtain a polyline as centered as possible in the discrete curve. By definition
of Algorithm 1 , the segment [p;, p;;+1] lies inside the irregular discrete curve.
Hence, if we repeat the above process for each pixel of the k—arc, the final
polyline is an invertible reconstruction of the arc (see Figure 5-(right) and 7).

3.2.2  Qwerall algorithm

Algorithm 2 Invertible reconstruction of a k-arc

Let S = {P;}i=0..n be a k—arc and pg the first point in Py
Set j=0
Initialization of the cone C;(pj,s,t) using Py and P; such that TURNPoSITIVE(p;, t, s) is true
p; is the first vertex of the final polyline
for i from 2 to n do
Compute the shared segment e; between P; and P;_;
C’" « Update the visibility cone using algorithm 1
if ¢’ =0 then
Compute the point p;;1 using the bisector of C; and the pixel P;_1
Initialization of a new cone C;11 with p; 1 and e;
Mark p; as a vertex of the final polyline
else
C; —C’
end if
end for

Algorithm 2 presents the complete incremental reconstruction algorithm based
on the visibility cone update procedure. Since Algorithm 1 updates the cone
is O(1), the overall computational cost of Algorithm 2 is O(n) if n is the
number of irregular pixels. Compared to the segmentation algorithm based on



the complete preimages, the IDSL segments may be shorter since subsets of
the preimages are considered. However, this restriction allows us to construct
an invertible polyline.

e R ]

Fig. 7. lllustration of the reconstruction algorithm: (left) the sequence of cones during
the visibility test and (right), the reconstructed polygonal curve.

3.2.83  Invertible reconstruction of k—curves

If we consider an irregular k—curve S = {P;}i—o., the reconstructed polyline
must be closed and thus defines a simple polygon. Hence, we can use Algorithm
2 for the pixels Py to P, and add a specific analysis to handle the adjacency
between P, and P, that creates as few as possible new vertices. Let C;(p;, s, t)
be the last visibility cone such that the intersection between P, and this cone
is not empty. Several cases occur (see Figure 8): for example, if py € C;, we
close the polyline using the segment [p;pg]. Otherwise, we may move p, along
(pop1) if there exists an intersection between C; and the straight line (pop;)
that lies inside Py (see Figure 8-(b)). In that case, we still close the curve using
[p;p6] and the global reversibility of the polygonal curve can be easily proved.
Other cases can be derived (for example using the visibility from pg to P,) but
additionnal vertices may be inserted to the polygonal curve (see Figure 8).

B - 3
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Fig. 8. Different cases to end the reconstruction of a k—curve: (a) and (b) we can
close the curve using [pop;] or [py,pj], (¢) a new vertex p;j;1 must be inserted, and
(d) we have to test cases (a), (b) or (c) using the cone Cj;1 centered in pjii.
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4 Experiments

We have constructed a C-++ library to handle elementary irregular objects (ir-
regular pixels, k—arcs and k-curves). Using this library, we have implemented
the reconstruction algorithm described in the previous section (the code is
available on the following web page: http://liris.cnrs.fr/“dcoeurjo/
Code/Reconstruction). Figure 10 presents the result of Algorithm 2 on an
irregular k—arc. Since the classical digital grid is a specific irregular isothetic
grid, Algorithm 2 can also be used to reconstruct a polygonal curve from a
classical 4-connected curve (see Figure 10). In this case, results are similar to
[26].

e =~ W |
Ry "

Fig. 9. Result of Algorithm 2 on an irregular ve—arc: the input ve—curve and the
invertible reconstruction using Algorithm 2.
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Fig. 10. Result of Algorithm 1 on a classical 4-connected curve: the input 4-connected
curve and the invertible reconstruction using Alg. 2.

5 Conclusion

In this article, we have presented a global digitization framework on irregu-
lar isothetic grids: the supercover model. Based on this digitization scheme,
we have defined the digital straight lines and briefly presented algorithmic
solutions to solve the recognition and segmentation problem. We have also
presented an O(n) on-line algorithm to reconstruct a polygonal curve from
a discrete irregular arc or curve. Since the classical regular digital grid can
be seen as a particular irregular grid, all the presented framework is consis-
tent with classical definitions and algorithms. To achieve the linear in time
computational cost, we have only considered specific subsets of the preimages
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defined by the visibility cones. Thus, the reconstruction may not be optimal
in the number of segments. Additional processes similar to [12] in the classical
discrete case could be investigated.

Since adaptive grids or QuadTree based decompositions are specific irregular
isothetic models, an important future work is to use the proposed framework
to provide geometric tools to characterize object boundaries in such grids.
Furthermore, topological definitions and data structure to handle irregular
objects is an important on going research topic.
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