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Abstrat

On the lassial disrete grid, the analysis of digital straight lines (DSL for short) has

been intensively studied for nearly half a entury. In this artile, we are interested in a

disrete geometry on irregular grids. More preisely, our goal is to de�ne geometrial

properties on irregular isotheti grids that are tilings of the Eulidean plane with

di�erent sized axis parallel retangles. On these irregular isotheti grids, we de�ne

digital straight lines with reognition algorithms and a proess to reonstrut an

invertible polygonal representation of an irregular disrete urve.

1 Introdution

When a straight line is digitized on a square grid, we obtain a sequene of grid

points de�ning a digital straight-line segment. This omputer representation

of suh a simple Eulidean objet has drawn onsiderable attention in many

appliations (drawing [3℄, shape haraterization [15,13,9℄, ...). The struture

of DSL is now well known and links have been illustrated between DSL and

objets from number theory or theory of words (see Rosenfeld and Klette

[24℄ for a survey on digital straightness). Beyond this haraterization, an

important task in omputer vision onsists in the reognition of DSL segments.

More preisely, given a set of pixels, we have to deide if there exists a DSL

segment that ontains the given pixels. Many e�ient algorithms exist to

implement suh a reognition proess [16,18,11,5℄. Based on a digital straight

line reognition algorithm, we an also de�ne a segmentation proess that

deomposes a disrete urve into maximal DSL segments. The next step of

the segmentation proess is to reonstrut a polygonal urve from the disrete



data suh that its digitization is equal to the original disrete urve. This

proess is alled an invertible reonstrution of a disrete urve [4,26,12℄. The

invertible property is an important one in disrete geometry sine it allows to

onvert disrete data to Eulidean ones suh that no information is added nor

lost.

In this artile, we are interested in de�ning a geometry on irregular isotheti

grids. More preisely, we onsider grids de�ned by a tiling of the plane using

axis parallel retangles. Suh a grid model inludes, for example, the lassial

disrete grid, the elongated grids [25℄ and the quadtree based grids [17℄. In [8℄,

a general framework has been proposed that de�nes elementary objets and

a digitization framework, the superover model. An important aspet of this

general framework is the onsisteny with lassial de�nitions if the disrete

spae is onsidered.

Many appliations may bene�t from these developments. For example, we an

ite the analysis of quadtree ompressed shapes, or the use of geometrial

properties in objets represented by interval or a�ne arithmetis (see disus-

sion in [8℄). Based on this irregular model, we de�ne digital straight lines with

reognition algorithms and a proess to reonstrut an invertible polygonal

representation of an irregular disrete urve.

Setion 2 presents more formal de�nitions in the irregular grids: adjaeny re-

lations, objets, ars, urves and the superover model. Based on a de�nition

of the irregular isotheti digital straight lines, we present algorithms to reog-

nize maximal irregular disrete straight segments and to reonstrut invertible

polygonal ars and urves (Setion 3). Experiments and results are shown in

Setion 4.

2 Preliminary de�nitions

2.1 The irregular isotheti model

First of all, we de�ne an irregular isotheti grid, denoted I, as a tiling of the

plane with isotheti retangles. In this framework, the retangles have not

neessarily the same size but we an notie that the lassial digital spae is a

partiular irregular isotheti grid. In that ase, all squares are entered in Z
2

points and have a border size equal to 1. Figure 1 illustrates some examples

of irregular isotheti grids. A retangle of an isotheti grid is alled a pixel.

Eah pixel P is de�ned by its enter (xP , yP ) ∈ R
2 and a size (lxP , l

y
P ) ∈ R

2.

Before we introdue objets and straight lines in suh grids, we need adjaeny

relations between pixels.
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Fig. 1. Examples of irregular isotheti grids: (from left to right) the lassial disrete

grid ((xP , yP ) ∈ Z
2 and lxP = l

y
P = 1), an elongated grid (lxP = λ, l

y
P = µ and

(xP , yP ) = (λi, µj) with (i, j) ∈ Z
2), a quadtree deomposition (for a ell of level

k, (xP , yP ) = ( m
2k , n

2k ) and lxP = l
y
P = 1

2k−1 for some m, n ∈ Z); a unilateral and

equitransitive tiling by squares: the size of the biggest square is equal to the sum of

the two other square sizes; �nally a general irregular isotheti grid.

De�nition 1 (ve−adjaeny, e−adjaeny) Let P and Q be two pixels. P

and Q are ve-adjaent if:

|xP − xQ| =
lxP + lxQ

2
and |yP − yQ| ≤

l
y
P + l

y
Q

2
,

or

|yP − yQ| =
l
y
P + l

y
Q

2
and |xP − xQ| ≤

lxP + lxQ

2
.

P and Q are e-adjaent if we onsider an exlusive �or� and strit inequalities

in the above ve-adjaent de�nition.

In the following de�nitions, we use the notation k-adjaeny in order to express

either the ve-adjaeny or the e-adjaeny. Using these adjaeny de�nitions,

several basi objets an be de�ned:

De�nition 2 (k−path) Let us onsider a set of pixels E = {Pi, i ∈ {1, . . . , n}}
and a relation of k−adjaeny. E is a k− path if and only if for eah element

Pi of E, Pi is k−adjaent to Pi−1.

De�nition 3 (k−objet) Let E be a set of pixels, E is a k−objet if and only

if for eah ouple of pixels (P,Q) belonging to E × E, there exists a k−path

between P and Q in E.

De�nition 4 (k-ar) Let E be a set of pixels, E is a k−ar if and only if for

eah the element of E = {Pi, i ∈ {1, . . . , n}}, Pi has exatly two k−adjaent

pixels, exept P1 and Pn whih are alled the extremities of the k−ar.

De�nition 5 (k-urve) Let E be a set of pixels, E is a k-urve if and only

if E is a k-ar and P1 = Pn.

If we onsider pixels suh that lxP = l
y
P = 1 and (xP , yP ) ∈ Z

2 (i.e. a 2D digital

spae), all these de�nitions oinide with the lassial ones [22,23℄. More pre-

isely, the ve−adjaeny (resp. e−adjaeny) is exatly the 8-adjaeny (resp.

the 4-adjaeny). In the following, we only onsider geometrial properties of
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suh objets. A omplete topologial analysis of k−urves and k−objets is

not addressed here.

2.2 Superover model on the irregular isotheti grids

Before de�ning the digital straight lines on the irregular isotheti grids, we

have to onsider a digitization model. In the following, we hoose to extend the

superover model. This model was �rst introdued by Cohen-Or and Kaufman

in [10℄ on the lassial disrete grid and then widely used sine it provides an

analytial haraterization of basi superover objets (e.g. lines, planes, 3D

polygons, ...) [2,1℄.

De�nition 6 (Superover on irregular isotheti grids) Let F be an Eu-

lidean objet in R
2. The superover S(F ) is de�ned on an irregular isotheti

grid I by:

S(F ) = {P ∈ I | B(P ) ∩ F 6= ∅} (1)

= {P ∈ I | ∃(x, y) ∈ F, |xP − x| ≤
lxP
2

and |yP − y| ≤
l
y
P

2
} . (2)

where B(P ) is the retangle entered in (xP , yP ) of size (lxP , l
y
P ) (if lxP = l

y
P ,

B(P ) is the ball entered in (xP , yP ) of size lxP for the L∞ norm).

Properties of this model are disussed in [8℄.

Fig. 2. Illustration of the superover digitization of a urve (left) and of a straight

line (right).

Figure 2 illustrates some examples of the superover digitization of Eulidean

objets. If I is the lassial digital spae (i.e. (xP , yP ) ∈ Z
2 and lxP = l

y
P =

1), many links exist between the superover of an Eulidean straight line

and lassial digital straight line de�nitions [1,24℄. Sine we have not any

assumption on the irregular grid, no strong topologial property an be stated

on the superover of an Eulidean straight line.

Proposition 1 ([8℄) Let l be an Eulidean straight line and a I-grid, the S(l)
is a single ve−objet.
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3 Irregular isotheti digital straight line de�nition and reognition

3.1 De�nitions and IDSL Reognition

De�nition 7 (Irregular isotheti digital straight line) Let S be a set of

pixels in I, S is alled a piee of irregular digital straight line (IDSL for short)

i� there exists an Eulidean straight line l suh that:

S ⊆ S(l) . (3)

In other words, S is a piee of IDSL i� there exists l suh that for all P ∈ S,

B
∞(P ) ∩ l 6= ∅.

To detet if B
∞(P )∩l is empty or not, we use the notations presented in Figure

3. Hene, B
∞(P ) ∩ l is not empty i� l rosses either (or both) the diagonals

d1 or d2 of P .

l

(xP , yP )

d1

d2

Fig. 3. Notations used to detet if the pixel of enter (xP , yP ) belongs to the super-

over of a straight line l (d1 and d2 are the diagonals of the retangle P ).

Without loss of generality, we suppose that l is given by y = αx + β with

(α, β) ∈ R
2 (an appropriate treatment an be design to handle the straight

lines x = k with k ∈ R). To solve the reognition problem, we use the following

statement:

B
∞(P ) ∩ l 6= ∅ ⇔ l ∩ d1 6= ∅ and α ≥ 0 (4)

or l ∩ d2 6= ∅ and α < 0 (5)

During a reognition proess, it is onvenient to onsider the set of Eulidean

straight lines whose digitization ontains the set of pixels S: if suh a set is

empty, we an onlude that S is not a disrete straight line segment. In the

literature, the set of Eulidean straight lines whose digitization ontains S is

alled the preimage of S. Many works have been done onerning the preimage

analysis in the lassial disrete grid [14,18,19℄.
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Given a pixel P , Equation (4) an be represented by two inequalities in the

(α, β)−parameter spae:

E+(P ) =











α
(

xP −
lx
P

2

)

+ β − yP −
l
y

P

2
≤ 0

α
(

xP +
lx
P

2

)

+ β − yP +
l
y

P

2
≥ 0

. (6)

Details on the omputation of these inequalities an be found in [8℄. If we

onsider Equation (5), we may obtain the following inequalities:

E−(P ) =











α
(

xP −
lx
P

2

)

+ β − yP +
l
y

P

2
≥ 0

α
(

xP +
lx
P

2

)

+ β − yP −
l
y

P

2
≤ 0

. (7)

E+(P ) is de�ned for α ≥ 0 and E−(P ) for α < 0. We an now de�ne the

preimages of a piee of IDSL:

De�nition 8 (Preimages of an IDSL) Let S be a piee of IDSL, the two

preimages P+ and P− of S are given by:

P+(S) =
⋂

P∈S

E+(P ) and P−(S) =
⋂

P∈S

E−(P ) . (8)

Hene, the reognition proess an be desribed as follows:

Proposition 2 Let S be a set of pixels in a I-grid. S is a piee of IDSL i�

P+(S) 6= ∅ or P−(S) 6= ∅.

Using Proposition 2, the reognition of a piee IDSL leads to a linear pro-

gramming problem: we have to deide whether a linear inequality system has

a solution or not. To solve this problem, two di�erent lasses of algorithms

exist: the IDSL identi�ation algorithms whih deide if S is an IDSL or not,

and the IDSL reognition algorithms whih return the omplete preimages

(maybe empty) of the reognized IDSL. To solve the identi�ation problem,

inremental O(n) solutions exist if n is the number of linear onstraints (i.e.

the number of irregular pixels in our ase) [20,6℄. To ompletely desribe the

preimages, the inremental Preparata and Shamos algorithm [21℄ may be used

whose omputational ost is optimal in O(n log n). In [8℄, an algorithm based

on a linear programming proedure is proposed to reognize IDSL given a set

of pixels. This algorithm an also be used to segment an irregular ar, i.e. to

deompose the ar into maximal piee of IDSL (see Figure 4).

The segmentation of a urve gives information onerning the geometry of

the urve. In the next setion, we detail an algorithm to obtain an invertible

polyline from the irregular set of pixels.
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Fig. 4. Illustration of the segmentation algorithm on a general irregular urve. The

Eulidean straight lines are manually extrated from the preimages assoiated to

eah IDSL segment [8℄.

3.2 Invertible reonstrution of irregular ars and urves

In the following, we propose an algorithm to onstrut an Eulidean polyline

from a disrete urve suh that its digitization is equal to the original disrete

urve. If we onsider the superover digitization model, a polyline L is an

invertible reonstrution of a disrete urve S if it lies inside the disrete

urve. More preisely, for eah Eulidean point p on L, there exists a pixel P

in S suh that p belongs to P .

Usually, the reonstrution task is a post-treatment of a DSL segmentation

algorithm: �rst we deompose the disrete urve into maximal DSL, then, for

eah piee of DSL, we ompute a representative Eulidean segment. The main

drawbak of this approah is that it is di�ult to ensure the reversibility of

the polyline verties [4,12℄. In the lassial disrete grid, Sivignon et. al. [26℄

propose an invertible reonstrution algorithm in whih both the reognition

and the Eulidean segment extration are performed at the same time. More

preisely, the authors redue the problem foring the �rst extremity of the

segments to be inside the disrete urve. Then, they perform an analysis on

the preimage of the segment to ompute the seond extremity.

In the following, we propose a similar algorithm without the omputation of

the preimages that would have required omplex linear programming proe-

dures. The main idea is to use a visibility test tehnique ommonly used in

omputational geometry to solve shortest path extration problems [7℄.

3.2.1 Visibility one based approah

First, we de�ne the prediate TurnPositive(a, b, c) whih is true if the points

{a, b, c} in the plane are sorted ounterlokwise. Note that suh a prediate

an be omputed aording to the sign of the determinant det(~ab, ~bc).
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Let S = {Pi}i=0..n be a k−ar, we �rst �x the �rst extremity p0 of the �rst

segment suh that p0 ∈ P0. Given the pixel P1 k−adjaent to P0, we denote e0

the Eulidean segment shared by the two pixels P0 and P1. We onsider the

�rst one C0(p0, s, t) with enter p0 and de�ned by the two points s and t suh

that {p0, t, s} is sorted ounterlokwise (i.e. TurnPositive(p0, t, s) is true)
and suh that s and t oinide with the extremities of e0 (see Figure 5-(left)).

C0 is a visibility one sine for eah point p in the intersetion between C0

and the pixels of S, the segment [p0p] lies exatly in S. In other words, the

superover digitization of [p0p] is a subset of S.

Aording to the previous de�nitions, the one C0 desribes a subset of the

preimages P+({P0, P1}) and P−({P0, P1}) in the parameter spae. Indeed,

eah straight line (p0p) rosses the pixels P0 and P1. More preisely, the set of

straight lines ontained in the one C0 is the segment in the (α, β)-parameter

spae whih orresponds to the intersetion between the preimages P+ and

P− and the straight line de�ned by the point p0. Hene, as proposed in [26℄,

we ould have performed all omputations in the parameter spae (α, β) but

the analysis using visibility ones leads to a more e�ient algorithm.

Fig. 5. Illustration of the visibility one based algorithm: (from left to right) the �rst

one C0, the update of the one onsidering the pixel P2 and an example when the

visibility fails.

The algorithm an be skethed as follows: for eah pixel Pi, we onsider

the shared segment ei between Pi−1 and Pi. Then, we have a simple pro-

edure to update the urrent one Cj(pj, s, t) aording to ei(u, l) (suh that

TurnPositive(p0, l, u) is true). The di�erent ases are presented in Figure 6.

Note that using the prediate TurnPositive, Algorithm 1 is valid whatever

the orientation of the urve and the segment [ul] is not neessarily vertial nor

horizontal.

From the di�erent ases presented in Figure 6, we an design a simple algo-

rithm (Algorithm 1) with three possible outputs: the visibility fails, the one

is updated or the one remains unhanged.

When the update proedure fails, it means that there is no eulidean straight

line going through pj and rossing the pixel Pi. In that ase, we need to start

a new reognition proess. Hene, we set up a new one Cj+1(pj+1, s, t) where
s and t are given by the edge ei. To ompute the new enter of the one

pj+1 we use a similar strategy as in [26℄: we onsider the bisetor of the one

8
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Fig. 6. Illustration of the di�erent ases when we update a one: (from left to right)

the one is not modi�ed, only the point t is moved, only the point s is moved, both

s and t are moved, and �nally, the visibility fails.

Algorithm 1 Visibility one update proedure

Let Cj(pj , s, t) be the urrent one and ei(u, l) the shared segment between Pi and Pi−1

if (not TurnPositive(p, t, u)) or TurnPositive(p, s, l) then
return ∅ {the visibility test fails}

else
if TurnPositive(p, t, l) then

t← l

return Cj(pj , s, t)
end if
if not TurnPositive(p, s, u) then

s← u

return Cj(pj , s, t)
end if

end if

(dashed straight lines in Figure 5) and we de�ne pj+1 as the midpoint of the

intersetion between the bisetor and the pixel Pi−1 (this intersetion is not

empty sine Pi−1 has already been onsidered). The idea of this strategy is to

obtain a polyline as entered as possible in the disrete urve. By de�nition

of Algorithm 1 , the segment [pj, pj+1] lies inside the irregular disrete urve.

Hene, if we repeat the above proess for eah pixel of the k−ar, the �nal

polyline is an invertible reonstrution of the ar (see Figure 5-(right) and 7).

3.2.2 Overall algorithm

Algorithm 2 Invertible reonstrution of a k-ar

Let S = {Pi}i=0..n be a k−ar and p0 the �rst point in P0

Set j=0
Initialization of the one Cj(pj , s, t) using P0 and P1 suh that TurnPositive(pj , t, s) is true
pj is the �rst vertex of the �nal polyline
for i from 2 to n do
Compute the shared segment ei between Pi and Pi−1

C′ ← Update the visibility one using algorithm 1
if C′ = ∅ then
Compute the point pj+1 using the bisetor of Cj and the pixel Pi−1

Initialization of a new one Cj+1 with pj+1 and ei

Mark pj as a vertex of the �nal polyline
else

Cj ← C′

end if
end for

Algorithm 2 presents the omplete inremental reonstrution algorithm based

on the visibility one update proedure. Sine Algorithm 1 updates the one

is O(1), the overall omputational ost of Algorithm 2 is O(n) if n is the

number of irregular pixels. Compared to the segmentation algorithm based on
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the omplete preimages, the IDSL segments may be shorter sine subsets of

the preimages are onsidered. However, this restrition allows us to onstrut

an invertible polyline.

Fig. 7. Illustration of the reonstrution algorithm: (left) the sequene of ones during

the visibility test and (right), the reonstruted polygonal urve.

3.2.3 Invertible reonstrution of k−urves

If we onsider an irregular k−urve S = {Pi}i=0..n, the reonstruted polyline

must be losed and thus de�nes a simple polygon. Hene, we an use Algorithm

2 for the pixels P0 to Pn and add a spei� analysis to handle the adjaeny

between Pn and P0 that reates as few as possible new verties. Let Cj(pj, s, t)
be the last visibility one suh that the intersetion between Pn and this one

is not empty. Several ases our (see Figure 8): for example, if p0 ∈ Cj, we

lose the polyline using the segment [pjp0]. Otherwise, we may move p0 along

(p0p1) if there exists an intersetion between Cj and the straight line (p0p1)
that lies inside P0 (see Figure 8-(b)). In that ase, we still lose the urve using

[pjp
′
0] and the global reversibility of the polygonal urve an be easily proved.

Other ases an be derived (for example using the visibility from p0 to Pn) but

additionnal verties may be inserted to the polygonal urve (see Figure 8).

Fig. 8. Di�erent ases to end the reonstrution of a k−urve: (a) and (b) we an

lose the urve using [p0pj ] or [p′0, pj ], (c) a new vertex pj+1 must be inserted, and

(d) we have to test ases (a), (b) or (c) using the one Cj+1 entered in pj+1.
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4 Experiments

We have onstruted a C++ library to handle elementary irregular objets (ir-

regular pixels, k−ars and k-urves). Using this library, we have implemented

the reonstrution algorithm desribed in the previous setion (the ode is

available on the following web page: http://liris.nrs.fr/~doeurjo/

Code/Reonstrution). Figure 10 presents the result of Algorithm 2 on an

irregular k−ar. Sine the lassial digital grid is a spei� irregular isotheti

grid, Algorithm 2 an also be used to reonstrut a polygonal urve from a

lassial 4-onneted urve (see Figure 10). In this ase, results are similar to

[26℄.

Fig. 9. Result of Algorithm 2 on an irregular ve−ar: the input ve−urve and the

invertible reonstrution using Algorithm 2.

Fig. 10. Result of Algorithm 1 on a lassial 4-onneted urve: the input 4-onneted

urve and the invertible reonstrution using Alg. 2.

5 Conlusion

In this artile, we have presented a global digitization framework on irregu-

lar isotheti grids: the superover model. Based on this digitization sheme,

we have de�ned the digital straight lines and brie�y presented algorithmi

solutions to solve the reognition and segmentation problem. We have also

presented an O(n) on-line algorithm to reonstrut a polygonal urve from

a disrete irregular ar or urve. Sine the lassial regular digital grid an

be seen as a partiular irregular grid, all the presented framework is onsis-

tent with lassial de�nitions and algorithms. To ahieve the linear in time

omputational ost, we have only onsidered spei� subsets of the preimages
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de�ned by the visibility ones. Thus, the reonstrution may not be optimal

in the number of segments. Additional proesses similar to [12℄ in the lassial

disrete ase ould be investigated.

Sine adaptive grids or QuadTree based deompositions are spei� irregular

isotheti models, an important future work is to use the proposed framework

to provide geometri tools to haraterize objet boundaries in suh grids.

Furthermore, topologial de�nitions and data struture to handle irregular

objets is an important on going researh topi.
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