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Restrictions of continuous functions

Jean-Pierre Kahane and Yitzhak Katznelson

Introduction

Given a continuous real-valued function on[0,1], and a closed subsetE ⊂ [0,1] we
denote byf E the restriction off to E, that is, the function defined only onE that
takes the same values asf at every point ofE. The restrictionf E will typically
be “better behaved” thanf . It may have bounded variation whenf doesn’t, it may
have a better modulus of continuity thanf , it may be monotone whenf is not, etc.
All this clearly depends onf and onE, and the questions that we discuss here are
about the existence, for everyf , or every f in some class, of “substantial” setsE
such thatf E has bounded total variation, is monotone, or satisfies a given modulus
of continuity. The notion of “substantial” that we use is that of either Hausdorff or
Minkowski dimensions, both are defined below.

Here is an outline of the paper. We refer to theorems by the subsection in which
they are stated.

Section 2 deals with restrictions of bounded variation. Theorem 2.1, partI
states that every continuous real-valued function on[0,1] has bounded variation
on some set of Hausdorff dimension 1/2. PartII of the theorem shows that this is
optimal by constructing an appropriate lacunary series whose sum has unbounded
variation on every closed set of Minkowski dimension biggerthan 1/2 (and hence
on every set of Hausdorff dimension bigger than 1/2). Analogous results forRd-
valued functions are proved in subsection 2.6.

Section 3 deals with restrictions that satisfy a Hölder condition with parameter
α ∈ (0,1). It was known, though never stated in this form, that for every continuous
function f on [0,1] and everyα ∈ (0,1) there exists setsE of Hausdorff dimension
1−α such thatf E satisfies a Hölderα condition (see subsection 3.1). Extending
the methods used in the proof of theorem 2.1, we give an elementary proof of the
result (theorem 3.1 partI) and show, in partII, that it is optimal by constructing,
as in the proof of partII of theorem 2.1, an approriate lacunary series whose sum
is a function for which nothing better can be done.
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In section 4, theorem 4.1, we construct continuos functionsf that satisfy a
Hölder-α condition for allα < 1 and yet if f E is Lipschitz or monotone, thenE
is “arbitrarily thin”. Theorem 4.2 deals with monotone restrictions of continuous
functions.

In section 5 we consider the relative advantage of restrictions of functions that
satisfy various Hölder smoothness conditions, give partial results and point out
some open problems.

By including the short section 1, we try to make the exposition elementary and
self-contained, requiring no background material beyond what should be “com-
monly known”.

Notations and terminology.
A modulus of continuity is a monotone increasing continuous concave function

ω(t) on [0,1], such thatω(0) = 0.
Given a real-valued functionf on [0,1], a closed setE, and a modulus of con-

tinuity ω , we write f E ∈Cω if for all t ∈ E there existδ = δ (t) > 0 andC = C(t)
such that ifτ ∈ E and|t − τ | ≤ δ (t) then| f (t)− f (τ)| ≤C(t)ω(t − τ).

Forω(t) = tα , 0< α ≤ 1 we write Lipα instead ofCω . Lip1 is usually referred
to as theLipschitz class, while Lipα , 0< α < 1, as the Hölderα class.1

The(total) variation, var(E, f ), of a function f on a closed setE, is defined by

var(E, f ) = sup∑| f (x j+1)− f (x j)|,

the supremum is for all finite monotone increasing sequences{x j} ⊂ E. We write
f ∈ BV (E) if var(E, f ) < ∞.

The oscillation ofg on a setE is

(1) osc(g,E) = max
x∈E

g(x)−min
x∈E

g(x).

Finally, if E ⊂ [0,1] is closed, we denote by|E| the (Lebesgue) measure ofE.

1 Dimensions

1.1 (Lower) Minkowski dimension.

DEFINITION. Let s > 0. An s-separated set of lengthm is a set J = {x j}
m
j=1 in [0,1]

such that |xk − x j| > s for j 6= k.

1Some classics refer to the Hölder classes asthe Lipschitz α classes —hence the notation.
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For a subsetE ⊂ [0,1], denote byLn(E) the smallest number of intervals of
length n−1 needed to coverE. Denote byL∗

n the largest numberL such thatE
contains somen−1-separated sequence of lengthL.

Lemma.

(2) Ln(E) ≤ L∗
2n(E) ≤ L2n(E).

PROOF: A pair of points whose distance is> (2n)−1 cannot belong to the same
interval of length(2n)−1. Conversely, if{x j}

L∗
n

j=1 is a maximal(2n)−1 separated
subset ofE, then the intervals of lengthn−1 centered atx j coverE. ◭

The Minkowski dimension,M-dim(E) of E is defined as the limit, if it exists,

(3) M-dim(E) = lim
n→∞

logLn(E)

logn
= lim

n→∞

logL∗
n(E)

logn
.

The lower Minkowski dimensionL M-dim(E) of E is well defined for all sets
by

(4) L M-dim(E) = lim inf
logLn(E)

logn
= lim inf

logL∗
n(E)

logn
.

Example. If E = {1
j}

∞
j=1, the subset{1

j}
n
j=1 is n−2 separated andL∗

n2(E) ≥ n.

On the other hand the intervals[ jn−2,( j + 1)n−2], j = 1, . . . ,n cover{1
j}

∞
j=n, and

n additional intervals of the same size cover{1
j}

n
j=1, so thatLn2(E) ≤ 2n. By (2)

Ln2(E) ∼ n, the limit in (3) exists, andM-dim(E) = 1
2.

1.2 Hausdorff dimension. The Hausdorff dimensionH -dim(E) of a setE ⊂

R is the infimum of the numbersc for which there is a constantC such that, for
everyε > 0, there exists a covering ofE by intervalsIn satisfying:

(5) sup
n
|In| < ε and ∑|In|

c < C.

Since covering by intervals of arbitrary lengths≤ ε can be more efficient than
covering by intervals of a fixed length,

(6) H -dim(E) ≤ L M-dim(E);

the Hausdorff dimension of a setE is bounded above by its lower Minkowski
dimension. The inequality can be strict: for example, ifE is countable then
H -dim(E) = 0, whileL M-dim(E) can be as high as 1.

A useful criterion for a lower bound on the Hausdorff dimension of a closed
setE is the following:
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Lemma. Assume that E carries a probability measure µ such that µ(I) ≤ C|I|δ

for every interval I then H -dim(E) ≥ δ .

PROOF: If c < δ , andIn are intervals such that|In| < ε and∪In ⊃ E, then

(7) 1≤ ∑µ(In) ≤C∑|In|
δ ≤Cεδ−c ∑|In|

c.

That means∑|In|
c > C−1εc−δ which is unbounded asε → 0. ◭

1.3 Determining functions. A Hausdorff determining function is a continuous
nondecreasing functionh on [0,1] satisfyingh(0) = 0. The Hausdorff dimension
introduced in the previous subsection uses explicitly, in (5), the functionshc(t) = tc,
with 0 < c ≤ 1 as does (implicitly) the definition of the Minkowski dimension.

A setE ⊂ [0,1] has zeroh-meassure if, for everyε > 0, there exist intervalsIn

such that∑h(|In|) < ε andE ⊂ ∪In.
A setE ⊂ [0,1] is Minkowski-h-null if liminf Lnh(1/n) = 0.
A set that is Minkowskih-null has zeroh-measure. The converse is false.

2 Restrictions of Bounded Variation

2.1 The total variation of restrictions. Given a functionf on R and a closed
setE, we denotes the total variation of the restrictionf E of f to E by var(E, f ),
and write f ∈ BV (E) if var(E, f ) < ∞.

Theorem. I: For every real-valued f ∈C([0, 1]), there are closed sets G ⊂ [0, 1],
such that H -dim(G) ≥ 1

2 and f ∈ BV (G).

II: There exists real-valued functions F ∈ C([0,1]) such that var(E,F) = ∞
for every closed set E ⊂ [0,1] such that L M-dim(E) > 1

2, (and, in particular, for
closed sets E such that H -dim(E) > 1

2).

2.2 The proof of partI of the theorem uses the following lemma.

Lemma. Let I be an interval and E ⊂ I a closed set, ϕ ∈C(E) and osc(ϕ ,E) = a.
Then there are subsets E j ⊂ E, j = 1,2, carried by disjoint intervals I j, such that
|E j| ≥

1
4|E| and osc(ϕ ,E j) ≤

a
2.

PROOF: If I = [t1, t2] let t3 be such that|E ∩ [t1, t3]| = 1
2|E|. SetI1 = [t1, t3] and

I2 = [t3, t2].
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Define E1 ⊂ I1 as follows: Let[c,c + a] be the smallest interval containing
ϕ(E ∩ I1). Write G1 = E ∩ϕ−1([c,c+ 1

2a]) andG2 = E ∩ϕ−1([c+ 1
2a,c+a]), and

observe that either|G1| ≥
1
2|E| or |G2| ≥

1
2|E| (or both). SetE1 asG1 in the first

case, and asG2 otherwise. DefineE2 ⊂ I2 in the same way. ◭

We call the setsE j descendants of E, and refer to the replacement of eachE by
its two descendants as thestandard procedure. We sometime use thealternate
procedure in which we replace eachE by only one of the two descendants.

PROOF OF THE THEOREM, PART I : Let f ∈ C([0,1]) be real-valued. We apply
the lemma, withϕ = f , repeatedly. We use the standard procedure most steps
and the alternate procedure occasionally,c(k) ∼ 2log2k times out ofk. After
k iterations we have a setEk which is the union of 2k−c(k) ∼ 2kk−2 setsEk,α ,
each of Lebesgue measure≥ 2−2k, carried by disjoint intervalsIk,α , and such that
osc(g,Ek,α ) ≤ 2−k. Write G =

⋂

k Ek.
Forx,y ∈ G let k(x,y) be the lastk such thatx andy are in the same component

Ek,α . Remember that| f (x)− f (y)| ≤ 2−k.
In a monotone sequence{x j}

N
j=1 ⊂G and anyk ∈N, there are at most 2k−c(k) ∼

2kk−2 values ofj for which k(x j,x j+1) = k; so that

(8) ∑| f (x j+1)− f (x j)| ≤∑2k−c(k)2−k ∼ ∑2kk−22−k = ∑k−2.

It follows that the total variation off G is bounded by∑k−2.
Let µk a probability measure carried byEk that puts the same mass 2c(k)−k on

everyEk,α . Observe that, for alll ∈ N, µk+l(Ek,α) = µk(Ek,α).
Let µ be a weak-star limit ofµk ask → ∞. Since every intervalI of length

2−2k intersects at most two sets of the formEk,α we haveµ(I) ≤C|I|
k−c(k)

2k and, by
lemma 1.2H -dimG ≥ 1/2. ◭

2.3 The proof of partII of the theorem is a construction that uses as a building
block the 2-periodic functionϕ , defined by:

(9) ϕ(2m + x) = 1−|x| for |x| ≤ 1 andm ∈ Z.

We writeϕn(x) = ϕ(2nx).

Lemma. Let J = {x j} ⊂ [0,1] be an s-separated monotone sequence of length m.
If m > 2n, then, for a > 0,

(10) var(J,aϕn) = ∑|aϕn(x j+1)−aϕn(x j)| ≥ (m−2n)2nas.



RESTRICTIONS OF CONTINUOUS FUNCTIONS 6

PROOF: There are at most 2n values of j for which x j andx j+1 are separated by
some ℓ

2n , (ℓ = 1, . . . ,2n). For all other j we haveaϕn linear and|aϕ ′
n| = 2an in

[x j,x j+1] so that

(11) |aϕn(x j+1)−aϕn(x j)| = 2na(x j+1− x j) ≥ 2nas,

and there are at leastm−2n such values ofj. ◭

2.4 We can modifyaϕn somewhat without affecting (10) materially.

Lemma. Let g ∈ C([0,1]), ‖g‖∞ < nsa/10, and G ∈ C([0,1]) with Lipschitz con-
stant bounded by na

10, then

(12) var(J,G + aϕn + g) ≥ (m−2n)nsa.

PROOF: For the values ofj for whichx j andx j+1 arenot separated by someℓ2n we
have

|aϕn(x j+1)−aϕn(x j)| = 2na(x j+1− x j),

|G(x j+1)−G(x j)| ≤
na
10

(x j+1− x j),

|g(x j+1)−g(x j)| ≤
nas
5

≤
na
5

(x j+1− x j),

(13)

so that

|G + aϕn + g)(x j+1)− (G + aϕn + g)(x j)| ≥ (2na−
na
10

)(x j+1− x j)−
nsa
5

> nsa

which implies (12) ◭

We use the lemma withm = 20n and the right-hand sides of (10) and (12) will
be (wastefully) written simply asn2as.

2.5

PROOF OF THEOREM2.1, PART II : For sequences{al}, al > 0, and{nl} ⊂ N

write: ml = 20nl , sl = n−2
l lognl , and

(14) F =
∞

∑
l=1

alϕnl , Gk =
k−1

∑
l=1

alϕnl , gk =
∞

∑
l=k+1

alϕnl ,

The sequences{al}, al > 0 and{nl} ⊂ N are chosen (below) so that
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a. ak lognk > k,

b. ∑k−1
l=1 alnl < 1

10aknk

c. ∑l>k al < 1
10nkaksk.

These conditions guarantee that the lemma applies withn = nk, G = Gk andg = gk

so that ifJ is sk separated of lengthmk, then

(15) var(J,F) ≥ n2
kaksk = ak lognk > k.

If L M-dim(E) > 1/2 then, for allk > k(E), E containssk-separated se-
quencesJE(nk) of lengthmk, so that

(16) var(E,F) ≥ var(JE(nk),F) > k,

and the functionF = ∑∞
l=1alϕnl has infinite variation on every closedE such that

L M-dim(E) > 1
2.

The sequences{al} and{nl} are defined recursively:
Takea1 = 1/2 andn1 = 100.
If al andnl defined forl ≤ k, setak+1 = 1

20akn−1
k , and observe that this rule

guarantees that∑ j>k a j < 2ak, so thatc. is satisfied.
Now takenk+1 big enough to satisfy conditionsa. andb. ◭

2.6 R
d-valued functions. The generalization of Theorem 2.1 toR

d-valued func-
tions is the following statement:

Theorem. I: For every continuous R
d-valued function g, there are closed sets

E ⊂ [0, 1], such that H -dim(E) ≥ 1
d+1 and g ∈ BV (E).

II: There exists continuous R
d-valued functions F such that if E ⊂ [0,1] is

closed and L M-dim(E) > 1
d+1 then var(E,F) = ∞.

The proofs of both parts are the obvious variations on the proofs for d = 1.
The proof of partI differs from that of the corresponding part of Theorem 2.1

only in the estimate of the measures of the setsEk,α defined at thek’th stage, car-
ried, as before, by disjoint intervalsIk,α , and such thatosc(g,Ek,α ) ≤ 2−k, but now
of Lebesgue measure≥ 2−(d+1)k. This guarantees that the Hausdorff dimension of
the set, constructed as before, is≥ 1

d+1.
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For partII we replace the functionϕn by ψn = ψn,d(mx) wherem = [n1/d ] (the
integer part ofn1/d) andψn,d is an even 2-periodicRd-valued function satisfying:
‖ψn,d‖ ≤ 1 and, forx,y such that[x] = [y] and|x− y| ≥ 1/n:

(17) ‖ψn,d(x)−ψn,d(y)‖ ≥ n−
1
d

so that

(18) ‖ψn(x)−ψn(y)‖ ≥ n−
1
d if [mx] = [my] and |x− y| ≥ n−

d+1
d .

A setE such thatL M-dim(E)> 1
d+1, E contains, whenn is large,n−

d+1
d -separated

sequences{x j}
L
1 of lengthL >> n

1
d and for all, but at mostm ∼ n

1
d values ofj, we

have‖ψn(x j+1)−ψn(x j)‖ ≥ n−
1
d so that the variation ofψn on E is large.

One can construct the functionsψn,d as follows. LetAm = Am,d be the set of
(m +1)d pointsvl = (k1, . . .kd) satisfying 0≤ k j ≤ m in N

d, enumerated in a way
that‖vl+1−vl‖= 1, i.e.,vl andvl+1 have the same entries except for one, on which
they differ by 1. The functionψn,d is defined on[−1,1] by stipulating that it is
2-periodic, even, and it maps[ l

(m+1)d , l+1
(m+1)d ] linearly onto[ vl

m , vl+1
m ].

3 Hölder restrictions

3.1 Theorem. I: Assume 0 < α < 1. Given a continuous function f , there exists
a closed set E such that H -dimE = 1−α , and f E ∈ Lipα .

II: For 0 < α < 1 there exist continuous functions f such that if f E ∈ Lipα
for a closed set E, then H -dimE ≤ 1−α .

PartI of the theorem derives easily from properties of Gaussian stationary pro-
cesses on the circle, established in [1]. The proof reads:

“Take a Gaussian stationary processX on the circle (Fourier series with in-
dependent Gaussian coefficients) such thatX ∈ Lipα andH -dimX−1(0) = α a.s.
Then writeE = (X − f )−1(0) and apply remark 2 in Chapter 14, section 5, page
206 of [1].”

PartII of the theorem shows that partI is optimal. We give here an elementary
proof of both parts.

3.2 We prove partI of the theorem by the method used in the proof of partI of
theorem 2.1. The following is an extension of the proceduresintroduced in 2.2.
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Lemma. Let E ⊂ I ⊂ [0,1] be a closed set, f ∈ CR(E) and osc( f ,E) = a. Given
ε > 0, integers k ≥ 2 and l ≥ 2, there are subsets Em ⊂ E, m = 1,2, . . . ,k, carried
by disjoint intervals Im, such that

a. The distance between any two Em
′s is at least |E|ε/k;

b. |Em| ≥
1−ε
kl |E|;

c. osc( f ,Em) ≤ a
l .

PROOF: Choose the increasing sequence{xm}, m = 0, . . . ,k so that
|E ∩ [0,xm]| = |E|m

k ,
and letym = xm + |E|ε/k. Write Im = [ym,xm+1] andẼm = E ∩ Im.

Then|Ẽm| ≥ |E|1−ε
k .

Let J = [minx∈E f (x),maxx∈E f (x)] (so that|J| = a). Divide J into l equal
intervals,Js, s = 1, . . . , l, and writeEm,s = Ẽm ∩ f−1Js. For everym let s(m) be
such that|Em,s(m)| ≥ |E|1−ε

kl , and setEm = Ẽm,s(m). ◭

We refer to this as thek, l,ε procedure on (I;E), call the pairs(Im;Em) the (first
generation) descendants of(I;E) and rename them as(I1,m;E1,m).

We rename the parametersk, l,ε ask1, l1,ε1, and repeat the procedure on each
(I1,m;E1,m) with parametersk2, l2,ε2. We have the second generation, withk1k2

descendants named(I2,m;E2,m), m = 1, . . . ,k1k2.
We iterate the procedure repeatedly with parametersk j, l j,ε j for the j’th round,

and denote

(19) Kn =
n

∏
j=1

k j, Ln =
n

∏
j=1

l j η̃n =
n

∏
1

(1− ε j).

After n iterations we haveKn intervalsIn,m, each carrying a subsetEn,m of E
such that|En,m| ≥ η̃nK−1

n L−1
n |E|, and any two are separated by intervals of length

≥ εnη̃n−1K−1
n L−1

n−1|E|.

Given α ∈ (0,1), we choose the parametersk j, l j uniformly bounded, and
ε j → 0 so that

(20) αn =
logLn

logKn + logLn − log(εnη̃n)
> α, βn =

logKn

logKn + logLn − logη̃n
< 1−α,

andαn → α , βn → 1−α .
DenoteE∗

n = ∪Kn
m=1En,m, observe thatE∗

n ⊂ E∗
n−1, and setE∗ = ∩E∗

n .
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We claim thatE∗ satisfies the requirements of partI of the theorem. To prove
the claim we need to show

a. H -dimE∗ ≥ (1−α).
b. f E∗ ∈ Lipα .

PROOF: For claima. we construct a probability measureµ∗ on E∗, such that for
everyα ′ > α , there exists a constantC = C(α ′) such thatµ∗(I) ≤ C|I|α

′

for all
intervalsI. By lemma 1.2 this provesH -dimE∗ ≥ (1−α).

Denote byµn the probability measure obtained by normalizing the Lebesgue
measure onE∗

n by multiplying it, on eachEn,m, by a constantcn,m = K−1
n |En,m|

−1,
so thatµn(En,m) = K−1

n . The sequence{µn} converges in the weak-star topology
to a measureµ∗ carried byE∗. Observe thatµ∗(En,m) = µn(En,m) = K−1

n .
We evaluate the modulus of continuity of the primitive ofµ∗ by estimating the

size of intervalsA such thatµ∗(A) ≥ 2K−1
n . Such interval must contain an interval

In,m, and henceEn,m, and it follows that

(21) |A| ≥ |In,m| ≥ |En,m| ≥ η̃nK−1
n L−1

n |E|

which means that for everyα ′ > α we have forn large enough and every interval
In,m

(22) µ∗(In,m) ≤ |In,m|
logKn

logKn+logLn−logη̃n = |In,m|
βn ≤ |In,m|

1−α ′

and it follows that for arbitrary intervalsI and anyα ′ > α , as|I| → 0

(23) µ∗(I) = O
(

|I|1−α ′
)

which means that the Hausdorff dimension ofE∗ is at least 1−α .
The modulus of continuityϑ of f E∗ is determined by:
“Let x,y ∈ E∗. Let n be the smallest index such thatx,y are not in the same

En,m. Then|x− y| ≥ εn ˜̃ηnK−1
n L−1

n |E| and| f (x)− f (y)| ≤ L−1
n−1.” which translates

to ϑ(εnη̃nK−1
n L−1

n−1|E|) ≤ L−1
n−1, or, for t in this rangeϑ(t) = O(tαn), and for allt

(24) ϑ(t) = O(tα)
◭

Remark: Reversing the inequalities in (20) by an appropriate choiceof the param-
eters we obtain a setE∗ that has positive measure in dimension 1−α , such that the
modulus of continuity off E∗ is bounded bytα |logt|α+ε ast → 0.
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3.3 Proof of theorem 3.1, partII. As in section 2, we write

(25) f (x) =
∞

∑
1

a jϕ(λ jx), and fn(x) =
n

∑
1

a jϕ(λ jx)

whereϕ is the 2-periodic function defined by (9),a j is fast decreasing,λ j fast
increasing. Botha j andλ j depend onα , and will be defined inductively.

Choose (arbitrarily)a1 = 1
2, andλ1 = 10.

Assuminga j andλ j have been chosen forj ≤ n, we shall choosean+1 small
(see below) and thenλn+1 a large enough integral multiple ofλn so that:

(26) λn | λn+1, and an+1λn+1 ≥ 2
n

∑
1

a jλ j,

The divisibility guarantees that thatfn is linear in each of the intervals( j
λn

, j+1
λn

)

and the successive inequalities in (26) that| d
dt fn| ≥

1
2anλn > 2n.

Let E be closed, and assume thatf E ∈ Lipα . Denote

En = {x :x ∈ E, | f (x)− f (y)| ≤ n|x− y|α for all y ∈ E such that|x− y| ≤ λ−1
n }.

Clearly En ⊂ En+1, and E∗ = lim En ⊃ E. It suffices, therefore, to show thatEn

can be covered by intervalsI j,n such that∑ j|I j,n|
β < εn,β , with εn,β → 0 for every

β > 1−α .

Write En, j = En ∩ [ j
λn

, j+1
λn

]. For x,y ∈ En, j, and in particular the pairx,y such
thatEn, j ⊂ [t,y] we have

(27) n|x− y|α ≥ | f (x)− f (y)| ≥
1
2

anλn|x− y|−2an+1.

If an+1 is small enough, this implies|x− y|1−α ≤ 2n
anλn

, andEn can be covered by

λn intervalsI j,n of length|I j,n| ≤
( 2n

anλn

)
1

1−α .

For anyβ ,

(28) |I j,n|
β ≤

( 2n
anλn

)
β

1−α
, and ∑|I j,n|

β ≤
(2n

an

)
β

1−α λ 1− β
1−α

n .

For β > 1−α the exponent ofλn is negative, and we takeλn big enough (after
choosingan).

This concludes the proof of theorem 3. ◭
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4 Lipschitz and monotone restrictions

4.1 Lipschitz restrictions. PartII of theorem 3 indicates that there are con-
tinuous functionsf such that if f E ∈ Lip1 then H -dimE = 0. The following
refinement shows that even iff is “almost” Lip1, the setE can be “arbitrarily”
thin.

Theorem. Given a Hausdorff determining function h, and a modulus of continuity
ω such that lims→0ω(s)/s = ∞, there exist functions f ∈Cω such that if f E ∈ Lip1,
then E has zero h-measure.

Notice that the assumption lims→0 ω(s)/s = ∞, allows ω(s) = O(sα) for all
α < 1. The correspondingf ∈Cω belongs to Lipα for all α < 1.

PROOF: We use again the series (25), namely

f =
∞

∑
1

a jϕ(λ jx),

and adapt the parametersan andλn to the current context. Botha j andλ j will be
defined inductively,a j will be fast decreasing,λ j fast increasing.

Denote byωn(s) = maxx, |τ |≤s an|ϕ(λn(x+τ))−ϕ(λn(x))|, the modulus of con-
tinuity of anϕ(λnx). The condition∑n ωn(s) = O(ω(s)), ass → 0, guarantees that
f ∈Cω . Observe that

(29) ωn(s) = min(an,anλns) =

{

an if s > λ−1
n

anλns if 0 ≤ s ≤ λ−1
n .

i. The first condition we impose onan,λn is: an ≤ ω(1/λn). It implies that
ωn(s) ≤ min(an,ω(s)) for all s. As ω(1/λ ) >> 1/λ , the condition is consistent
with havinganλn arbitrarily large.

ii. Givenan andλn, definecn by the conditionω(cn) = 2nanλncn = 2nωn(cn).
This implies that fors ≤ cn we haveω(s) ≥ 2nanλns and

(30) ωn(s) ≤

{

an if s > cn

2−nω(s) if s ≤ cn.

so that forcn+1 ≤ s ≤ cn we have∑ω j(s) ≤ ω(s)+ ∑∞
j=n+1a j. It follows that if

an decreases fast enough (whileλn increases, allowinganλn to be as large as is
needed), we have indeedf ∈Cω .
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iii. Assuminga j andλ j have been chosen forj ≤ n, we shall choosean+1 small
(see below) and thenλn+1 a large enough integral multiple ofλn so that:

(31) λn | λn+1, and an+1λn+1 ≥ 2
n

∑
1

a jλ j,

The divisibility guarantees that thatfn is linear in each of the intervals( j
λn

, j+1
λn

)

and the successive inequalities in (31) that| d
dt fn| ≥

1
2anλn >> 2n.

Let E be closed, and assume thatf E ∈ Lip1. Denote

En = {x :x ∈ E, | f (x)− f (y)| ≤ n|x− y| for all y ∈ E such that|x− y| ≤ λ−1
n }.

Clearly En ⊂ En+1, and E∗ = lim En ⊃ E. It suffices, therefore, to show thatEn

can be covered by intervalsI j,n such that∑ j h(|I j,n|) < εn, with εn → 0.

Write En, j = En ∩ [ j
λn

, j+1
λn

]. If x,y ∈ En, j then

(32) n|x− y| ≥ | f (x)− f (y)| ≥
1
2

anλn|x− y|−2an+1

which implies|x−y| ≤ 4an+1/(anλn−2n). It follows thatEn can be covered byλn

arcs of length bounded byln = 4an+1/(anλn −2n) < 5an+1/anλn.
Choosean+1 small enough so thatλnh(ln) < n−n, and thenλn+1 appropriate to

guarantee (31).

Remark: The proof shows, in fact, thatE is Minkowski h-null. ◭

4.2 Monotone restrictions. Does there exist a functionf ∈C([0, 1) such that
if f E is monotone thenE has Hausdorff dimension 0?

Theorem. Given a Hausdorff determining function h, there exists f ∈ C([0, 1])

such that if f E is monotone, then E has zero h-measure.

PROOF: Now we have to give up the building blockϕ defined in (9) and the corre-
sponding functionsϕn. Let us denote byψm(x) the 1-periodic function satisfying:
ψm(0) = ψ(1) = 0, ψm(m−1) = 1 andψm(x) linear on[0, m−1] and on[m−1, 1].

Write f = ∑∞
1 a jψm j((−1) jλ jx) and fn = ∑n

1 a jψm j((−1) jλ jx), wherea j, m j,
andλ j will be defined inductively.

The first conditions are

(33) m j−1λ j−1 | m jλ j, and anλn ≥ 2
n−1

∑
1

a jm jλ j,
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so that fn is linear in each of the intervals (n-intervals)( j
mnλn

, j+1
mnλn

). Each such
interval is divided in the next generation into one “fast” interval on which
| d

dt fn+1| ∼ an+1mn+1λn+1 and the union of the remaining “slow” intervals on which
| d

dt fn+1| ∼ an+1λn+1.
For evenn (resp. oddn) fn is increasing (resp. decreasing) on the fast intervals

and decreasing (resp. increasing) on the unions of the slow ones contained in an
(n−1)-interval.

Let E be closed,f E monotone increasing. Letn be even. Then, ifJ is the slow
part of ann-interval, the diameter ofJ ∩E is bounded byan+1/anλn. The number
of suchJ’s is λn. Choosean+1 such thatλnh(an+1/anλn) → 0.

E \
⋃

J is covered by the union of the fastn-intervals that isλn intervals of
lengthm−1

n . Choosemn (after choosingλn) so thatλnh(m−1
n ) → 0. ◭

5 Restrictions of Hölder functions

5.1 Smoothness.

Theorem. Assume that 0 < β < α < 1. There exist functions f ∈ Lipβ such that if
f E ∈ Lipα , then E has Hausdorff dimension bounded by 1−α

1−β .

PROOF: We keep the notations used in the proof of theorem 4.1. As observed

there, the conditionf ∈ Lip β is equivalent toan = O
(

λ−β
n

)

(if λn grows fast

enough). Nowa
− α′

1−α
n λ 1− α′

1−α
n = O

(

λ−β α′

1−α +1− α′

1−α
n

)

and the exponent is negative if

α ′ > 1−α
1−β . ◭

Question. Is the following statement valid?
Assume 0 < β < α < 1. If f ∈ Lipβ there exists a set E such that H -dimE =

1−α
1−β , and f E ∈ Lipα .

5.2 Bounded variation. For α ∈ (0,1), denote by‖ ‖α the Lipα norm. It is
easy to see that‖aϕn‖α ∼ anα and ifnk increases fast enough, saynk+1 > 2nk, then

∑akϕnk ∈ Lipα if, and only if, ak = O
(

n−α
k

)

.

Theorem. There exists real-valued functions F ∈ Lipα such that if E ⊂ [0,1] is
closed and L M-dim(E) > 1

2−α then var(E,F) = ∞.
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PROOF: As in the example above defineF = ∑akϕnk where nownk = a−1/α
k . If

L M-dim(E) > 1
2−α , and we setsk = nα−2

k lognk, thenE containssk-separated
sequencesJ′k of lengthmk > 20nk, and var(E,F) = ∞ since for everyk,

(34) var(E,F) ≥ var(J′k,F) ≥ n2
kaksk = lognk.

◭

Question: Is the result best possible: does everyf ∈ Lipα have bounded vari-
ation on some set of dimensionc = 1

2−α ?

References

[1] Kahane, Jean-Pierre,Some random series of functions, Cambridge Studies in
Advanced Mathematics, Vol 5, second edition, Cambridge University Press,
1985.


