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Abstract  

This paper investigates the singular curves in the joint space of a family of planar parallel 

manipulators. It focuses on special points, referred to as cusp points, which may appear on these 

curves. Cusp points play an important role in the kinematic behavior of parallel manipulators since 

they make possible a nonsingular change of assembly mode. The purpose of this study is twofold. 

First, it exposes a method to compute joint space singular curves of 3-RPR planar parallel 

manipulators. Second, it presents an algorithm for detecting and computing all cusp points in the 

joint space of these same manipulators. 

1. Introduction 

Because at a singularity a parallel manipulator loses its stiffness, it is of primary importance to 

be able to characterize these special configurations. This is, however, a very challenging task for a 

general parallel manipulator1. Planar parallel manipulators have received a lot of attention1-8 

because of their relative simplicity with respect to their spatial counterparts. Moreover, studying the 

former may help understand the latter. Planar manipulators with three extensible leg rods, referred 

to as 3-RPR manipulators, have often been studied. Such manipulators may have up to six assembly 

modes7. The direct kinematics can be written in a polynomial of degree six3. Moreover, as is the 

case in most parallel manipulators, the singularities coincide with the set of configurations where 

two direct kinematic solutions coincide. It was first pointed out that to move from one assembly 
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mode to another, the manipulator should cross a singularity7. However, Innocenti8 showed, using 

numerical experiments, that this statement is not true in general. More precisely, this statement is 

only true under some special geometric conditions, such as similar base and mobile platforms9,10. In 

fact, an analogous phenomenon exists in serial manipulators that can change their posture (inverse 

kinematic solution) without meeting a singularity in general, but not under special geometric 

simplifications8,11-13. The nonsingular change of posture in serial manipulators was shown to be 

associated with the existence of points in the workspace where three inverse kinematic solutions 

meet, called cusp points13. Cusp points in serial manipulators were determined by looking for the 

triple roots of the inverse kinematics polynomial13 or from the equation of the workspace 

boundary14. Likewise, McAree9 pointed out that for a 3-RPR parallel manipulator (as well as for its 

spatial counterpart, the octahedral manipulator), if a point with triple direct kinematic solutions 

exists in the joint space, then the nonsingular change of assembly mode is possible. A condition for 

three direct kinematic solutions to coincide was established. However, no systematic exploitation of 

this condition was possible because the algebra involved was too complicated and to the authors’ 

knowledge, the work of McAree9 has never been pursued yet. Wenger15 showed that to accomplish 

a non-singular assembly-mode changing motion, a 3-RPR manipulator platform should encircle a 

cusp point in its joint space. Thus, determination of cusp points is of interest for planning 

trajectories. A procedure for computing joint space singularities of 3-RPR parallel manipulators was 

established in a previous paper16, where the cusp points were shown on the joint space singularities 

of these manipulators but no solution was proposed for computing these cusp points. 

In this paper, the abovementioned condition for computing cusp points is reviewed and 

exploited. An algorithm for the systematic detection of cusp points is developed. The method16 for 

computing and representing joint space singularities of 3-RPR planar parallel manipulators is first 

recalled. A descriptive analysis of the singular curves in slices of the joint space of 3-RPR parallel 

manipulators is conducted. It is shown that the number of cusp points depends on the slice of the 
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joint space in which these cusp points are determined. Moreover, the maximum number of cusp 

points depends on the geometry of the manipulator. This work helps better understand the topology 

of the joint space of parallel manipulators and finds applications in both design and trajectory 

planning. 

The following section introduces the 3-RPR manipulator and its constraint equations. Section 3 

is devoted to the determination of the singular curves in slices of the joint space. The existence 

condition of cusp points is derived in section 4 and an algorithm to determine these points 

automatically is provided. Section 6 is devoted to a descriptive analysis of singular curves in slices 

of the joint space. 

2. Preliminaries 

2.1 Manipulators under study 

The manipulators under study are 3-DOF planar parallel manipulators with three extensible leg 

rods (Fig. 1). These manipulators have been frequently studied4-8. Each of the three extensible leg 

rods is actuated with a prismatic joint. The geometric parameters of the manipulators are the three 

sides of the moving platform d1, d2, d3 and the position of the base revolute joint centers defined by 

A1, A2 and A3. The reference frame is centered at A1 and the x-axis passes through A2. Thus, A1 = (0, 

0), A2 = ( A2x , 0) and A3 = ( A3x , A3y). 
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Fig 1.  The 3-RPR parallel manipulator under study. 
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2.2 Constraint equations 

Let L ≡ (ρ1, ρ2, ρ3) define the lengths of the three leg rods and let θ ≡ (θ1, θ2, θ3) define the 

three angles between the leg rods and the x-axis. The six parameters (L, θ) can be regarded as a 

configuration of the manipulator but only three of them are independent, so that the configuration 

space is a 3-dimensional manifold embedded in a 6-dimensional space. The dependency between 

(L, θ) can be identified by writing the fixed distances between the three vertices of the mobile 

platform B1, B2, B3: 
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where bi is the vector defining the coordinates of Bi in the reference frame as function of L and 

θ. For more simplicity, (L, θ) will be omitted in the following equations. 

Expanding each Γi as a series about the configuration (L, θ) yields 
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If one keeps only the first-order and second-order terms, Eq.(2) can be written in matrix form 

as follows: 
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Equation (3) can be used to describe an arbitrary local motion at a given configuration of the 

manipulator9. When first order terms of Eq.(3) are sufficient to describe the motion, the manipulator 
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is in a regular configuration and the following equation (4) can be used instead of Eq.(3): 

 ( ) ( ), ,
0

∂ ∂
Δ + Δ =
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Γ L θ Γ L θ
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  (4) 

Otherwise the configuration (L,θ) is special and the manipulator meets a singularity. This 

happens when the constraint Jacobian ∂ ∂Γ/ θ  drops rank so that the second order terms of equation 

(3) are required to describe the constraints. The three vertices of the moving platform have the 

following coordinates in the fixed reference frame, 
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Thus, the constraint Jacobian can be put in the following form: 

 

( ) ( )

(
)

(
)

1 2 1 2 12 2 1 21 2 2

2 2 3 2 3 2 3 3

3 23 3 2 2 23 3 3

1 3 1 3 31 3 3 3 1 31

3 1 3 3

0

( ) ( )
2 0

( (
0

) )

x x

x x x x

y y

x x

y y

A s s s A s

A A s A A s

s A c s A c

A s s A s s
A c A c

ρ ρ ρ ρ

ρ ρ

ρ ρ

ρ ρ ρ ρ

⎡ ⎤
⎢ ⎥

+ −⎢ ⎥
⎢ ⎥

− − −⎢ ⎥∂
= ⎢ ⎥∂ − + − +⎢ ⎥

⎢ ⎥
⎢ ⎥− − −
⎢ ⎥− −⎢ ⎥⎣ ⎦

Γ
θ

 (5)

 

where ( )sini is θ= , ( )cosi ic θ=  and ( )sinij i js θ θ= − . 

3. Jointspace Singular Curves 

The manipulator is in a singular configuration whenever the axes of its three leg rods are 

concurrent or parallel17. 
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Fig 2.  A 3-RPR parallel manipulator on a singular configuration 

 

We derive the condition for the three leg axes to intersect at a common point (possibly at 

infinity). We first write the equations of the three leg axes: 
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 (6) 

Eliminating x and y in (6) yields the following singularity equation in the task parameters (θ1, 

θ2, θ3): 

 ( )2 2 31 3 3 3 3 12 0x x yA s s A s A c s+ − =  (7) 

where ( )sini is θ= , ( )cosi ic θ=  and ( )sinij i js θ θ= − . 

It is possible to express Eq (7) as function of the joint space parameters ρ1, ρ2 and ρ3 by using 

the constraint equations of the 3-RPR manipulator. However, the resulting equation would be too 

complicated to yield real insights and difficult to handle. Our approach to compute the singular 

configurations in the joint space consists in reducing the dimension of the problem. We consider 

two-dimensional slices of the configuration space by fixing the first leg rod length ρ1. 

 Step 1: We rewrite Eq. (7) as a function of ρ1, α and θ1 using the constraint equations of the 

manipulator: 
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The first (resp. last) two equations make it possible to express ρ2 (resp. ρ3) as function of ρ1, α 

and θ1. Then, c2 and s2 (resp. c3 and s3) are calculated as function of ρ1, α and θ1 from the first (resp. 

last) two equations of (8) and their expressions are input in Eq. (7), which, now, depend only on ρ1, 

α and θ1. 

Step 2: We fix a value for ρ1, so Eq. (7) depends now only on α and θ1. By varying α or θ1, we 

compute the roots of the equation, to obtain the singular configurations (αs, θ1s) for a fixed ρ1s. 

Step 3: For every singular configuration computed in the second step of the approach, we 

calculate the corresponding values ρ2s and ρ3s using equation system (9). We have thus the singular 

configurations curves in a slice of the joint space (ρ2, ρ3) for a fixed value of ρ1: 
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 (9) 

Figure 3 shows a slice of the joint space singular configurations for ρ1=17 obtained for the 

same 3-RPR manipulator used by several authors 1,8,9, which has the following geometric 

parameters: A1= (0, 0), A2= (15.91,0), A3 = (0, 10), d1= 17.04, d2= 16.54 and d3 = 20.84 in an 

arbitrary length unit. We refer only to this manipulator in this paper in order to illustrate our work. 
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Fig 3.  Singular curves in (α, θ1) for ρ1=17. Number of assembly modes is displayed in each region 

 

Figure 3 shows the singular curves in the joint space slice (ρ2, ρ3) defined by ρ1=17. These 

curves give rise to several regions with 2, 4 or 6 direct kinematic solutions. The six points 

pinpointed with circles are cusp points, where three direct kinematic solutions coincide. 

4. Determination of the Cusp Points 

4.1 Existence condition of cusp points 

For serial 3-DOF manipulators, the cusp points can be determined by deriving the condition 

under which the inverse kinematics polynomial admits three identical roots13. However this 

approach is much more complicated when applied to the direct kinematics polynomial of 3-RPR 

manipulators because this polynomial is of degree 6. 

An interesting alternative approach was proposed in McAree’s study9 by writing the condition 

under which the manipulator loses first and second order constraints. The resulting condition for 

triple coalescence of assembly modes was shown to take the following form: 
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where v is a unit vector in the right kernel of matrix ∂ ∂Γ/ θ , and u1, u2, u3 are the three 
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components of the unit vector u that spans the left kernel. Vectors u and v can be chosen in the set of 

nonzero rows and columns of the adjoint of matrix ∂ ∂Γ/ θ (i.e. the matrix of cofactors of the 

transpose of ∂ ∂Γ/ θ ), respectively. 

Calculating the adjoint of ∂ ∂Γ/ θ  from Eq. (5) yields:  
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Taking u (resp. v) as the first row (resp. column) of (11), Eq. (10) can be written as 
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In McAree’s study9, Eq. (13) was not expanded. McAree9 noted that the expansion of this 

equation was too complicated to yield any real insight. 

We have developed an algorithm to solve this equation for any 3-RPR manipulator and we have 
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implemented it in Maple. This algorithm detects all the cusp points inside the joint space of any 3-

RPR manipulators and computes their coordinates. We present it in next section. 

4.2 Algorithm for calculating cusp points 

The presence of cusp points allows the 3-RPR manipulator to undertake non-singular assembly 

mode changing trajectories; these special trajectories can be executed by encircling a cusp point. In 

their study9, the authors stated that cusp points are pernicious and should be avoided or designed out 

by judicious dimensioning. 

The configuration of the 3-RPR manipulator is given by six parameters: the three rod lengths 

(ρ1, ρ2, ρ3), and the platform position variables (θ1, θ2, θ3). Only three of these parameters are 

independent. In order to reduce the dimension of the problem, McAree9 shows that it is possible to 

consider two-dimensional slices of the configuration space by fixing one of the leg rod lengths. 

By doing so, the manipulator configuration can be fully defined by only two parameters. For 

example, for a fixed value of ρ1, a configuration may be fully defined by either (α,θ1) or (ρ2, ρ3). 

Note that in the first case, the configuration is defined in the output space by the position and the 

orientation of the moving platform (ρ1 and θ1 define the position of B1 in the plane and α defines the 

orientation of the moving platform in the plane). In the second case, the configuration is defined in 

the joint space by the lengths of the three leg rods. 

In our work, we have always taken ρ1 as the fixed parameter. After fixing the value of ρ1, we 

first calculate the singularity curves in (ρ2, ρ3), and then we compute all the cusp points of this two-

dimensional slice. 

4.2.1 Algorithm 
If we consider equation (7), we notice that it is a function of (θ1, θ2, θ3). The existence 

condition of cusp points (13) is a function of (ρ1, ρ2, ρ3) and (θ1, θ2, θ3). Our first goal is to establish 

an equation, which is a function of (ρ1, α, θ1), and then to solve it to obtain the coordinates of the 

cusp points. Thus, we first derive a set of equations from the geometry of the manipulator: 
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⎪
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 (15) 

The algorithm for detecting cusp points is implemented in MAPLE; its steps are presented 

below: 

1. First, the expression of cos(θ2), cos(θ3), sin(θ2) and sin(θ3) in (15) are substituted into the 

singularity equations (7). Then, sin(α) and cos(α) (resp. cos(θ1) and sin(θ1)) are written as 

function of tan(α/2) (resp. of tan(θ1/2)). As a consequence we obtain an equation of the 

form: 

 ( )1 1 1, , 0F t tρ =  (16) 

where ( )tant α=  and ( )1 1tant θ= . 

2. Then, the expression of cos(θ2), cos(θ3), sin(θ2) and sin(θ3) in (15) are substituted into 

equations (12) and (14). Applying then the tan-half substitution as above yields an equation 

of the form: 

 ( )1 1 1, , 0E t tρ =  (17) 

So, we notice that the two equations (7) and (13) are written now as function of three 

parameters only. 

3. We fix now ρ1, and we input the manipulator parameters d1, d2, d3, A2x, A3x and A3y. We have 

noticed that the direct substitution of the real values of ( )sin β and ( )cos β  into equations 

(16) and (17) make the equations resolution very complicated in the following steps. Thus, 
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we write ( )sin β and ( )cos β  as a function of an intermediate parameter h, which is the 

altitude of the moving triangle. 

4. The Maple resultant function is used to eliminate ( )tant α=  from the two equations (16) 

and (17). The resulting equation is a polynomial of degree 96 in ( )1 1tant θ= , which can be 

factored as follows: 

 3 11 2
1 2 3 1... 0n na a aa a

n nP P P P P Q−
− =  (18) 

where Q is a 24th-order univariate polynomial in t1 and P1, P2,…,Pn are quadratic and quartic 

polynomials in t1. Note that the factor form could not be obtained without the intermediate 

parameter h. 

5. We input the parameter h value. We solve equation (18). Each real root t1i is back-

substituted into (16), which is then solved for t. For every t1i, we obtain different values for 

tij. Finally, we get a number of solution couples (tij,t1i). 

6. We substitute the values of each solution couple (tij,t1i) into (17), and we keep only those 

solutions that satisfy this equation. 

The solutions (tij,t1i) kept in the last step should give the coordinates of the cusp points. To 

verify this, we calculate the direct kinematic solutions for each solution (tij,t1i). In many 

instances, we have found that some solutions do not yield three coincident solutions. This 

means that they are not associated with cusp points. So we reject them and we keep only 

those solutions that give three coincident direct kinematic solutions. These couples are the 

coordinates of the cusp points, we call them (αij,θ1i)cusp. 

After running our algorithm hundreds of times, we have noticed that in each case all cusp 

points were determined by the 24th-order polynomial Q of equation (18), that is, all remaining 

factors provided spurious solutions. Thus, we may conjecture that the cusp points are determined by 

Q, although we have no mathematical proof for this fact. All real roots of Q are the cusp points. 



 

 

13

With this conjecture, our algorithm simplifies significantly because instead of solving (18) (a 96th 

order polynomial), we just have to solve polynomial Q (a 24th order polynomial). 

To implement this result in the algorithm, we must change steps 5 and 6 into the following 

steps 5’ and 6’, and eliminate step 7:  

5'. We input the real value of parameter h. We solve the polynomial Q. We substitute every real 

root θ1i of Q into equation (16), and solve it for tan(α/2). For every θ1i, we obtain different 

values αij. Finally, we get a number of couples (αij,θ1i). 

6'. We substitute the values of each couple (αij,θ1i) into equation (17). The couples that satisfy 

this equation are the coordinates of the cusp points. We call them (αij,θ1i)cusp. 

Finally, to obtain the coordinates of the cusp points in the joint space (ρ1, ρ2, ρ3), we use the 

system of equations (9) computed from the geometry of the manipulator. We then obtain the cusp 

points in a slice of the joint space for a fixed value of ρ1. 

In step 7 of the algorithm, we have noticed that the existence condition of cusps generates 

solutions that do not provide triple direct kinematic solutions. This confirms the statement of 

McAree9 that the cusp existence condition that he established is a sufficient condition but not a 

necessary one. 

4.2.2 Algorithm Execution 
The algorithm execution time slightly depends on the value of ρ1 and of the 3-RPR manipulator 

parameters. It highly depends on the number of digits required for the calculation. For 90 digits 

(which is necessary to guaranty a good accuracy), it is about two minutes on a computer equipped 

with a 3GHz-Pentium 4 with 512 Mo of Ram. 

We present the results of an execution of the algorithm, for the same 3-RPR parallel 

manipulator introduced in section 3. For the same fixed value ρ1=14.98, as the one used in previous 

papers8,9, the algorithm detects six cusp points instead of five identified in the paper9. Figure 4 

shows the singular curves of the 3-RPR manipulator for ρ1=14.98, and the six cusp points 
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pinpointed with circles. The sixth point missed by McAree9 is the point A, it is circled with bold 

lines and in-boxed in a separate view. The zoomed view shows that it is really a cusp point. 

ρ2

ρ3

 
Fig 4.  Singular curves and cusp points in a slice of the 3-RPR manipulator joint space (ρ2,,ρ3) for ρ1=14.98. 

The coordinates of the six cusp points are given in the table 1 below 

 α  θ1 ρ2 ρ3 

Cusp A 50.67 deg -69.12 deg 0.84 3.77 

Cusp B -2.59 deg 177.32 deg 13.85 6.26 

Cusp C -122.89 deg 114.05 deg 31.27 16.17 

Cusp D 57.48 deg 133.77 deg 30.44 26.61 

Cusp E -0.59 deg 15.46 deg 16.02 29.56 

Cusp F 170.37 deg -10.65 deg 17.98 26.44 
Tab 1. Coordinates of the six cusp points for ρ1=14.98. 

5. Descriptive Analysis 

In this section, the singular curves are analysed in several slices of the joint space for the 

manipulator studied in papers8,9 and whose geometric parameters were given in section 3. Figure 5 

depicts the singular curves for increasing values of ρ1 and shows that the number of cusp points is 

not the same for all slices as we may have 0, 2, 4, 6 or 8 cusp points. In Fig. 5, regions with two 

assembly modes (resp. four, six) are filled in light grey (resp. in dark grey, in black). Zero-cusp 

slices are obtained for very small values of ρ1 only (ρ1=0.05 in Fig. 5), where the singular curves are 

made of two separate closed curves that define only one small region with two assembly modes and 

a large void (note, the two curves are so close that the region cannot be seen in Fig. 5). When ρ1 is 
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increased, two cusp points appear, the void gets smaller and a four-solution region appears (ρ1=2). 

Then two more cusp points appear, defining one more four-solution region (ρ1=2.8). We have six 

cusp points and a small void at ρ1=6; for ρ1=8, 10, 12, 14, 16, 18, 20, 24 and 26, we have always six 

cusp points but the void is replaced with a six-solution region. Eight cusp points exist in a small 

vicinity of ρ1=27. Then two cusp points and the six-solution region disappear (ρ1=29). Finally, the 

number of cusp points stabilizes to four, defining one central four-solution region surrounded by a 

two-solution region (ρ1=31, …). Interestingly, this last pattern is very similar to the one often 

observed in a cross-section of the workspace of 3-R serial manipulators19. However, serial 

manipulators feature the same pattern in all cross-sections (the sections which passes through the 

first revolute joint axis), and variation in the number of cusp points arises only from a modification 

of the manipulator geometry. 

The above analysis shows that the joint space topology of 3-RPR manipulators is very 

complicated. Contrary to serial manipulators, the shape of the singular curves and the number of 

cusps points depend on which slice is chosen in the joint space. Thus, planning trajectories is not 

easy.  However, we have noticed that the pattern stabilizes for sufficiently large values of ρ1. 
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ρ2 ρ2 ρ2 ρ2

ρ3 ρ3 ρ3 ρ3

ρ1=27 ρ1=29 ρ1=31ρ1=26

ρ2 ρ2 ρ2

ρ1=16 ρ1=18 ρ1=20 ρ1=24
ρ2

ρ3 ρ3 ρ3 ρ3

ρ2

ρ1=8 ρ1=10

ρ2 ρ2

ρ1=12

ρ2

ρ3 ρ3 ρ3 ρ3

ρ1=14

ρ2

ρ1=0.05

ρ2

ρ1=2

ρ2 ρ2

ρ1=6

ρ3 ρ3 ρ3 ρ3

ρ1=2.8

ρ2

ρ1=34

ρ2

ρ1=50 ρ1=75

ρ2 ρ2

ρ3 ρ3 ρ3 ρ3

ρ1=100  
Fig 5.  Singular curve patterns for increasing values of ρ1. 

Figure 6 represents the singularities in the joint space of the manipulator studied when ρ1 varies 

from 0 to 50. To obtain this surface, we have imported the solutions obtained in step 4 into a CAD 

software, and we have meshed them together. 
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Fig 6.  Joint space singularity surfaces of the 3-RPR manipulator studied when ρ1 varies from 0 to 50. 

The surface depicted in Figure 6 is of interest: 

i. for planning trajectories in the joint space because it shows clearly the joint space regions that 

are free of singularities.  

ii. for manipulator design, because it offers a tool for defining the values of the joint limits such 

that the joint space is a singularity-free box. 

We can see clearly in figure 6 how the number of cusp points and the topology of the slices 

stabilize for ρ1>31. 

This feature has been observed in many other manipulator geometries. For example, the 3-RPR 

manipulator defined by the following geometric parameters: A1= (0,0), A2= (3,0), A3 = (1.1,2.7), d1= 

1.3, d2= 0.9 and d3 = 0.4 in an arbitrary length unit, has a constant pattern as soon as ρ1>5 (Fig. 7). 

Note that, in contrast with the stabilized pattern obtained for the preceding manipulator, this pattern 

features a large void.  

 Most of the research work on parallel manipulators has focused on the analysis and 

optimization of the workspace. If the workspace is useful for manipulator design, the analysis of 
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singular curve patterns in the joint space can be used as a complementary tool to compare several 

manipulator geometries. 

 
Fig 7.  Stabilized singular curve patterns for another manipulator geometry plotted for ρ1=5 (left) and 

ρ1=20 (right). 

6. Conclusions 

A procedure for computing joint space singularities of 3-RPR parallel manipulators has been 

presented in this paper. Then, the existence condition of cusp points defined by McAree9 has been 

reviewed and exploited. An algorithm able to detect and to compute cusp points inside any section 

of the joint space of any 3-RPR parallel manipulator has been established. To the best of the 

authors’ knowledge, such an algorithm had never been proposed before. The algorithm results in a 

96th degree univariate polynomial that can be put in a factored form. We have showed with intensive 

numerical experiments that the coordinates of the cusp points are the real roots of a 24th degree 

univariate polynomial, which is one of the factors of the 96th polynomial. Finally, a descriptive 

analysis of the singular curves in slices of the joint space of 3-RPR parallel manipulators has been 

conducted, with a special focus on the cusp points on these singular curves. It has been shown that, 

contrary to what arises in serial manipulators where any cross section of the workspace exhibits the 

same pattern of singular curves and cusp points, this pattern depends on the choice of the slice in the 

joint space for a given 3-RPR parallel manipulator. On the other hand, we have noticed that it is 

possible to have a constant pattern by adjusting the joint limits. It has been observed that the 
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maximum number of cusps depends on the manipulator geometry . No manipulators were found 

with more than eight cusp points. Most of the research work on parallel manipulators has been 

focused on the analysis and optimization of the workspace. This paper provides a complementary 

tool that helps better understand the topology of the joint space of parallel manipulators and finds 

applications in both design and trajectory planning. 
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