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Introduction

The self-similarity property for a stochastic process means that scaling of time is equivalent to an appropriate scaling of space. That is, a process (Y t ) t≥0 is selfsimilar of order H > 0 if for all c > 0 the processes (Y ct ) t≥0 and (c H Y t ) t≥0 have the same finite dimensional distributions. This property is crucial in applications such as network traffic analysis, mathematical finance, astrophysics, hydrology or image processing. We refer to the monographs [START_REF] Beran | Statistics for Long-Memory Processes[END_REF], [START_REF] Embrechts | Selfsimilar processes[END_REF] or [START_REF] Samorodnitsky | Stable Non-Gaussian random variables[END_REF] for complete expositions on theoretical and practical aspects of self-similar stochastic processes.

The most popular self-similar process is the fractional Brownian motion (fBm). Its practical applications are notorious. This process is defined as a centered Gaussian process (B H t ) t≥0 with covariance function

R H (t, s) := E(B H t B H s ) = 1 2 t 2H + s 2H -|t -s| 2H , t, s ≥ 0.
It can be also defined as the only Gaussian self-similar process with stationary increments.

Recently, this stochastic process has been widely studied from the stochastic calculus point of view as well as from the statistical analysis point of view. Various types of stochastic integrals with respect to it have been introduced and several types of stochastic differential equations driven by fBm have been considered (see e.g. [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF], Section 5). Another example of a selfsimilar process still with long memory (but non-Gaussian) is the so-called Rosenblatt process which appears as limit in limit theorems for stationary sequences with a certain correlation function (see [START_REF] Dobrushin | Non-central limit theorems for non-linear functionals of Gaussian fields[END_REF], [START_REF] Taqqu | Weak convergence to the fractional Brownian motion and to the Rosenblatt process[END_REF]). Although it received a less important attention than the fractional Brownian motion, this process is still of interest in practical applications because of its selfsimilarity, stationarity of increments and long-range dependence. Actually the numerous uses of the fractional Brownian motion in practice (hydrology, telecommunications) are due to these properties; one prefers in general fBm before other processes because it is a Gaussian process and the calculus for it is easier; but in concrete situations when the Gaussian hypothesis is not plausible for the model, the Rosenblatt process may be an interesting alternative model. We mention also the work [START_REF] Taqqu | A representation for self-similar processes[END_REF] for examples of the utilisation of non-Gaussian self-similar processes in practice.

The stochastic analysis of the fractional Brownian motion naturally led to the statistical inference for diffusion processes with fBm as driving noise. We will study in this paper the problem of the estimation of the drift parameter. Assume that we have the model

dX t = θb(X t )dt + dB H t , t ∈ [0, T ]
where (B H t ) t∈[0,T ] is a fractional Brownian motion with Hurst index H ∈ (0, 1), b is a deterministic function satisfying some regularity conditions and the parameter θ ∈ R has to be estimated. Such questions have been recently treated in several papers (see [START_REF] Kleptsyna | Statistical Analysis of the fractional Ornstein-Uhlenbeck process[END_REF], [START_REF] Tudor | Statistical Aspects of the fractional stochastic calculus[END_REF] or [START_REF] Sottinen | Parameter estimation for stochastic equations with additive fractional Brownian sheet[END_REF]): in general the techniques used to construct maximum likelihood estimators (MLE) for the drift parameter θ are based on Girsanov transforms for fractional Brownian motion and depend on the properties of the deterministic fractional operators related to the fBm. Generally speaking, the authors of these papers assume that the whole trajectory of the process is continuously observed. Another possibility is to use Euler-type approximations for the solution of the above equation and to construct a MLE estimator based on the density of the observations given "the past" (as in e.g. [START_REF] Rao | Statistical Inference for Diffusion Type Processes[END_REF], Section 3.4, for the case of stochastic equations driven by the Brownian motion).

In this work our purpose is to make a first step in the direction of statistical inference for diffusion processes with self-similar, long memory and non-Gaussian driving noise. As far as we know, there are not many result on statistical inference for stochastic differential equations driven by non-Gaussian processes which in addition are not semimartingales. The basic example of a such process is the Rosenblatt process. We consider here the simple model

X t = at + Z H t ,
where (Z H t ) t∈[0,T ] is a Rosenblatt process with known self-similarity index H ∈ ( 1 2 , 1) (see Sections 3 and Appendix for the definition) and a ∈ R is the parameter to be estimated. We mention that, since this process is not a semimartingale, it is not Gaussian and its density function is not explicitly known, the techniques considered in the Gaussian case cannot be applied here. We therefore use a different approach: we consider an approximated model in which we replace the noise Z H by a two-dimensional disturbed random walk Z H,n that, from a result is [START_REF] Torres | Donsker type theorem for the Rosenblatt process and a binary market model[END_REF], converges weakly in the Skorohod topology to Z H as n → ∞. Note that this approximated model still keeps the main properties of the original model since the noise is asymptotically self-similar and it exhibits long range dependence. We then construct a MLE estimator (called sometimes in the literature, see e.g. [START_REF] Rao | Statistical Inference for Diffusion Type Processes[END_REF] "pseudo-MLE estimator") using an Euler scheme method and we prove that this estimator is consistent. Although we have not martingales in the model, this construction involving random walks allows to use martingale arguments to obtain the asymptotic behavior of the estimators. Of course, this does not solve the problem of estimating a in the standard model defined above but we think that our approach represents a step into the direction of developing models driven by non-semimartingales and non-Gaussian noises.

Our paper is organized as follows. In Section 2 we recall some facts on the pseudo MLE estimators for the drift parameter in models driven by the standard Wiener process and by the fBm. We construct, in each model, estimators for the drift parameter and we prove their strong consistency (in the almost sure sense) or their L 2 consistency under the condition α > 1 where N α is the number of observations at our disposal and the step of the Euler scheme is 1 N . This condition extends the usual hypothesis in the standard Wiener case (see 2, see also [START_REF] Rao | Statistical Inference for Diffusion Type Processes[END_REF], paragraph 3.4). Section 3 is devoted to the study of the situation when the noise is the approximated Rosenblatt process; we construct again the estimator through an inductive method and we study its asymptotic behavior. The strong consistency is obtained under similar assumptions as in the Gaussian case. Section 4 contains some numerical simulations and in the Appendix we recall the stochastic integral representations for the fBm and for the Rosenblatt process.

Preliminaries

Let us start by recalling some known facts on maximum likelihood estimation in simple standard cases. Let (W t ) t∈[0,T ] be a Wiener process on a classical Wiener space (Ω, F, P ) and let us consider the following simple model

Y t = at + W t , t ∈ [0, T ] (1) 
with T > 0 and assume that the parameter a ∈ R has to be estimated. One can for example use the Euler type discretization of ( 1)

Y (n) t j+1 := Y t j+1 = Y t j + a∆t + W t j+1 -W t j , j = 0, . . . , N -1,
with Y t 0 = Y 0 = 0 and ∆t = t j+1t j the step size of the partition. In the following, we denote Y t j = Y j . In the following f Z denotes the density of the random variable Z.

The conditional density of Y j+1 with respect to Y 1 , . . . Y j is, by the Markov property, the same as the conditional density of Y j+1 with respect to Y j and since W t j+1 -W t j has the normal law N (0, ∆t), this density can be expressed by

f Y j+1 /Y j (y j+1 /y j ) = 1 2π(∆t) exp - 1 2 (y j+1 -y j -a∆t) 2 ∆t .
We easily obtain the likelihood function of the observations

Y 1 , . . . , Y N L(a, y 1 , . . . , y N ) = f Y 1 (y 1 ) N -1 j=1 f Y j+1 /Y j (y j+1 /y j ) = 1 (2π(∆t)) N/2 exp   - 1 2 N -1 j=0 (y j+1 -y j -a∆t) 2 ∆t   ,
and this gives a maximum likelihood estimation of the form

âN = 1 N ∆t N -1 j=0 (Y j+1 -Y j ),
and the difference âNa can be written as

âN -a = 1 N ∆t N -1 j=0 (W t j+1 -W t j ). Then E |â N -a| 2 = 1 N ∆t ,
and this converges to zero (that is, the estimator is L 2 -consistent) if and only if

N ∆t → ∞, N → ∞. (2) 
Note that the partition t j = j N with j = 0, . . . N does not satisfy (2).

Remark 1 Under condition (2) we get, by the strong law of large numbers, the almost sure convergence of the estimator âN to the parameter a.

Remark 2 We need in conclusion to consider an interval between observation of the order ∆t = 1 N α with α < 1 to have [START_REF] Dobrushin | Non-central limit theorems for non-linear functionals of Gaussian fields[END_REF]. Equivalently, if we dispose on N α observations with α > 1, i.e. T > N α-1 , and the interval ∆t is of order 1 N , condition (2) still holds. Using this fact, we will denote in the sequel by N α the number of observations and we will use discretization of order 1 N of the model.

Next, let us take a look to the situation when the Brownian motion W is replaced by a fractional Brownian motion B H with Hurst parameter H ∈ (0, 1). As far as we know, this situation has not been considered in the literature. The references [START_REF] Kleptsyna | Statistical Analysis of the fractional Ornstein-Uhlenbeck process[END_REF] or [START_REF] Tudor | Statistical Aspects of the fractional stochastic calculus[END_REF] uses a different approach, based on the observation of the whole trajectory of the process Y t below. The model is now

Y t = at + B H t , t ∈ [0, T ], (3) 
and as before we aim to estimate the drift parameter a by assuming that H is known and on the basis on discrete observations Y 1 , . . . , Y N α (the condition on α will be clarified later). We use the same Euler type method with t j = j N and we denote Y t j = Y j . We can easily found the following expression for the observations Y j , j = 1, . . . , N α ,

Y j = j a N + B H j N
.

We need to compute the density of the vector (Y 1 , . . . , Y N α ). Since the covariance matrix of this vector is given by Γ = (Γ i,j ) i,j=1,...,N α with

Γ i,j = Cov B H i N B H j N
, the density of (Y 1 , . . . , Y N α ) will be given by

(2π) -N α 2 1 √ det Γ exp - 1 2 y 1 - a N , . . . , y N α -N α a N t Γ -1 y 1 - a N , . . . , y N α -N α a N
and by maximizing the above expression with respect to the variable a we obtain the following MLE estimator

âN = N N α i,j=1 jΓ -1 i,j Y i N α i,j=1 ijΓ -1 i,j (4) 
and then

âN -a = N N α i,j=1 jΓ -1 i,j B H i N N α i,j=1 ijΓ -1 i,j , (5) 
where the Γ -1 i,j are the coordinates of the matrix Γ -1 .

Thus

E |â N -a| 2 = N 2 N α i,j,k,l=1 jlΓ -1 i,j Γ -1 k,l E B H i N B H k N N α i,j=1 ijΓ -1 i,j 2 = N 2 N α i,j,k,l=1 jlΓ -1 i,j Γ -1 k,l Γ i,k N α i,j=1 ijΓ -1 i,j 2 .
Note that

N α i,j,k,l=1 jlΓ -1 i,j Γ -1 k,l E B H i N B H k N = N α j,k,l=1 jlΓ -1 k,l N α i=1 Γ -1 i,j Γ i,k = N α j,k,l=1 jlΓ -1 k,l δ jk = N α j,l=1 jlΓ -1 j,l
and consequently

E |â N -a| 2 = N 2 1 N α i,j=1 ijΓ -1 ij = N 2-2H 1 N α i,j=1 ijm -1 ij where m -1 ij are the coefficients of the matrix M -1 with M = (m ij ) i,j=1,...,N α , m ij = 1 2 (i 2H + j 2H -|i -j| 2H
). Let x be the vector (1, 2, . . . , N α ) in R N α . We use the inequality

x t M -1 x ≥ x 2 2 λ
where λ is the largest eigenvalue of the matrix M . Then we will have

E |â N -a| 2 ≤ N 2-2H λ x 2 2 .
Since 1 2 + 2 2 + . . . p 2 = p(p+1)(2p+1)

6
we see that x 2 2 behaves as N 3α and on the other hand (by the Gersghorin Circle Theorem (see [START_REF] Golub | Matrix computations[END_REF], Theorem 8.1.3, pag. 395)

λ ≤ max i=1,...,N α N α l=1 |m il | ≤ CN α(2H+1) , with C a positive constant. Finally, E |â N -a| 2 ≤ CN 2-2H-3α+α(2H-1) = CN (2-2H)(1-α) (6) 
and this goes to zero if and only if α > 1.

Let us summarize the above discussion.

Proposition 1 Let (B H t ) t∈[0,T ] be a fractional Brownian motion with Hurst parameter H ∈ (0, 1) and let α > 1. Then the estimator (4) is L p consistent for any p ≥ 1.

Proof: Since for every n the random variable âna is a centered random variable, it holds that, for some positive constant depending on p (1-α) and this converges to zero as zero since α > 1.

E |â N -a| p ≤ c p E |â N -a| 2 p 2 ≤ c p N p(1-H)
It is also possible to obtain the almost sure convergence of the estimator to the the true parameter from the the estimate (6).

Proposition 2 Let (B H t ) t∈[0,T ] be a fractional Brownian motion with Hurst parameter H ∈ (0, 1) and let α > 1. Then the estimator ( 4) is strongly consistent, that is, âna → n→∞ p almost surely.

Proof: Using Chebyshev's inequality,

P |â n -a| > N -β ≤ c p N βp N p(1-H)(1-α) .
In order to apply the Borel-Cantelli lemma, we need to find a strictly positive β such that

N ≥1 N βp N p(1-H)(1-α) < ∞. One needs pβ + (1 -H)(1 -α)p < -1 and this is possible if and only if α > 1.
Remark 3 The fact that the restriction α > 1 is interesting because it justifies looking for another type of estimator for which no such restriction holds. But for the approach using the Euler scheme discretization, this restriction is somehow expected because it appear also also in the Wiener case (see [START_REF] Rao | Statistical Inference for Diffusion Type Processes[END_REF]).

Remark 4 Let us also comment on the problem of estimation of the diffusion parameter in the model [START_REF] Duflo | Random iterative models[END_REF]. Assume that the fractional Brownian motion B H is replaced by σB H in (3), with σ ∈ R. In this case it is known that the sequence

N 2H-1 N -1 i=0 Y i+1 N -Y i N 2
converges (in L 2 and almost surely ) to σ 2 . Thus we easily obtain an estimator for the diffusion parameter by using such quadratic variations. The above sequence has the same behavior if we replace the fBm B H by the Rosenblatt process Z H because the Rosenblatt process is also selfsimilar with stationary increments and it still satisfies E Z H t -Z H s 2 = |t -s| 2H for every s, t ∈ [0, T ] (see Section 4 for details). For this reason we assume throughout this paper that the diffusion coefficient is equal to 1.

MLE and random walks in the non-Gaussian case

We study in this section a non-Gaussian long-memory model. The driving process is now a Rosenblatt process with selfsimilarity order H ∈ ( 1 2 , 1). This process appears as a limit in the so-called Non Central Limit Theorem (see [START_REF] Dobrushin | Non-central limit theorems for non-linear functionals of Gaussian fields[END_REF] or [START_REF] Taqqu | Weak convergence to the fractional Brownian motion and to the Rosenblatt process[END_REF]). It can be defined through its representation as double iterated integral with respect to a standard Wiener process given by equation ( 13) in the Appendix. Among its main properties, we recall

• it exhibits long-range dependence (the covariance function decays at a power function at zero)

• it is H-selfsimilar in the sense that for any c > 0, (Z

H (ct)) = (d) (c H Z H (t))
, where " = (d) " means equivalence of all finite dimensional distributions ; moreover, it has stationary increments, that is, the joint distribution of (Z

H (t+h)-Z H (h), t ∈ [0, T ]) is independent of h > 0.
• the covariance function is

E(Z H t Z H s ) = 1 2 t 2H + s 2H -|t -s| 2H , s, t ∈ [0, T ]
and consequently, for every s, t ∈ [0, T ]

E Z H t -Z H s 2 = |t -s| 2H
• the Rosenblatt process is Hölder continuous of order δ < H

• it is not a Gaussian process; in fact, it can be written as a double stochastic integral of a two-variable deterministic function with respect to the Wiener process.

Assume that we want to construct a MLE estimator for the drift parameter a in the model

Y t = at + Z H t , t ∈ [0, T ].
We first note that the Rosenblatt process has only been defined for the self-similarity order H > 1 2 and consequently we will have in the sequel always H ∈ ( 1 2 , 1). The approaches used previously do not work anymore because the Rosenblatt process is still not a semimartingale and moreover, in contrast to the fBm model, its density function is not explicitly known anymore. The method based on random walks approximation offers a solution to the problem of estimating the drift parameter a. We will use this direction; that is, we will replace the process Z H by its associated random walk

Z H,N t = [N t] i,k=1;i =k N 2 i N i-1 N k N k-1 N F [N t] N , u, v dvdu ξ i √ N ξ k √ N , t ∈ [0, T ] (7) 
where the ξ i are i.i.d. variables of mean zero and variance one and the deterministic kernel F is defined in Appendix by [START_REF] Taqqu | A representation for self-similar processes[END_REF]. It has been proved in [START_REF] Torres | Donsker type theorem for the Rosenblatt process and a binary market model[END_REF] that the random walk [START_REF] Nualart | Stochastic calculus with respect to the fractional Brownian motion and applications[END_REF] converges weakly in the Skorohod topology to the Rosenblatt process Z H .

We consider the following discretization of the Rosenblatt process

(Z N,H j N
), j = 0, . . . N α ,

where for j = 1 Z H,N j N
is given by ( 7) and we set Z N

1 N = ξ 1 /N H . With this slight modification, the process (Z H,N j N
) still converges weakly in the Skorohod topology to the Rosenblatt process Z H . We will assume as above that the variables ξ i follows a standard normal law N (0, 1). Concretely, we want to estimate the drift parameter a on the basis of the observations

Y t j+1 = Y t j + a(t j+1 -t j ) + Z H,N t j+1 -Z H,N t j
where t j = j N , j = 0, . . . , N α and Y 0 = 0. We will assume again that we have at our disposal a number N α of observations and we use a discretization of order 1 N of the model. Denoting Y j := Y t j , we can write

Y j+1 = Y j + a N + Z H,N j+1 N -Z H,N j N
, j = 0, . . . , N α -1.

Now, we have

Z H,N j+1 N -Z H,N j N
= f j (ξ 1 , . . . , ξ j ) + g j (ξ 1 , . . . , ξ j )ξ j+1

where f 0 = 0, f 1 = f 1 (ξ 1 ) = -ξ 1 /N H and for j ≥ 2

f j = f j (ξ 1 , . . . , ξ j ) = N j i,k=1;i =k i N i-1 N k N k-1 N F j + 1 N , u, v -F j N , u, v dvdu ξ i ξ k ,
and g 0 = 1/N H for j ≥ 1

g j = g j (ξ 1 , . . . , ξ j ) = 2N j i=1 i N i-1 N j+1 N j N F j + 1 N , u, v dvdu ξ i .
Finally we have the model

Y j+1 = Y j + a N + f j + g j ξ j+1 . (8) 
In the following, we assume that (ξ 1 , . . . , ξ n , . . .) ∈ B where

B = ∩ j≥1 {g j (ξ 1 , . . . , ξ j ) = 0} .
The event B satisfy P(B) = 1.

Remark 5 Note that on the event B, conditioning with respect to the ξ 1 , • • • , ξ j is the same as conditioning with respect to the Y 1 , • • • , Y j . In fact, we have

Y 1 = a/N + ξ 1 /N H Y j = Y j-1 + a/N + f -1 (ξ 1 , . . . , ξ j-1 ) + ξ j g j-1 (ξ 1 , . . . , ξ j-1 ), j ≥ 2.
Since on B, for all j ≥ 2, g j-1 (ξ 1 , . . . , ξ j-1 ) = 0, the two σ-algebra σ(ξ 1 , . . . , ξ j-1 ) and σ(Y 1 , . . . , Y j-1 ) satisfy

σ(ξ 1 , . . . , ξ j-1 ) ∩ B = σ(Y 1 , . . . , Y j-1 ) ∩ B.
Then, given ξ 1 , . . . , ξ j the random variable Y j+1 is conditionally Gaussian and the conditional density of Y j+1 given Y 1 , . . . , Y j can be written as

f Y j+1 /Y 1 ,...,Y j (y j+1 /y 1 , . . . , y j ) = 1 2πg 2 j exp - 1 2 (y j+1 -y j -a/N -f j ) 2 g 2 j .
The likelihood function can be expressed as

L(a, y 1 , . . . , y N α ) = f Y 1 (y 1 )f Y 2 /Y 1 (y 2 /y 1 ) . . . f Y N α /Y 1 ,...,Y N α -1 (y N α /y 1 , . . . , y N α -1 ) = N α -1 j=0 1 2πg 2 j exp - 1 2 (y j+1 -y j -a/N -f j ) 2 g 2 j .
By standard calculations, we will obtain âN =

N N α -1 j=0 (Y j+1 -Y j -f j -a/N ) g 2 j N α -1 j=0 
1 g 2 j (9) 
and since

Y j+1 -Y j -f j = a N + g j ξ j+1 we obtain âN -a = N N α -1 j=0 ξ j+1 g j N α -1 j=0 1 g 2 j .
Let us comment on the above expression. Firstly, note that since N α -1 j=0 1 g 2 j is not deterministic anymore, the square mean of the difference âNa cannot be directly computed. Secondly, if we denote again by

A M = M -1 j=0 ξ j+1 g j this discrete process still satisfies E (A M +1 /F M ) = A M , ∀M ≥ 1
where F M is the σ-algebra generated by ξ 1 , . . . , ξ M . However we cannot speak about square integrable martingales brackets because A 2 M is not integrable (recall that the bracket is defined in general for square integrable martingales). In fact,

E(A 2 M ) = M j=0 E 1 g 2 j
and this is not finite in general because g j is a normal random variable. We also mention that, in contrast to the Gaussian case, the expectation of the estimator is not easily calculable anymore to decide if ( 9) is unbiased. On the other hand, from the numerical simulation it seems that the estimator is biased.

Nevertheless, martingale type methods can be employed to deal with the estimator [START_REF] Rao | Statistical Inference for Diffusion Type Processes[END_REF]. We use again the notation

A M = M -1 j=0 1 g 2 j .
The following lemma is crucial.

Lemma 1 Assume that α > 2 -2H and let us denote by

T N := 1 N 2 N α -1 j=0 1 g 2 j .
Then

T N N →∞ ----→ ∞ almost surely. Denote U N = 1 N 2   N α -1 j=0 1 g 2 j   1-γ .
Then there exists 0 < γ < 1, such that U N N →∞ ----→ ∞ almost surely.

Proof: Let prove the convergence for T N . We will use a Borel-Cantelli argument. To this end, we will show that

N ≥1 P T N ≤ N δ < ∞ (10) 
for some δ > 0. Fix 0 < δ < α -(2 -2H). We have

P T N ≤ N δ = P   N α -1 j=0 1 g 2 j ≤ N 2+δ   = P   1 N α -1 j=0 
1 g 2 j ≥ N -2-δ   .
We now choose a p integer large enough such that 1 p < α -(2 -2H)δ and we apply the Markov inequality. We can bound P T N ≤ N δ by

P T N ≤ N δ ≤ N (2+δ)p E 1 N α -1 j=0 
1 g 2 j p
and using the inequality "harmonic mean is less than the arithmetic mean" we obtain

P T N ≤ N δ ≤ N (2+δ)p N -2αp E   N α -1 j=0 g 2 j   p
Note that (the first inequality below can be argued similarly as in [START_REF] Sottinen | Fractional Brownian motion, random walks and binary market models[END_REF])

1 N 2H ≥ E Z H,N j+1 N -Z H,N j N 2 = E f 2 j + E g 2 j , it holds that E g 2 j := c j ≤ 1 N 2H . Since g j = √ c j X j where X j ∼ N (0, 1), by (3) 
P T N ≤ N δ ≤ N (2+δ-2α-2H)p E   N α -1 j=0 X 2 j   p ≤ N (2+δ-2α-2H)p N αp = N p(2+δ-α-2H)
and thus relation [START_REF] Samorodnitsky | Stable Non-Gaussian random variables[END_REF] is valid.

The convergence for U N can be obtained in a similar way with 0 < γ < 1 such that α(2-γ)-2+2Hγ > 0, 0 < δ < α(2-γ)-2+2Hγ and p such that 1/p < α(2-γ)-(2-2Hα)-δ.

We use the notation

V M := A 2 M A 1+γ M , M ≥ 1
and

B M := A M +1 -A M A 1+γ M +1
.

Note that V M and B M are

F M adapted. inequality ( n i=1 |a i b i |) 2 ≤ n i=1 |a i | 2 n i=1 |b i | 2 .
In this way we avoid the non-integrability of the random variable F defined above. We get

N α -1 j=0 ξ j+1 g j ≤   N α -1 j=0 ξ 2 j+1   1 2   N α -1 j=0 1 g 2 j   1 2
and then

|â N -a| ≤ N N α -1 j=0 ξ 2 j+1 1 2 N α -1 j=0 
1 g 2 j 1 2
and by saying that the harmonic mean is less that the arithmetic mean (we have the feeling that it is rather optimal in this case)

|â N -a| ≤ N 1-α   N α -1 j=0 ξ 2 j+1   1 2   N α -1 j=0 g 2 j   1 2 . ( 11 
)
We tried now to apply Hölder for E|â N -a| and this gives

E|â N -a| ≤ N 1-α   E   N α -1 j=0 ξ 2 j+1   p 2    1/p   E   N α -1 j=0 g 2 j   q 2    1/q
But now N α -1 j=0 ξ 2 j+1 is a chi-square variable with N α degree of freedom, its p moment behaves as N αp and it can be also proved that

E N α -1 j=0 g 2 j q 2 
1/q is of order less than N -α 2N -H (in the paper it is proved in the case q = 2) which unfortunately gives N α -1 j=0 ξ 2 j+1 ≤ N 1-H → ∞. One needs to compute directly the norm of |â N -a| in (11) by using the distribution of the vector (g 1 , . . . , g n ). But it turns out that this joint distribution is complicated and not tractable because of the presence of the kernel of the Rosenblatt process.

Simulation

We consider the problem of estimating a from the observations Y 1 , . . . , Y N (8) driven by the approximated Rosenblatt process respectively. In all of the cases, we use α = 2. We have implemented the estimator âN . We have simulated the observations Y 1 , . . . , Y N 2 for different values of H : 0.55, 0.75 and 0.9 and the values of a: 2 and 20. We consider the cases N = 100 and N = 200, in others words in the first case we have 10000 observations and in the second case 40000. For each case, we calculate 100 estimation âN and we give in the following tables the mean and the standard deviation of these estimation.

Finally in the model driven by the approximated Rosenblatt process (Section 3), we only construct an estimator that depends on the observations Y j and of the ξ j .

The results for N = 100 are the following. We can observe that the quality of estimation increases as N increases. We obtain these last estimations for the parameter of discretization N = 200. Since the computational cost is quite important, we do not implement the estimator for larger N . But although with N = 200, the estimator is quite good.

Appendix: Representation of fBm and Rosenblatt process as stochastic integral with respect to a Wiener process

The fractional Brownian process (B H t ) t∈[0,T ] with Hurst parameter H ∈ (0, 1) can be written (see e.g. [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF], Chapter 5 or [START_REF] Nualart | Stochastic calculus with respect to the fractional Brownian motion and applications[END_REF]) An analogous representation for the Rosenblatt process (Z H t ) t∈[0,T ] is (see [START_REF] Tudor | Analysis of the Rosenblatt process[END_REF]) 13) should be understood as a multiple integral of order 2 with respect to the Wiener process W . We refer to [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF] for the construction and the basic properties of multiple stochastic integrals.

B H t = t 0 K H (t,
Z H t = t 0 t 0 F (t,
Aknowledgement This work has been partially supported by project by the Laboratory ANESTOC PBCT ACT-13. Karine Bertin has been partially supported by Project FONDECYT 1090285. Soledad Torres has been partially supported by Project FONDECYT 1070919.

  s)dW s , t ∈ [0, T ] where (W t , t ∈ [0, T ]) is a standard Wiener process, K H (t, s) = c H s

				1 2 -H	s	t	(u -s) H-3 2 u H-1 2 du	(12)
				1	
	where t > s and c H =	H(2H-1) β(2-2H,H-1 2 )	2 and β(•, •) is the beta function. For t > s, we have
		∂K H ∂t	(t, s) = c H	s t	1 2 -H	(t -s) H-3 2 .

  y 1 , y 2 )dW y 1 dW y 2[START_REF] Taqqu | Weak convergence to the fractional Brownian motion and to the Rosenblatt process[END_REF] where (W t , t ∈ [0, T ]) is a Brownian motion,F (t, y 1 , y 2 ) = d(H)1 [0,t] (y 1 )1 [0,t] (y 2 )

				t y 1 ∨y 2	∂K H ′ ∂u	(u, y 1 )	∂K H ′ ∂u	(u, y 2 )du,	(14)
	H ′ = H+1 2	and d(H) = 1 H+1	H 2(2H-1)	-1 2 . Actually the representation (

We recall the Robbins-Siegmund criterium for the almost sure convergence which will play an important role in the sequel (see e.g. [START_REF] Duflo | Random iterative models[END_REF], page 18): let (V N ) N , (B N ) N be F N adapted, positive sequences such that

Then the sequence of random variables (V N ) N converges as N → ∞ to a random variable V ∞ almost surely on the set { N ≥1 B N < ∞}.

Lemma 2

The sequence V M converges to a random variable almost surely when M → ∞.

Proof: We make use of the Robbins-Siegmund criterium. It holds that

By Lemma 1 the sequence A M converges to ∞ and therefore

Once can conclude by applying the Robbins-Siegmund criterium.

We state now the main result of this section.

Theorem 1 The estimator ( 9) is strongly consistent.

and we conclude by Lemmas 1 and 2.

Comment: The L 1 (or L p ) consistence of the estimator ( 9) is on open problem. Note that its expression is a fraction whose numerator and denominator are non-integrable involving inverses of Gaussian random variables. The natural approaches to deal with do not work. A first basic idea when is to try to apply the Hölder inequality for the product F G with

. But when we do this, we are confronted with the moments of the random variable |F | and it has not moments. Indeed, the second moment is

which is obviously infinite. Even E|F | is infinite. Another way is to use the