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Abstract

We consider statistical models driven by Gaussian and non-Gaussian self-similar pro-
cesses with long memory and we construct maximum likelihood estimators (MLE) for the
drift parameter. Our approach is based on the approximation by random walks of the driv-
ing noise. We study the asymptotic behavior of the estimators and we give some numerical
simulations to illustrate our results.
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1 Introduction

The self-similarity is an invariance property after time scaling met in various topics of both
theoretical and applied sciences. The long range dependence (or long memory) property means
that in a model the correlations between the observations that are far apart decay to zero at
a slower rate that one would expect from the independent data. These two properties, that
appear many times together in practice, are crucial in applications such as network traffic
analysis, mathematical finance, astrophysics, hydrology or image processing. We refer to the
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monographs [1], [4] or [8] for complete expositions on theoretical and practical aspects of
self-similar long -memory processes.

In the last years the study, from the stochastic calculus point of view, of such processes
has been intensively developed. The most popular self-similar stochastic process that exhibits
long-range dependence is of course the fractional Brownian motion (fBm). Recently, stochastic
integrals of various types with respect to the fBm have been constructed and stochastic differ-
ential equations driven by the fBm have been considered (see e.g. [6]). Another example of a
self-similar process with long memory (but non-Gaussian) is the so-called Rosenblatt process
which appears as limit in limit theorems for stationary sequences with a certain correlation
function (see [2], [11]). Although it received a less important attention than the fractional
Brownian motion, this process is still of interest in practical applications because of its self-
similarity, stationarity of increments and long-range dependence. Actually the very large uti-
lization of the fractional Brownian motion in practice (hydrology, telecommunications) are due
to these properties; one prefers in general fBm before other processes because it is Gaussian
and to calculus for it is easier; but in concrete situations when the gaussianity hypothesis is
not plausible for the model, one can use use for example the Rosenblatt process.

The stochastic analysis of the fractional Brownian motion led to the statistical inference
for diffusion processes with fBm as driving noise. We refer here to the problem of the estimation
of the drift parameter. Assume that we have the model

dXt = θb(Xt)dt + dBH
t , t ∈ [0, T ]

where (BH
t )t∈[0,T ] is a fractional Brownian motion with Hurst index H ∈ (0, 1) and b is a

deterministic function satisfying some regularity conditions and assume that the parameter
θ ∈ R has to be estimated. Such questions have been recently treated in several papers (see [5]
for the case H ∈ (1

2 , 1) and b linear or [13] for the general case or [10] for the two-parameter
case): in general the techniques used to construct maximum likelihood estimators (MLE) for
the drift parameter θ are based on Girsanov transforms for fractional Brownian motion and
depends on the properties of the deterministic fractional operators related to the fBm. Another
possibility is to use Euler-type approximations for the solution of the above equation and to
construct a MLE estimator based on the density of the observations given ”the past”, as in
e.g. [7], Section 3.4.

In this work our purpose is to make a first step in the direction of statistical inference
for diffusion processes with self-similar, long memory and non-Gaussian driving noise. As
far as we know, there are not many result on statistical inference for stochastic differential
equations driven by non-Gaussian processes which in addition are not semimartingales. The
basic example of a such process is the Rosenblatt process. We consider here the simple model

Xt = at + ZH
t ,

where (ZH
t )t∈[0,T ] is a Rosenblatt process with known self-similarity index H ∈ (1

2 , 1) (see
Sections 4 and Appendix for the definition) and a ∈ R is the parameter to be estimated. We
mention that, since the process is not a semimartingale, it is not Gaussian and its density
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function is not explicitly known, the techniques used in the Gaussian case cannot be applied
here. We therefore use a different approach: we consider an approximated model in which we
replace the noise ZH by a two-dimensional disturbed random walk ZH,n that, from a result is
[12], converges weakly in the Skorohod topology to ZHas n → ∞. Note that this approximated
model still keeps the main properties of the original model since the noise is asymptotically
self-similar and it exhibits long range dependence. We then construct a MLE estimator (called
sometimes pseudo-MLE estimator) using an Euler scheme method (both in Gaussian and non-
Gaussian cases) and we prove that this estimator is strongly consistent. Although we have not
martingales in the model, this construction involving random walks allows to use martingale
arguments to obtain the asymptotic behavior of the estimators.

Our paper is organized as follows. In Section 2 we recall some facts on the pseudo MLE
estimators for the drift parameter in models driven by the standard Wiener process and by the
fBm. In Section 3 we introduce a statistical model driven by a disturbed random walk that
converges weakly to the fBm. We construct an estimator for the drift parameter and we prove
its strong consistency (in the almost sure sense) and its L2 consistency under the condition

α > 2 − 2H

where Nα is the number of observations at our disposal and the step of the Euler scheme
is 1

N . This conditions extends the usual hypothesis in the standard Wiener case (see 2, see
also [7], paragraph 3.4). Section 4 is devoted to the study of the situation when the noise is
the approximated Rosenblatt process; we construct again the estimator through an inductive
method and we study its asymptotic behavior. The strong consistency is obtained under the
same assumptions as in the Gaussian case. Section 5 contains some numerical simulations to
illustrate our main result and in Appendix we recall the stochastic integral representations for
the fBm and for the Rosenblatt process.

2 Preliminaries

Let us start by recalling some known facts on maximum likelihood estimation in simple stan-
dard cases. Let (Wt)t∈[0,T ] be a Wiener process on a classical Wiener space (Ω,F , P ) and let
us consider the following simple model

Yt = at + Wt, t ∈ [0, T ] (1)

with T > 0 and assume that the parameter a ∈ R has to be estimated. One can for example
use the Euler type discretization of (1)

Y
(n)
tj+1

:= Ytj+1
= Ytj + a∆t + Wtj+1

− Wtj , j = 0, . . . , N − 1,

with Yt0 = Y0 = 0 and ∆t = tj+1− tj the step size of the partition. In the following, we denote
Ytj = Yj. In the following fZ denotes the density of the random variable Z.
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The conditional density of Yj+1 with respect to Y1, . . . Yj is, by the Markov property,
the same as the conditional density of Yj+1 with respect to Yj and since Wtj+1

− Wtj has the
normal law N(0,∆t), this density can be expressed by

fYj+1/Yj
(yj+1/yj) =

1
√

2π(∆t)
exp

(

−1

2

(yj+1 − yj − a∆t)2

∆t

)

.

We easily obtain the likelihood function of the observations Y1, . . . , YN

L(a, y1, . . . , yN ) = fY1
(y1)

N−1
∏

j=1

fYj+1/Yj
(yj+1/yj) =

1

(2π(∆t))N/2
exp



−1

2

N−1
∑

j=0

(yj+1 − yj − a∆t)2

∆t



 ,

and this gives a maximum likelihood estimation of the form

âN =
1

N∆t

N−1
∑

j=0

(Yj+1 − Yj),

and the difference âN − a can be written as

âN − a =
1

N∆t

N−1
∑

j=0

(Wtj+1
− Wtj ).

Then

E |âN − a|2 =
1

N∆t
,

and this converges to zero (that is, the estimator is L2-consistent) if and only if

N∆t → ∞, N → ∞. (2)

Note that the partition tj = j
N with j = 0, . . . N does not satisfy (2).

Remark 1 Under condition (2) we get, by the strong law of large numbers, the almost sure
convergence of the estimator âN to the parameter a.

Remark 2 We need in conclusion to consider an interval between observation of the order
∆t = 1

Nα with α < 1 to have (2). Equivalently, if we dispose on Nα observations with α > 1,
i.e. T > Nα−1, and the interval ∆t is of order 1

N , condition (2) still holds. Using this fact,
we will denote in the sequel by Nα the number of observations and we will use discretization
of order 1

N of the model.

Next, let us take a look to the situation when the Brownian motion W is replaced by
a fractional Brownian motion BH with Hurst parameter H ∈ (1

2 , 1). The model is now

Yt = at + BH
t , t ∈ [0, T ], (3)
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and as before we aim to estimate the drift parameter a by assuming that H is known and on the
basis on discrete observations Y1, . . . , YNα (the condition on α will be clarified later). We use the
same Euler type method with tj = j

N and we denote Ytj = Yj. Since BH
tj+1

−BH
tj ∼ N(0, (∆t)2H )

we have

L(a, y1, . . . , yNα) = fY1
(y1)

N−1
∏

j=1

fYj+1/Yj
(yj+1/yj)

=
1

(2π(∆t)2H )
Nα

2

exp



−1

2

Nα−1
∑

j=0

(yj+1 − yj − a∆t)2

(∆t)2H





and we obtain the expression for the MLE

âN =
1

Nα∆t

Nα−1
∑

j=0

(Yj+1 − Yj) (4)

with

âN − a =
N

Nα

Nα−1
∑

j=0

(BH
(j+1)/N − BH

j/N ) (5)

and thus

|âN − a|2 = N2−2α
Nα−1
∑

i,j=0

E

(

(BH
(i+1)/N − BH

i/N )(BH
(j+1)/N − BH

j/N )
)

= N2−2H−2α + 2N2−2αN−2H
∑

i<j

(

|i − j + 1|2H + |i − j − 1|2H − 2|i − j|2H
)

= N2−2H−2α + 2N2−2αN−2H
Nα
∑

k=1

(Nα − k)
(

|k + 1|2H + |k − 1|2H − 2k2H
)

.

A simple study shows that the last sum
∑Nα

k=1(N
α−k)

(

|k + 1|2H + |k − 1|2H − 2k2H
)

behaves
as N → ∞ as N2Hα and therefore the estimator âN is L2 consistent if and only if

α > 1.

Remark 3 We would like to mention that, since the increments of the process BH are not
independent anymore, the almost sure convergent to zero of the difference (5) cannot be ob-
tained directly by the strong law of large numbers. Moreover, since the process BH is not a
semimartingale, the martingale type techniques cannot be used to study the estimator âN . This
problem will be avoided by the use of the random walks that approximate BH .
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Remark 4 Let us also comment on the problem of estimation of the diffusion parameter in
the model (3). Assume that the fractional Brownian motion BH is replaced by σBH in (3),
with σ ∈ R. In this case it is known that the sequence

N2H−1
N−1
∑

i=0

(

Y i+1

N

− Y i
N

)2

converges (in L2 and almost surely ) to σ2. Thus we easily obtain an estimator for the diffusion
parameter by using such quadratic variations. The above sequence has the same behavior if we
replace the fBm BH by the Rosenblatt process ZH because the Rosenblatt process is also self-
similar with stationary increments and it still satisfies E

∣

∣ZH
t − ZH

s

∣

∣

2
= |t − s|2H for every

s, t ∈ [0, T ] (see Section 4 for details). Therefore we will assume throughout this paper that the
diffusion coefficient is equal to 1.

3 MLE based on random walks: the Gaussian case

As we said, the form of the estimator (4) does not allow to apply martingale approaches to treat
this estimator. We therefore propose a new model: we replace in (3) the fractional Brownian
motion BH by the its associated disturbed random walk

BH,N
t =

[Nt]
∑

i=1

√
N

(

∫ i
N

i−1

N

KH

(

[Nt]

N
, s

)

ds

)

ξi, t ∈ [0, T ]

where the ξi are i.i.d. random variables with zero-mean and variance equal to 1 and KH is
defined in Appendix by (15). It has been proved in [9] that the sequence BH,N converges
weakly as N → ∞ in the Skorohod topology to the fBm. Our new model, with BH,N replacing
BH still keeps the main properties of the original process: it is a long range dependence model
and the distribution of the noise is asymptotically selfsimilar. We have a non-semimartingale
model but as we will see later, the martingales can be used to treat this model. Moreover,
the model can be extended to non-Gaussian case when the driven process is the Rosenblatt
process (Section 4).

More concretely, we want to estimate the drift parameter a on the basis of the obser-
vations

Ytj+1
= Ytj + a(tj+1 − tj) +

(

BH,N
tj+1

− BH,N
tj

)

where tj = j
N , j = 0, . . . , Nα and Y0 = 0. We will assume again that we have at our disposal

a number Nα of observations and we use a discretization of order 1
N of the model. Denoting

Yj := Ytj , we can write

Yj+1 = Yj +
a

N
+

(

BH,N
j+1

N

− BH,N
j

N

)

, j = 0, . . . , Nα − 1.
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Now, since

BH,N
j+1

N

− BH,N
j

N

= fj(ξ1, . . . , ξj) + Fjξj+1

where

fj(ξ1, . . . , ξj) = fj =
√

N

j
∑

i=1

∫ i
N

i−1

N

(

KH

(

j + 1

N
, s

)

− KH

(

j

N
, s

))

dsξi

and

Fj =
√

N

∫
j+1

N

j

N

K

(

j + 1

N
, s

)

ds,

we obtain
Yj+1 = Yj +

a

N
+ fj(ξ1, . . . , ξj) + Fjξj+1. (6)

Let us denote by Fj the σ-algebra generated by the random variables Y1, . . . , Yj . From relation
(6) it is clear that Fj coincides with the σ-algebra generated by ξ1, . . . , ξj for every j.

From now on, we will assume that the r.v. ξi follows a standard normal law N(0, 1).
Then, given ξ1, . . . , ξj the random variable Yj+1 is conditionally Gaussian and the conditional
density of Yj+1 given Y1, . . . , Yj can be written as

fYj+1/Y1,...,Yj
(yj+1/y1, . . . , yj) =

1
√

2πF 2
j

exp

(

−1

2

(yj+1 − yj − fj − a/N)2

F 2
j

)

The likelihood function can be expressed as

L(a, y1, . . . , yNα) = fY1
(y1)fY2/Y1

(y2/y1) . . . fYNα/Y1,...,YNα
−1

(yNα/y1, . . . , yNα−1)

=

Nα−1
∏

j=0

1
√

2πF 2
j

exp

(

−1

2

(yj+1 − yj − fj − a/N)2

F 2
j

)

.

This leads to the expression of the MLE

âN = N

∑Nα−1
j=0

(Yj+1−Yj−fj)

F 2
j

∑Nα−1
j=0

1
F 2

j

(7)

with

âN − a =
N
∑Nα−1

j=0
ξj+1

Fj
∑Nα−1

j=0
1

F 2
j

.

Remark 5 Clearly the estimator (7) is unbiased.

Let’s study the consistency of (7).
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Proposition 1 Assume that α > 2 − 2H. Then the estimator âN is L2-consistent, that is,

E |âN − a|2 N→∞−−−−→ 0.

Proof: By the independence of ξi, we can write

E |âN − a|2 = N2
E





∑Nα−1
j=0

ξj+1

Fj
∑Nα−1

j=0
1

F 2
j





2

= N2 1
∑Nα−1

j=0
1

F 2
j

.

We will need the following bound:

E

∣

∣

∣

∣

BH,N
j+1

N

− BH,N
j

N

∣

∣

∣

∣

2

≤ 1

N2H
. (8)

Indeed, we can write

BH,N
j+1

N

− BH,N
j

N

=

j
∑

i=1

√
N

(

∫ i
N

i−1

N

(

KH(
j + 1

N
) − KH(

j

N
)

)

ds

)

ξi

+
√

N

(

∫
j+1

N

j

N

KH(
j + 1

N
, s)ds

)

ξj+1

and thus

E

∣

∣

∣

∣

BH,N
j+1

N

− BH,N
j

N

∣

∣

∣

∣

2

=

j
∑

i=1

N

(

∫ i
N

i−1

N

(

KH(
j + 1

N
) − KH(

j

N
)

)

ds

)2

+ N

(

∫ j+1

N

j

N

KH(
j + 1

N
, s)ds

)2

≤
j
∑

i=1

∫ i
N

i−1

N

(

KH(
j + 1

N
) − KH(

j

N
)

)2

ds +

∫ j+1

N

j

N

KH(
j + 1

N
, s)2ds

= E

∣

∣

∣
BH

j+1

N

− BH
j

N

∣

∣

∣

2
=

1

N2H

where the second equality above can be seen by using the integral representation of the fBm
(see Appendix).

On the other hand, note that

1

N2H
= E

∣

∣

∣

∣

BH,N
j+1

N

− BH,N
j

N

∣

∣

∣

∣

2

= E |fj + ξj+1Fj |2 ≥ E(f2
j ) + F 2

j

8



and then, for every j = 0, . . . Nα − 1

F 2
j ≤ 1

N2H
. (9)

By (9), we obtain that
E |âN − a|2 ≤ N2−α−2H

and this converges to zero if α > 2 − 2H.

Remark 6 Note that for the use of the approximated model instead of the continuous time
model (3) we need a smaller number of observations because 2 − 2H < 1.

We introduce some notation. Set

AM =

M−1
∑

j=0

ξj+1

Fj

and note that (AM )M≥1 is a discrete martingale with respect to the filtration FM = σ (ξ1, . . . , ξM )
whose bracket is

〈A〉M :=

M−1
∑

j=0

1

F 2
j

.

We can therefore apply martingale results to treat the convergence a.s. of âN to the parameter
a. We recall for instance the Robbins-Siegmund criterium for the almost sure convergence (see
e.g. [3], page 18): let (VN )N , (BN )N be FN adapted, positive sequences such that

E (VN+1/FN ) ≤ VN + BN a.s. .

Then the sequence of random variables (VN )N converges as N → ∞ to a random variable V∞

almost surely on the set {∑N≥1 BN < ∞}.

Lemma 1 Let α > 2 − 2H. Then the sequence

1

N2





Nα−1
∑

j=0

1

F 2
j





1−γ

converges to ∞ for some 0 < γ < 1.

Proof: By (9) we get

1

N2





Nα−1
∑

j=0

1

F 2
j





1−γ

≥ N (α+2H)(1−γ)−2

9



and this converges to ∞ for α > 2
1−γ − 2H. Then one can find 0 < γ < 1 close enough to zero

to have this relation true.

We will regard now the almost sure convergence of the estimator (7).

Proposition 2 Assume that α > 2 − 2H. Then the estimator âN is strongly consistent, that
is âN → a a.s. as N → ∞.

Proof: We denote for 0 < γ < 1

VM :=
A2

M

〈A〉1+γ
M

, M ≥ 1.

We can write, for every 0 < γ < 1 and if M = Nα

(âN − a)2 =
VM

1
N2 〈A〉1−γ

M

. (10)

Since
E
(

A2
M+1/FM

)

= A2
M + 〈A〉M+1 − 〈A〉M ,

we have (note that 〈A〉M+1 is FM measurable)

E (VM+1/FM ) ≤ VM + BM

where we denote by

BM :=
〈A〉M+1 − 〈A〉M

〈A〉1+γ
M+1

.

Since 〈A〉M is a positive increasing sequence that converges to ∞ (cf. Lemma 1), we deduce
that

∑

M≥1

BM ≤ C +

∫ ∞

1
x−1−γds < ∞,

where C is a constant. The Robbins-Siegmund criterium will imply the almost sure convergence
of VM to a random variable V∞. Then applying Lemma 1 in (10), we deduce the almost sure
convergence of âN to a.

4 MLE and random walks in the non-Gaussian case

We study in this section a non-Gaussian long-memory model. The driving process is now a
Rosenblatt process with selsimilarity order H ∈ (1

2 , 1). This process appears as a limit in
the so-called Non Central Limit Theorem (see [2] or [11]). It can be defined through its
representation as double iterated integral with respect to a standard Wiener process given by
equation (16) in the Appendix. Among its main properties, we recall
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• it exhibits long-range dependence (the covariance function decay at a power function at
zero)

• it is H-selfsimilar in the sense that for any c > 0, (ZH(ct)) =(d) (cHZH(t)), where ” =(d) ”
means equivalence of all finite dimensional distributions ; moreover, it has stationary
increments, that is, the joint distribution of (ZH(t+h)−ZH(h), t ∈ [0, T ]) is independent
of h > 0.

• the covariance function is

E(ZH
t ZH

s ) =
1

2

(

t2H + s2H − |t − s|2H
)

, s, t ∈ [0, T ]

and consequently, for every s, t ∈ [0, T ]

E
∣

∣ZH
t − ZH

s

∣

∣

2
= |t − s|2H

• the Rosenblatt process is Holdër continuous of order δ < H

• it is not a Gaussian process; in fact, it can be written as a double stochastic integral of a
two-variable deterministic function with respect to the Wiener process

Assume that we want to construct a MLE estimator for the drift parameter a in the
model

Yt = at + ZH
t , t ∈ [0, T ].

The approaches used previously do not work anymore because the Rosenblatt process is still
not a semimartingale and moreover, in contrast to the fBm model, its density function is not
explicitly known anymore. The method based on random walks approximation offers a solution
to the problem of estimating the drift parameter a. We will use this direction; that is, we will
replace the process ZH by its associated random walk

ZH,N
t =

[Nt]
∑

i,k=1;i6=k

N2

∫ i
N

i−1

N

∫ k
N

k−1

N

F

(

[Nt]

N
,u, v

)

dvdu
ξi√
N

ξk√
N

, t ∈ [0, T ] (11)

where the ξi are i.i.d. variables of mean zero and variance one and the deterministic kernel F
is defined in Appendix by (17). It has been proved in [12] that the random walk (11) converges
weakly in the Skorohod topology to the Rosenblatt process ZH .

We consider the following discretization of the Rosenblatt process

(ZN,H
j

N

), j = 0, . . . Nα,

where for j 6= 1 ZH,N
j

N

is given by (11) and we set ZN
1

N

= ξ1/N
H . With this slight modification,

the process (ZH,N
j

N

) still converges weakly in the Skorohod topology to the Rosenblatt process

ZH . We will assume as above that the variables ξi follows a standard normal law N(0, 1).
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Concretely, we want to estimate the drift parameter a on the basis of the observations

Ytj+1
= Ytj + a(tj+1 − tj) +

(

ZH,N
tj+1

− ZH,N
tj

)

where tj = j
N , j = 0, . . . , Nα and Y0 = 0. We will assume again that we have at our disposal

a number Nα of observations and we use a discretization of order 1
N of the model. Denoting

Yj := Ytj , we can write

Yj+1 = Yj +
a

N
+

(

ZH,N
j+1

N

− ZH,N
j

N

)

, j = 0, . . . , Nα − 1.

Now, we have

ZH,N
j+1

N

− ZH,N
j

N

= fj(ξ1, . . . , ξj) + gj(ξ1, . . . , ξj)ξj+1

where f0 = 0, f1 = f1(ξ1) = −ξ1/N
H and for j ≥ 2

fj = fj(ξ1, . . . , ξj) = N

j
∑

i,k=1;i6=k

(

∫ i
N

i−1

N

∫ k
N

k−1

N

(

F

(

j + 1

N
,u, v

)

− F

(

j

N
, u, v

))

dvdu

)

ξiξk,

and g0 = 1/NH for j ≥ 1

gj = gj(ξ1, . . . , ξj) = 2N

j
∑

i=1

(

∫ i
N

i−1

N

∫
j+1

N

j

N

F

(

j + 1

N
,u, v

)

dvdu

)

ξi.

Finally we have the model

Yj+1 = Yj +
a

N
+ fj + gjξj+1. (12)

In the following, we assume that (ξ1, . . . , ξn, . . .) ∈ B where

B = ∩j≥1 {gj(ξ1, . . . , ξj) 6= 0} .

The event B satisfy P(B) = 1.

Remark 7 Note that on the event B, conditioning with respect to the ξ1, · · · , ξj is the same
as conditioning with respect to the Y1, · · · , Yj. In fact, we have

Y1 = a/N + ξ1/N
H

Yj = Yj−1 + a/N + f−1(ξ1, . . . , ξj−1) + ξjgj−1(ξ1, . . . , ξj−1), j ≥ 2.

Since on B, for all j ≥ 2, gj−1(ξ1, . . . , ξj−1) 6= 0, the two σ-algebra σ(ξ1, . . . , ξj−1) and
σ(Y1, . . . , Yj−1) satisfy

σ(ξ1, . . . , ξj−1) ∩ B = σ(Y1, . . . , Yj−1) ∩ B.

12



Then, given ξ1, . . . , ξj the random variable Yj+1 is conditionally Gaussian and the
conditional density of Yj+1 given Y1, . . . , Yj can be written as

fYj+1/Y1,...,Yj
(yj+1/y1, . . . , yj) =

1
√

2πg2
j

exp

(

−1

2

(yj+1 − yj − a/N − fj)
2

g2
j

)

.

The likelihood function can be expressed as

L(a, y1, . . . , yNα) = fY1
(y1)fY2/Y1

(y2/y1) . . . fYNα/Y1,...,YNα
−1

(yNα/y1, . . . , yNα−1)

=

Nα−1
∏

j=0

1
√

2πg2
j

exp

(

−1

2

(yj+1 − yj − a/N − fj)
2

g2
j

)

.

By standard calculations, we will obtain

âN =
N
∑Nα−1

j=0
(Yj+1−Yj−fj−a/N)

g2
j

∑Nα−1
j=0

1
g2

j

(13)

and since Yj+1 − Yj − fj = a
N + gjξj+1 we obtain

âN − a =
N
∑Nα−1

j=0
ξj+1

gj
∑Nα−1

j=0
1
g2

j

.

Let us comment on the above expression. Firstly, note that since
∑Nα−1

j=0
1
g2

j

is not

deterministic anymore, the square mean of the difference âN − a cannot be directly computed.
Secondly, if we denote again by

AM =

M−1
∑

j=0

ξj+1

gj

this discrete process still satisfies

E (AM+1/FM ) = AM , ∀M ≥ 1

where FM is the σ-algebra generated by ξ1, . . . , ξM . However we cannot speak about square
integrable martingales brackets because A2

M is not integrable (recall that the bracket is defined

in general for square integrable martingales). In fact, E(A2
M ) =

∑M
j=0 E

(

1
g2

j

)

and this is not

finite in general because gj is a normal random variable. We also mention that, in contrast to
the Gaussian case, the expectation of the estimator is not easily calculable anymore to decide if

13



(13) is unbiased. On the other hand, from the numerical simulation it seems that the estimator
is biased.

Nevertheless, martingale type methods can be employed to deal with the estimator
(13).

We use again the notation

〈A〉M =

M−1
∑

j=0

1

g2
j

.

The following lemma is crucial.

Lemma 2 Assume that α > 2 − 2H and let us denote by

TN :=
1

N2

Nα−1
∑

j=0

1

g2
j

.

Then TN
N→∞−−−−→ ∞ almost surely. Denote

UN =
1

N2





Nα−1
∑

j=0

1

g2
j





1−γ

.

Then there exists 0 < γ < 1, such that UN
N→∞−−−−→ ∞ almost surely.

Proof: Let prove the convergence for TN . We will use a Borel-Cantelli argument. To this
end, we will show that

∑

N≥1

P

(

TN ≤ N δ
)

< ∞ (14)

for some δ > 0.
Fix 0 < δ < α − (2 − 2H). We have

P

(

TN ≤ N δ
)

= P





Nα−1
∑

j=0

1

g2
j

≤ N2+δ





= P





1
∑Nα−1

j=0
1
g2

j

≥ N−2−δ



 .

We now choose a p integer large enough such that 1
p < α − (2 − 2H) − δ and we apply the

Markov inequality. We can bound P
(

TN ≤ N δ
)

by

P

(

TN ≤ N δ
)

≤ N (2+δ)p
E

∣

∣

∣

∣

∣

∣

1
∑Nα−1

j=0
1
g2

j

∣

∣

∣

∣

∣

∣

p
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and using the inequality ”harmonic mean is less than the arithmetic mean” we obtain

P

(

TN ≤ N δ
)

≤ N (2+δ)pN−2αp
E





Nα−1
∑

j=0

g2
j





p

Note that (the first inequality below can be argued similarly as the bound (8))

1

N2H
≥ E

∣

∣

∣

∣

ZH,N
j+1

N

− ZH,N
j

N

∣

∣

∣

∣

2

= E
(

f2
j

)

+ E
(

g2
j

)

,

it holds that

E
(

g2
j

)

:= cj ≤
1

N2H
.

Since gj =
√

cjXj where Xj ∼ N(0, 1), by (4)

P

(

TN ≤ N δ
)

≤ N (2+δ−2α−2H)p
E





Nα−1
∑

j=0

X2
j





p

≤ N (2+δ−2α−2H)pNαp = Np(2+δ−α−2H)

and thus relation (14) is valid.
The convergence for UN can be obtained in a similar way with 0 < γ < 1 such that

α(2−γ)−2+2Hγ > 0, 0 < δ < α(2−γ)−2+2Hγ and p such that 1/p < α(2−γ)−(2−2Hα)−δ.

We use the notation

VM :=
A2

M

〈A〉1+γ
M

, M ≥ 1

and

BM :=
〈A〉M+1 − 〈A〉M

〈A〉1+γ
M+1

.

Note that VM and BM are FM adapted.

Lemma 3 The sequence VM converges to a random variable almost surely when M → ∞.

Proof: As in the proof of Proposition 2 we make use of the Robbins-Siegmund criterium. It
holds that

E (VM+1/FM ) = E

(

A2
M+1

〈A〉1+γ
M+1

/FM

)

≤ 1

〈A〉1+γ
M+1

E
(

A2
M+1/FM

)

=
1

〈A〉1+γ
M+1

(

A2
M + 〈A〉M+1 − 〈A〉M

)

≤ VM + BM .
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By Lemma 2 the sequence 〈A〉M converges to ∞ and therefore

∑

N

BNα ≤ C +

∫ ∞

1
x−1−γds < ∞.

Once can conclude by applying the Robbins-Siegmund criterium.

We state now the main result of this section.

Theorem 1 The estimator (13) is strongly consistent.

Proof: We have

(âN − a)2 =
VNα

1
N2 〈A〉1−γ

Nα

=
VNα

UN

and we conclude by Lemmas 2 and 3.

5 Simulation

We consider the problem of estimating a from the observations Y1, . . . , YN in the model (12)
driven by the approximated Rosenblatt noise. We have implemented the estimator âN . We
have simulated the observations Y1, . . . , YN for different values of H: 0.55, 0.75 and 0.9 and
for the parameter of discretization N = 100 and the values of a: 2 and 20. For each case, we
calculate 200 estimation âN and we give in the following tables the mean and the standard
deviation of these estimation.

a = 2 H = 0.55 H = 0.75 H = 0.9

mean 2.23 2.24 2.14

stand. deviation 0.36 0.39 0.21

a = 20 H = 0.55 H = 0.75 H = 0.9

mean 20.29 20.25 20.11

stand. deviation 0.43 0.40 0.20

We obtain the estimations for the parameter of discretization N = 100 because the
computational cost is quite important for larger N . But although with N = 100, the estimator
is quite good.

Appendix: Representation of fBm and Rosenblatt process as
stochastic integral with respect to a Wiener process

The fractional Brownian process (BH
t )t∈[0,T ] with Hurst parameter H ∈ (0, 1) can be

written

BH
t =

∫ t

0
KH(t, s)dWs, t ∈ [0, T ]
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where (Wt, t ∈ [0, T ]) is a standard Wiener process,

KH(t, s) = cHs
1

2
−H

∫ t

s
(u − s)H− 3

2 uH− 1

2 du (15)

where t > s and cH =
(

H(2H−1)

β(2−2H,H− 1

2
)

) 1

2

and β(·, ·) is the beta function. For t > s, we have

∂KH

∂t
(t, s) = cH

(s

t

)
1

2
−H

(t − s)H− 3

2 .

An analogous representation for the Rosenblatt process (ZH
t )t∈[0,T ] is (see [14])

ZH
t =

∫ t

0

∫ t

0
F (t, y1, y2)dWy1

dWy2
(16)

where (Wt, t ∈ [0, T ]) is a Brownian motion,

F (t, y1, y2) = d(H)1[0,t](y1)1[0,t](y2)

∫ t

y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du, (17)

H ′ = H+1
2 and d(H) = 1

H+1

(

H
2(2H−1)

)− 1

2

.
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