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Abstract

We revise the notion of the quasi-sectorial contractions. Our main theorem estab-
lishes a relation between semigroups of quasi-sectorial contractions and a class of
m−sectorial generators. We discuss a relevance of this kind of contractions to the
theory of operator-norm approximations of strongly continuous semigroups.
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1 Sectorial Operators

Let H be a separable Hilbert space and let T be a densely defined linear
operator with domain dom(T ) ⊂ H.

Definition 1.1 The set of complex numbers:

N(T ) := {(u, Tu) ∈ C : u ∈ dom(T ), ‖u‖ = 1},

is called the numerical range of the operator T .

Remark 1.1 (a) It is known that the set N(T ) is convex (the Toeplitz-Hausdorff
theorem), and in general is neither open nor closed, even for a closed operator
T .
(b) Let ∆ := C \ N(T ) be complement of the numerical range closure in the
complex plane. Then ∆ is a connected open set except the special case, when
N(T ) is a strip bounded by two parallel straight lines.
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Below we use some important properties of this set, see e.g. [7, Ch.V], or [11,
Ch.1.6]. Recall that dim(ran(T ))⊥ =: def(T ) is called a deficiency (or defect)
of a closed operator T in H.

Proposition 1.1 (i) Let T be a closed operator in H. Then for any complex
number z /∈ N(T ), the operator (T − zI) is injective. Moreover, it has a closed
range ran(T − zI) and a constant deficiency def(T − zI) in each of connected
component of C \ N(T ).
(ii) If def(T − zI) = 0 for z /∈ N(T ), then ∆ is a subset of the resolvent set
ρ(T ) of the operator T and

‖(T − zI)−1‖ ≤
1

dist(z, N(T ))
. (1.1)

(iii) If dom(T ) is dense and N(T ) 6= C, then T is closable, hence the adjoint
operator T ∗ is also densely defined.

Corollary 1.1 For a bounded operator T ∈ L(H) the spectrum σ(T ) is a
subset of N(T ).

For unbounded operator T the relation between spectrum and numerical range
is more complicated. For example, it may very well happen that σ(T ) is not
contained in N(T ), but for a closed operator T the essential spectrum σess(T )
is always a subset of N(T ). The condition def(T − zI) = 0, z /∈ N(T ) in
Proposition 1.1 (ii) serves to ensure that for those unbounded operators one
gets

σ(T ) ⊂ N(T ) , (1.2)

i.e., the same conclusion as in Corollary 1.1 for bounded operators.

Definition 1.2 Operator T is called sectorial with semi-angle α ∈ (0, π/2)
and a vertex at z = 0 if

N(T ) ⊆ Sα := {z ∈ C : | arg z| ≤ α} .

If, in addition, T is closed and there is z ∈ C \ Sα such that it belongs to the
resolvent set ρ(T ), then operator T is called m-sectorial.

Remark 1.2 Let T be m-sectorial with the semi-angle α ∈ (0, π/2) and the
vertex at z = 0. Then it is obvious that the operators aT and Tb := T + b
belong to the same sector Sα for any non-negative parameters a, b ≥ 0. In fact
N(Tb) ⊆ Sα + b, i.e. the operator Tb has the vertex at z = b.

Some of important properties of the m-sectorial operators are summarized by
the following
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Proposition 1.2 If T is m-sectorial in H, then the semigroup {U(ζ) :=
e−ζ T} ζ generated by the operator T :
(i) is holomorphic in the open sector {ζ ∈ Sπ/2−α};
(ii) is a contraction, i.e. N(U(ζ)) is a subset of the unit disc Dr=1 := {z ∈
C : |z| ≤ 1} for {ζ ∈ Sπ/2−α}.

2 Quasi-Sectorial Contractions and Main Theorem

The notion of the quasi-sectorial contractions was introduced in [4] to study
the operator-norm approximations of semigroups. In paper [3] this class of
contractions appeared in analysis of the operator-norm error bound estimate
of the exponential Trotter product formula for the case of accretive perturba-
tions. Further applications of these contractions which, in particular, improve
the rate of convergence estimate of [4] for the Euler formula, one can find in
[9], [2] and [1].

Definition 2.1 For α ∈ [0, π/2) we define in the complex plane C a closed
domain:

Dα := {z ∈ C : |z| ≤ sin α} ∪ {z ∈ C : | arg(1 − z)| ≤ α and |z − 1| ≤ cos α}.

This is a convex subset of the unit disc Dr=1, with ”angle” (in contrast to
tangent) touching of its boundary ∂Dr=1 at only one point z = 1, see Figure
1. It is evident that Dα ⊂ Dβ>α.

Definition 2.2 (Quasi-Sectorial Contractions [4]) A contraction C on the
Hilbert space H is called quasi-sectorial with semi-angle α ∈ [0, π/2) with
respect to the vertex at z = 1, if N(C) ⊆ Dα.

Notice that if operator C is a quasi-sectorial contraction, then I − C is an
m-sectorial operator with vertex z = 0 and semi-angle α. The limits α = 0
and α = π/2 correspond, respectively, to non-negative (i.e. self-adjoint) and
to general contraction.

The resolvent of an m-sectorial operator A, with semi-angle α ∈ (0, π/4] and
vertex at z = 0, gives the first non-trivial (and for us a key) example of a
quasi-sectorial contraction.

Proposition 2.1 Let A be m-sectorial operator with semi-angle α ∈ [0, π/4]
and vertex at z = 0. Then {F (t) := (I+tA)−1} t≥0 is a family of quasi-sectorial
contractions which numerical ranges N(F (t)) ⊆ Dα for all t ≥ 0.
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Proof : First, by virtue of Proposition 1.1 (ii) we obtain the estimate:

‖F (t)‖ ≤
1

t dist(1/t , −Sα)
= 1 , (2.1)

which implies that operators {F (t)} t≥0 are contractions with numerical ranges
N(F (t)) ⊆ Dr=1.

Next, by Remark 1.2 for all u ∈ H one gets (u, F (t)u) = (vt, vt) + t(Avt, vt) ∈
Sα, where vt := F (t)u, i.e. for any t ≥ 0 the numerical range N(F (t)) ⊆ Sα.
Similarly, one finds that (u, (I − F (t))u) = t(v, Av) + t2(Av,Av) ∈ Sα, i.e.,
N(I − F (t)) ⊆ Sα. Therefore, for all t ≥ 0 we obtain:

N(F (t)) ⊆ (Sα ∩ (1 − Sα)) ⊂ Dr=1 . (2.2)

Moreover, since α ≤ π/4, by Definition 2.1 we get (Sα ∩ (1 − Sα)) ⊂ Dα, i.e.
for these values of α the operators {F (t)} t≥0 are quasi-sectorial contractions
with numerical ranges in Dα. ¤

Now we are in position to prove the main Theorem establishing a relation be-
tween quasi-sectorial contraction semigroups and a certain class of m-sectorial
generators.

Theorem 2.1 Let A be an m-sectorial operator with semi-angle α ∈ [0, π/4]
and with vertex at z = 0. Then {e−t A} t≥0 is a quasi-sectorial contraction
semigroup with numerical ranges N(e−t A) ⊆ Dα for all t ≥ 0.

The proof of the theorem is based on a series of lemmata and on the numerical
range mapping theorem by Kato [8] (see also an important comment about
this theorem in [10]).

Proposition 2.2 [8] Let f(z) be a rational function on the complex plane C,
with f(∞) = ∞. Let for some compact and convex set E ′ ⊂ C the inverse
function f−1 : E ′ 7→ E ⊇ K, where K is a convex kernel of E, i.e., a subset
of E such that E is star-shaped relative to any z ∈ K.

If C is an operator with numerical range N(C) ⊆ K, then N(f(C)) ⊆ E ′.

Notice that for a convex set E the corresponding convex kernel K = E.

Lemma 2.1 Let fn(z) = zn be complex functions, for z ∈ C and n ∈ N.
Then the sets fn(Dα) are convex and domains fn(Dα) ⊆ Dα for any n ∈ N,
if α ≤ π/4.
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Lemma 2.2 (Euler formula) Let A be an m-sectorial operator. Then for t ≥ 0
one gets the strong limit

s − lim
n→∞

(F (t/n))n = e−tA . (2.3)

The next section is reserved for the proofs. They refine and modify some
lines of reasonings of the paper [4]. This concerns, in particular, a corrected
proofs of Proposition 2.1 and Theorem 2.1 (cf. Theorem 2.1 of [4]), as well as
reformulations and proofs of Propositions 2.2 and Lemma 2.1.

3 Proofs

Proof (Lemma 2.1):
Let {z : |z| ≤ sin α} ⊂ Dα, then one gets |zn| ≤ sin α. Therefore, for the
mappings fn : z 7→ zn one obtains fn(z) ∈ Dα for any n ≥ 1.

Thus, it rests to check the same property only for images fn(Gα), n ≥ 1 of the
sub-domain:

Gα :={z : | arg(z)| <(π/2 − α)} ∩ {z : | arg(z + 1)| > (π − α)}⊂Dα, (3.1)

see Definition 2.1 and Figure 1.

For 0 ≤ t ≤ cos α, two segments of tangent straight intervals:

{ζ±(t) = 1 + t ei(π∓α)}0≤t≤cos α ⊂ ∂Dα,

are correspondingly upper ζ+(t) and lower ζ−(t) = ζ+(t) non-arc parts of
the total boundary ∂Dα; they also coincide with a part of the boundary ∂Gα

connected to the vertex z = 1.

Now we proceed by induction. Let n = 1. Then one obviously obtain :
fn=1(Dα) = Dα. For n = 2 the boundary ∂f2(Gα) of domain f2(Gα) is a
union Γ2(α) ∪ Γ2(α) of the contour

Γ2(α) := {f2(ζ+(t))}0≤t≤cos α ∪ {z : |z| ≤ sin2 α, arg(z) = (π − 2α)}

and its conjugate Γ2(α). Since arg(∂tf2(ζ+(t)) ≤ (π −α) for all 0 ≤ t ≤ cos α,
the contour

{f2(ζ+(t))}0≤t≤cos α ⊆ {z : | arg(z + 1)| > (π − α)},

see (3.1). The same is obviously true for the image of the lower branch ζ−(t).
If α ≤ π/4, one gets:
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sup
0≤t≤cos α

Im(f2(ζ+(t))) = Im(f2(ζ+(t∗ = (2 cos α)−1))) (3.2)

=
1

2
tan α < sin α cos α ,

where t∗ = (2 cos α)−1 ≤ cos α, and

0 ≥ Re(f2(ζ+(t))) ≥ − sin2 α cos 2α ≥ − sin α .

Therefore, {f2(ζ+(t))}0≤t≤cos α ⊆ Dα. Since the same is also true for the im-
age of the lower branch ζ−(t), we obtain f2(Gα) ⊂ Dα and by consequence
fn=2(Dα) = {w = z · z : z ∈ Dα, z ∈ fn=1(Dα)} ⊂ Dα, for α ≤ π/4.

Now let n > 2 and suppose that fn(Dα) ⊂ Dα. Then the image of the (n+1) −
order mapping of domain Dα is:

fn+1(Dα) = {w = z · zn : z ∈ Dα, zn ∈ fn(Dα)},

and since fn(Dα) ⊂ Dα, we obtain fn+1(Dα) ⊂ Dα by the same reasoning as
for n = 2. ¤

Remark 3.1 Let φ(t) := arg(ζ+(t)). Then cot(α + φ(t)) = (cos α − t)/ sin α
and

sup
0≤t≤cos α

Im(fn(ζ+(t))) ≤ (1 − 2t∗n cos α + (t∗n)2)n/2 (3.3)

for sin(nφ(t∗n)) = 1. In the limit n → ∞ this implies that φ(t∗n) = π/2n +
o(n−1), t∗n = π/(2n sin α) + o(n−1) and

lim
n→∞

sup
0≤t≤cos α

Im(fn(ζ+(t))) ≤ exp(−
1

2
π cot α) <

1

2
tan α. (3.4)

By the same reasoning one gets the estimates similar to (3.3) and (3.4) for
ζ−(t)). Hence, |Im(fn(ζ±(t)))| < Im(fn=1(ζ+(t))) < sin α cos α, cf. (3.2).

Notice that in spite of the arc-part of the contour ∂Dα shrinks in the limit
n → ∞ to zero, we obtain

lim
n→∞

sup
0≤t≤cos α

Re(fn(ζ+(t))) = − exp(−π cot α), (3.5)

for the left extreme point of the projection on the real axe (sin(nφ(t∗n)) = 1) of
the image fn(Dα). Since exp(−π cot α) < sin α, for α ≤ π/4, the arguments
(3.4) and (3.5) bolster the conclusion of the Lemma 2.1.
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Proof (Lemma 2.2):
By (2.1) we have for λ > 0

‖(λI + A)−1‖ < λ−1 , (3.6)

and since A is m-sectorial, we also get that (−∞, 0) ⊂ ρ(A). Then the Hille-
Yosida theory ensures the existence of the contraction semigroup {e−t A} t≥0,
and the standards arguments (see e.g. [7, Ch.V], or [11, Ch.1.1]) yield the
convergence of the Euler formula (2.3) in the strong topology. ¤

Proof (Theorem 2.1):
Take f(z) = z2 and the compact convex set E ′ := f(Dα) ⊆ Dα, see Lemma
2.1. Since the set E := f−1(E ′) = Dα ∪ (−Dα) is convex, its convex kernel K
exists and K = E. Then by Proposition 2.2 we obtain that N(f(C)) ⊆ E ′ ⊆
Dα, if the numerical range N(C) ⊆ K.

Let contraction C1 := (I + t A/2)−1 = F (t/2). Since by Proposition 2.1 for
any t ≥ 0 we have N(C1) ⊆ Dα and since Dα ⊂ E, we can choose K = E.
Then by the Kato numerical range mapping theorem (Proposition 2.2) we get:

N(f(C1) = F (t/2)2) ⊆ E ′ ⊆ Dα . (3.7)

Similarly, take the contraction C2 := F (t/4)2. Since (3.7) is valid for any t ≥ 0,
it is true for t 7→ t/2. Then by definition of K one has N(F (t/4)2) ⊆ Dα ⊆ K.
Now again the Proposition 2.2 implies:

N(f(C2) = F (t/4)4) ⊆ E ′ ⊆ Dα . (3.8)

Therefore, we obtain N(Fb(t/2
n)2n

) ⊆ Dα, for any n ∈ N. By Lemma 2.2 this
yields

lim
n→∞

(u, (I + t A/2n)−2n

u) = (u, e−t Au) ∈ Dα ,

for any unit vector u ∈ H. Therefore, the numerical ranges of the contraction
semigroup N(e−t A) ⊆ Dα for all t ≥ 0, if it is generated by m-sectorial operator
with the semi-angle α ∈ [0, π/4] and with the vertex at z = 0. ¤

4 Corollaries and Applications

1. Notice that Definition 2.2 of quasi-sectorial contractions C is quite restric-
tive comparing to the notion of general contractions, which demands only
N(C) ⊆ D1. For the latter case one has a well-known Chernoff lemma [5]:

‖(Cn − en(C−I))u‖ ≤ n1/2‖(C − I)u‖ , u ∈ H , n ∈ N , (4.1)
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which is not even a convergent bound. For quasi-sectorial contractions we can
obtain a much stronger estimate [4]:

∥

∥

∥Cn − en(C−I)
∥

∥

∥ ≤ M n−1/3 , n ∈ N , (4.2)

convergent to zero in the uniform topology when n → ∞. Notice that the rate
of convergence n−1/3 obtained in [4] with help of the Poisson representation
and the Tchebychev inequality is not optimal. In [9], [2] and [1] this estimate
was improved up to the optimal rate O(n−1), which one can easily verify for a
particular case of self-adjoint contractions (i.e. α = 0) with help of the spectral
representation.

The inequality (4.2) and its further improvements are based on the following
important result about the upper bound estimate for the case of quasi-sectorial
contractions:

Proposition 4.1 If C is a quasi-sectorial contraction on a Hilbert space H

with semi-angle 0 ≤ α < π/2, i.e. the numerical range N(C) is a subset of the
domain Dα, then

‖Cn(I − C)‖ ≤
K

n + 1
, n ∈ N . (4.3)

For the proof see Lemma 3.1 of [4].

2. Another application of quasi-sectorial contractions generalizes the Chernoff
semigroup approximation theory [5], [6] to the operator-norm approximations
[4].

Proposition 4.2 Let {Φ(s)}s≥0 be a family of uniformly quasi-sectorial con-
tractions on a Hilbert space H, i.e. such that there exists 0 < α < π/2 and
N(Φ(s)) ⊆ Dα, for all s ≥ 0. Let

X(s) := (I − Φ(s))/s ,

and let X0 be a closed operator with non-empty resolvent set, defined in a
closed subspace H0 ⊆ H. Then the family {X(s)}s>0 converges, when s → +0,
in the uniform resolvent sense to the operator X0 if and only if

lim
n→∞

∥

∥

∥Φ(t/n)n − e−tX0P0

∥

∥

∥ = 0 , for t > 0 . (4.4)

Here P0 denotes the orthogonal projection onto the subspace H0.

3. We conclude by application of Theorem 2.1 and Proposition 4.1 to the Euler
formula [4], [9], [2].

8



Proposition 4.3 If A is an m-sectorial operator in a Hilbert space H, with
semi-angle α ∈ [0, π/4] and with vertex at z = 0, then

lim
n→∞

∥

∥

∥(I + tA/n)−n − e−tA
∥

∥

∥ = 0, t ∈ Sπ/2−α.

Moreover, uniformly in t ≥ t0 > 0 one has the error estimate:
∥

∥

∥(I + tA/n)−n − e−tA
∥

∥

∥ ≤ O
(

n−1
)

, n ∈ N .
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Fig. 1. Illustration of the set Dα(= Σa∗
shaded domain) with boundary ∂Dα = Γa∗

,
where a∗ = sinα, as well as of our choice of the contour Γr in the resolvent set ρ(C),
where r = sinβ > a∗. The contour Γr consists of two segments of tangent straight
lines (1, A) and (1, B) and the arc (A,B) of radius r. The dotted circle ∂Dr=1/2

corresponds to the set of tangent points for different values of α ∈ [0, π/2].
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