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Sectorial Operators

Let H be a separable Hilbert space and let T be a densely defined linear operator with domain dom(T ) ⊂ H. Below we use some important properties of this set, see e.g. [7, Ch.V], or [START_REF] Zagrebnov | Topics in the theory of Gibbs semigroups[END_REF]Ch.1.6]. Recall that dim(ran(T )) ⊥ =: def(T ) is called a deficiency (or defect) of a closed operator T in H. ∈ N(T ), then ∆ is a subset of the resolvent set ρ(T ) of the operator T and

(T -zI) -1 ≤ 1 dist(z, N(T ))
.

(1.1) (iii) If dom(T ) is dense and N(T ) = C, then T is closable, hence the adjoint operator T * is also densely defined.

Corollary 1.1 For a bounded operator T ∈ L(H) the spectrum σ(T ) is a subset of N(T ).

For unbounded operator T the relation between spectrum and numerical range is more complicated. For example, it may very well happen that σ(T ) is not contained in N(T ), but for a closed operator T the essential spectrum σ ess (T ) is always a subset of N(T ). The condition def(T -zI) = 0, z / ∈ N(T ) in Proposition 1.1 (ii) serves to ensure that for those unbounded operators one gets

σ(T ) ⊂ N(T ) , (1.2) 
i.e., the same conclusion as in Corollary 1.1 for bounded operators.

Definition 1.2 Operator T is called sectorial with semi-angle α ∈ (0, π/2) and a vertex at z = 0 if

N(T ) ⊆ S α := {z ∈ C : | arg z| ≤ α} .
If, in addition, T is closed and there is z ∈ C \ S α such that it belongs to the resolvent set ρ(T ), then operator T is called m-sectorial. 2 Quasi-Sectorial Contractions and Main Theorem

The notion of the quasi-sectorial contractions was introduced in [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF] to study the operator-norm approximations of semigroups. In paper [START_REF] Cachia | Comments on the Trotter product formula error-bound estimates for nonself-adjoint semigroups[END_REF] this class of contractions appeared in analysis of the operator-norm error bound estimate of the exponential Trotter product formula for the case of accretive perturbations. Further applications of these contractions which, in particular, improve the rate of convergence estimate of [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF] for the Euler formula, one can find in [START_REF] Paulauskas | On operator-norm approximation of some semigroups by quasisectorial operators[END_REF], [START_REF] Cachia | Euler's exponential formula for semigroups[END_REF] and [START_REF] Bentkus | Optimal error estimates in operator-norm approximations of semigroups[END_REF].

Definition 2.1 For α ∈ [0, π/2) we define in the complex plane C a closed domain:

D α := {z ∈ C : |z| ≤ sin α} ∪ {z ∈ C : | arg(1 -z)| ≤ α and |z -1| ≤ cos α}.
This is a convex subset of the unit disc D r=1 , with "angle" (in contrast to tangent) touching of its boundary ∂D r=1 at only one point z = 1, see Figure

1. It is evident that D α ⊂ D β>α . Definition 2.2 (Quasi-Sectorial Contractions [4]) A contraction C on the Hilbert space H is called quasi-sectorial with semi-angle α ∈ [0, π/2) with respect to the vertex at z = 1, if N(C) ⊆ D α .
Notice that if operator C is a quasi-sectorial contraction, then I -C is an m-sectorial operator with vertex z = 0 and semi-angle α. The limits α = 0 and α = π/2 correspond, respectively, to non-negative (i.e. self-adjoint) and to general contraction.

The resolvent of an m-sectorial operator A, with semi-angle α ∈ (0, π/4] and vertex at z = 0, gives the first non-trivial (and for us a key) example of a quasi-sectorial contraction.

Proposition 2.1 Let A be m-sectorial operator with semi-angle α ∈ [0, π/4] and vertex at z = 0. Then {F (t) := (I +tA) -1 } t≥0 is a family of quasi-sectorial contractions which numerical ranges N(F (t)) ⊆ D α for all t ≥ 0.

Proof : First, by virtue of Proposition 1.1 (ii) we obtain the estimate:

F (t) ≤ 1 t dist(1/t , -S α ) = 1 , (2.1) 
which implies that operators {F (t)} t≥0 are contractions with numerical ranges

N(F (t)) ⊆ D r=1 .
Next, by Remark 1.2 for all u ∈ H one gets (u,

F (t)u) = (v t , v t ) + t(Av t , v t ) ∈ S α
, where v t := F (t)u, i.e. for any t ≥ 0 the numerical range N(F (t)) ⊆ S α .

Similarly, one finds that (u, (I -

F (t))u) = t(v, Av) + t 2 (Av, Av) ∈ S α , i.e., N(I -F (t)) ⊆ S α .
Therefore, for all t ≥ 0 we obtain:

N(F (t)) ⊆ (S α ∩ (1 -S α )) ⊂ D r=1 . (2.2) Moreover, since α ≤ π/4, by Definition 2.1 we get (S α ∩ (1 -S α )) ⊂ D α , i.e.
for these values of α the operators {F (t)} t≥0 are quasi-sectorial contractions with numerical ranges in D α .

Now we are in position to prove the main Theorem establishing a relation between quasi-sectorial contraction semigroups and a certain class of m-sectorial generators.

Theorem 2.1 Let A be an m-sectorial operator with semi-angle α ∈ [0, π/4] and with vertex at z = 0. Then {e -t A } t≥0 is a quasi-sectorial contraction semigroup with numerical ranges N(e -t A ) ⊆ D α for all t ≥ 0.

The proof of the theorem is based on a series of lemmata and on the numerical range mapping theorem by Kato [START_REF] Kato | Some mapping theorems for the numerical range[END_REF] (see also an important comment about this theorem in [START_REF] Uchiyama | Numerical ranges of elements of involutive Banach algebras and commutativity[END_REF]).

Proposition 2.2 [START_REF] Kato | Some mapping theorems for the numerical range[END_REF] Let f (z) be a rational function on the complex plane C, with f (∞) = ∞. Let for some compact and convex set

E ′ ⊂ C the inverse function f -1 : E ′ → E ⊇ K, where K is a convex kernel of E, i.e., a subset of E such that E is star-shaped relative to any z ∈ K. If C is an operator with numerical range N(C) ⊆ K, then N(f (C)) ⊆ E ′ .
Notice that for a convex set E the corresponding convex kernel K = E.

Lemma 2.1 Let f n (z) = z n be complex functions, for z ∈ C and n ∈ N.

Then the sets f n (D α ) are convex and domains

f n (D α ) ⊆ D α for any n ∈ N, if α ≤ π/4.

Lemma 2.2 (Euler formula)

Let A be an m-sectorial operator. Then for t ≥ 0 one gets the strong limit

s -lim n→∞ (F (t/n)) n = e -tA . (2.3)
The next section is reserved for the proofs. They refine and modify some lines of reasonings of the paper [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF]. This concerns, in particular, a corrected proofs of Proposition 2.1 and Theorem 2.1 (cf. Theorem 2.1 of [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF]), as well as reformulations and proofs of Propositions 2.2 and Lemma 2.1.

Proofs

Proof (Lemma 2. Thus, it rests to check the same property only for images f n (G α ), n ≥ 1 of the sub-domain:

G α := {z : | arg(z)| < (π/2 -α)} ∩ {z : | arg(z + 1)| > (π -α)} ⊂ D α , (3.1) 
see Definition 2.1 and Figure 1.

For 0 ≤ t ≤ cos α, two segments of tangent straight intervals: 

{ζ ± (t) = 1 + t e i(
f n=1 (D α ) = D α . For n = 2 the boundary ∂f 2 (G α ) of domain f 2 (G α ) is a union Γ 2 (α) ∪ Γ 2 (α) of the contour Γ 2 (α) := {f 2 (ζ + (t))} 0≤t≤cos α ∪ {z : |z| ≤ sin 2 α, arg(z) = (π -2α)} and its conjugate Γ 2 (α). Since arg(∂ t f 2 (ζ + (t)) ≤ (π -α) for all 0 ≤ t ≤ cos α, the contour {f 2 (ζ + (t))} 0≤t≤cos α ⊆ {z : | arg(z + 1)| > (π -α)}, see (3 
f n=2 (D α ) = {w = z • z : z ∈ D α , z ∈ f n=1 (D α )} ⊂ D α , for α ≤ π/4.
Now let n > 2 and suppose that f n (D α ) ⊂ D α . Then the image of the (n+1)order mapping of domain D α is: 

f n+1 (D α ) = {w = z • z n : z ∈ D α , z n ∈ f n (D α )},
Im(f n (ζ + (t))) ≤ (1 -2t * n cos α + (t * n ) 2 ) n/2 (3.3)
for sin(nφ(t * n )) = 1. In the limit n → ∞ this implies that φ(t * n ) = π/2n + o(n -1 ), t * n = π/(2n sin α) + o(n -1 ) and

lim n→∞ sup 0≤t≤cos α Im(f n (ζ + (t))) ≤ exp(- 1 2 π cot α) < 1 2 tan α. (3.4)
By the same reasoning one gets the estimates similar to (3.3) and (3.4) for

ζ -(t)). Hence, |Im(f n (ζ ± (t)))| < Im(f n=1 (ζ + (t))) < sin α cos α, cf. (3.2).
Notice that in spite of the arc-part of the contour ∂D α shrinks in the limit n → ∞ to zero, we obtain

lim n→∞ sup 0≤t≤cos α Re(f n (ζ + (t))) = -exp(-π cot α), (3.5) 
for the left extreme point of the projection on the real axe (sin(nφ(t * n )) = 1) of the image f n (D α ). Since exp(-π cot α) < sin α, for α ≤ π/4, the arguments (3.4) and (3.5) bolster the conclusion of the Lemma 2.1.

Proof (Lemma 2.2): By (2.1) we have for λ > 0

(λI + A) -1 < λ -1 , (3.6) 
and since A is m-sectorial, we also get that (-∞, 0) ⊂ ρ(A). Then the Hille-Yosida theory ensures the existence of the contraction semigroup {e -t A } t≥0 , and the standards arguments (see e.g. [7, Ch.V], or [START_REF] Zagrebnov | Topics in the theory of Gibbs semigroups[END_REF]Ch.1.1]) yield the convergence of the Euler formula (2.3) in the strong topology.

Proof (Theorem 2.1): Take f (z) = z 2 and the compact convex set

E ′ := f (D α ) ⊆ D α , see Lemma 2.1. Since the set E := f -1 (E ′ ) = D α ∪ (-D α ) is convex, its convex kernel K exists and K = E. Then by Proposition 2.2 we obtain that N(f (C)) ⊆ E ′ ⊆ D α , if the numerical range N(C) ⊆ K.
Let contraction C 1 := (I + t A/2) -1 = F (t/2). Since by Proposition 2.1 for any t ≥ 0 we have N(C 1 ) ⊆ D α and since D α ⊂ E, we can choose K = E. Then by the Kato numerical range mapping theorem (Proposition 2.2) we get:

N(f (C 1 ) = F (t/2) 2 ) ⊆ E ′ ⊆ D α . (3.7) 
Similarly, take the contraction C 2 := F (t/4) 

(u, (I + t A/2 n ) -2 n u) = (u, e -t A u) ∈ D α ,
for any unit vector u ∈ H. Therefore, the numerical ranges of the contraction semigroup N(e -t A ) ⊆ D α for all t ≥ 0, if it is generated by m-sectorial operator with the semi-angle α ∈ [0, π/4] and with the vertex at z = 0.

Corollaries and Applications

1. Notice that Definition 2.2 of quasi-sectorial contractions C is quite restrictive comparing to the notion of general contractions, which demands only N(C) ⊆ D 1 . For the latter case one has a well-known Chernoff lemma [START_REF] Chernoff | Note on product formulas for operator semigroups[END_REF]:

(C n -e n(C-I) )u ≤ n 1/2 (C -I)u , u ∈ H , n ∈ N , (4.1) 
which is not even a convergent bound. For quasi-sectorial contractions we can obtain a much stronger estimate [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF]:

C n -e n(C-I) ≤ M n -1/3 , n ∈ N , (4.2) 
convergent to zero in the uniform topology when n → ∞. Notice that the rate of convergence n -1/3 obtained in [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF] with help of the Poisson representation and the Tchebychev inequality is not optimal. In [START_REF] Paulauskas | On operator-norm approximation of some semigroups by quasisectorial operators[END_REF], [START_REF] Cachia | Euler's exponential formula for semigroups[END_REF] and [START_REF] Bentkus | Optimal error estimates in operator-norm approximations of semigroups[END_REF] this estimate was improved up to the optimal rate O(n -1 ), which one can easily verify for a particular case of self-adjoint contractions (i.e. α = 0) with help of the spectral representation.

The inequality (4.2) and its further improvements are based on the following important result about the upper bound estimate for the case of quasi-sectorial contractions:

Proposition 4.1 If C is a quasi-sectorial contraction on a Hilbert space H with semi-angle 0 ≤ α < π/2, i.e. the numerical range N(C) is a subset of the domain D α , then

C n (I -C) ≤ K n + 1 , n ∈ N . (4.3) 
For the proof see Lemma 3.1 of [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF].

2. Another application of quasi-sectorial contractions generalizes the Chernoff semigroup approximation theory [START_REF] Chernoff | Note on product formulas for operator semigroups[END_REF], [START_REF] Chernoff | Product formulas, nonlinear semigroups, and addition of unbounded operators[END_REF] to the operator-norm approximations [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF].

Proposition 4.2 Let {Φ(s)} s≥0 be a family of uniformly quasi-sectorial contractions on a Hilbert space H, i.e. such that there exists 0 < α < π/2 and N(Φ(s)) ⊆ D α , for all s ≥ 0. Let X(s) := (I -Φ(s))/s , and let X 0 be a closed operator with non-empty resolvent set, defined in a closed subspace H 0 ⊆ H. Then the family {X(s)} s>0 converges, when s → +0, in the uniform resolvent sense to the operator X 0 if and only if lim n→∞ Φ(t/n) n -e -tX 0 P 0 = 0 , for t > 0 . (4.4)

Here P 0 denotes the orthogonal projection onto the subspace H 0 .

3. We conclude by application of Theorem 2.1 and Proposition 4.1 to the Euler formula [START_REF] Cachia | Operator-norm approximation of semigroups by quasi-sectorial contractions[END_REF], [START_REF] Paulauskas | On operator-norm approximation of some semigroups by quasisectorial operators[END_REF], [START_REF] Cachia | Euler's exponential formula for semigroups[END_REF]. Moreover, uniformly in t ≥ t 0 > 0 one has the error estimate:

(I + tA/n) -n -e -tA ≤ O n -1 , n ∈ N . 

Definition 1 . 1

 11 The set of complex numbers: N(T ) := {(u, T u) ∈ C : u ∈ dom(T ), u = 1}, is called the numerical range of the operator T . Remark 1.1 (a) It is known that the set N(T ) is convex (the Toeplitz-Hausdorff theorem), and in general is neither open nor closed, even for a closed operator T . (b) Let ∆ := C \ N(T ) be complement of the numerical range closure in the complex plane. Then ∆ is a connected open set except the special case, when N(T ) is a strip bounded by two parallel straight lines.

Proposition 1 . 1

 11 (i) Let T be a closed operator in H. Then for any complex number z / ∈ N(T ), the operator (T -zI) is injective. Moreover, it has a closed range ran(T -zI) and a constant deficiency def(T -zI) in each of connected component of C \ N(T ). (ii) If def(T -zI) = 0 for z /

Remark 1 . 2 Proposition 1 . 2

 1212 Let T be m-sectorial with the semi-angle α ∈ (0, π/2) and the vertex at z = 0. Then it is obvious that the operators aT and T b := T + b belong to the same sector S α for any non-negative parameters a, b ≥ 0. In fact N(T b ) ⊆ S α + b, i.e. the operator T b has the vertex at z = b. Some of important properties of the m-sectorial operators are summarized by the following If T is m-sectorial in H, then the semigroup {U (ζ) := e -ζ T } ζ generated by the operator T : (i) is holomorphic in the open sector {ζ ∈ S π/2-α }; (ii) is a contraction, i.e. N(U (ζ)) is a subset of the unit disc D r=1 := {z ∈ C : |z| ≤ 1} for {ζ ∈ S π/2-α }.

  1): Let {z : |z| ≤ sin α} ⊂ D α , then one gets |z n | ≤ sin α. Therefore, for the mappings f n : z → z n one obtains f n (z) ∈ D α for any n ≥ 1.

Remark 3 . 1

 31 and since f n (D α ) ⊂ D α , we obtain f n+1 (D α ) ⊂ D α by the same reasoning as for n = 2. Let φ(t) := arg(ζ + (t)). Then cot(α + φ(t)) = (cos α -t)/ sin α and sup 0≤t≤cos α

Proposition 4 . 3

 43 If A is an m-sectorial operator in a Hilbert space H, with semi-angle α ∈ [0, π/4] and with vertex at z = 0, then lim n→∞ (I + tA/n) -n -e -tA = 0, t ∈ S π/2-α .

Fig. 1 .

 1 Fig. 1. Illustration of the set D α (= Σ a * shaded domain) with boundary ∂D α = Γ a * , where a * = sin α, as well as of our choice of the contour Γ r in the resolvent set ρ(C), where r = sin β > a * . The contour Γ r consists of two segments of tangent straight lines (1, A) and (1, B) and the arc (A, B) of radius r. The dotted circle ∂D r=1/2 corresponds to the set of tangent points for different values of α ∈ [0, π/2].

  .1). The same is obviously true for the image of the lower branch ζ -(t). Therefore, {f 2 (ζ + (t))} 0≤t≤cos α ⊆ D α . Since the same is also true for the image of the lower branch ζ -(t), we obtain f 2 (G α ) ⊂ D α and by consequence

	sup 0≤t≤cos α	Im(f 2 (ζ + (t))) = Im(f 2 (ζ + (t * = (2 cos α) -1 )))	(3.2)
		=	1 2	tan α < sin α cos α ,
	where t		
	If α ≤ π/4, one gets:	

* = (2 cos α) -1 ≤ cos α, and 0 ≥ Re(f 2 (ζ + (t))) ≥ -sin 2 α cos 2α ≥ -sin α .

  2 . Since (3.7) is valid for any t ≥ 0, it is true for t → t/2. Then by definition of K one has N(F (t/4) 2 ) ⊆ D α ⊆ K.

	Now again the Proposition 2.2 implies:	
	N(f (C 2 ) = F (t/4) 4 ) ⊆ E ′ ⊆ D α .	(3.8)
	Therefore, we obtain N(F b (t/2 n ) 2 n ) ⊆ D α , for any n ∈ N. By Lemma 2.2 this
	yields	
	lim n→∞	

Acknowledgements

I would like to thank Professor Mitsuru Uchiyama for a useful remark indicating a flaw in our arguments in Section 2 of [4] , revision of this part of the paper [4] is done in the present manuscript. I also thankful to Vincent Cachia and Hagen Neidhardt for a pleasant collaboration.