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A model of capillary cohesion for numerical simulations
of 3D polydisperse granular media

V. RichefeuT, M. S. El Youssoufi, R. Peyroux and F. Radjai

LMGC, UMR CNRS 5508, Université Montpellier 2,
cc 048, Place Eugene Bataillon, F-34095 Montpellier Celigikrance

SUMMARY

We present a three-dimensional discrete-element appfoanhmerical investigation of wet granular media. This
approach relies on basic laws of contact and Coulomb frigtiriched by a capillary force law between particles.
We show that the latter can be expressed as a simple expiigtibn of the gap and volume of the liquid bridge
connecting a pair of spherical particles. The length sdalesved in this expression are analyzed by comparing
with direct integration of the Laplace-Young equation. Westrate and validate this approach by application
to direct shear and simple compression loadings. The shelac@npression strengths obtained from simulations
reproduce well the experimental measurements under siméterial and boundary conditions. Our findings show
clearly that the number density of liquid bonds in the bulk idecisive parameter for the overall cohesion of wet
granular materials. A homogeneous distribution of theitlquithin the bridge debonding distance, even at low
volume contents, leads to highest cohesion. The latterdependent of the liquid content as far as the liquid
remains in the pendular state and the number density oflligohds remains constant. Copyrig&t2000 John
Wiley & Sons, Ltd.

KEY WORDS:. capillary cohesion, discrete element approach, sheamgitn, compression strength

1. INTRODUCTION

Granular materials are composed of well-defined particiés specific kinematics locally dictated by
steric constraints and unilateral interactions that aspaasible for the rich behavior of these materials
at the macroscopic scale. These materials can thus be mdodelbe particle scale, and various
particle properties (shape, size...) and contact intiemr@s(friction, adhesion. . .) can be quite naturally
introduced in discrete element numerical simulations efriraterial. In the same way, external and
environmental factors such as moisture and temperaturebmaycluded in the description through
dependence of local parameters with respect to such fadtospite of drawbacks, mainly related to
unavoidable simplification of the local description andnlbenber of particles limited by computational
efficiency, this approach with the corresponding numerieaielopments provides new scopes for a
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2 V. RICHEFEUET AL.

better understanding of the behavior of complex materialsftheir rich microstructural properties.
The discrete element method (DEM) for the simulation of drgngilar media, first popularized by
the pioneering work of Cundall [1], has evolved into a mateehnique during the two last decades
[2, 3, 4, 5]. The focus is now mostly directed towards theusimn of new ingredients such as cohesion
due to cementation or capillary bonding as in unsaturatisl [§5 7, 8, 9].

This paper is concerned with the mechanical behavior of watigar materials investigated both by
a discrete element approach and experiments. Wet granatarials are of primary interest to various
fields of science of engineering such as the mechanics otignasoils and wet processing of powders
[10, 11]. The capillary cohesion is negligibly small for esasoils or at high confining stresses. On the
other hand, the moisture and the resulting cohesion arertanidor fine surface soils. For example,
when plowing a wet granular soil, large cohesive aggregateformed. The largest capillary cohesion
force for millimeter-size sand grains is aboux4.0~* N independently of the volume of the capillary
bond. This force is nearly four times the grain weight, allogvthus for the formation of cohesive
aggregates. Transformations involving primary particdlglameration into coherent granules are of
special interest in many applications in a wide range of étidels such as pharmaceuticals, agronomic
products and detergents [10, 11].

Recently, several simulations of wet granular media haealveported [12, 13, 14]. Mikanat al.
[15] used this type of simulation together with a regressrpression for the liquid bridge force as
a function of liquid bridge volume and separation distaneavieen particles. They mainly studied
bubbling behavior and agglomerate formation in a fluidized &nd they found realistic results. Dense
agglomerates were simulated by Grogémal. [16] using a cohesive discrete element method. They
found a good agreement with experimental data for the yigkbs at all confining pressures down
to the value of the tensile stress. Shear strength behakiongaturated granulates was also studied
numerically by Jiangt al.[17] as a function of suction (pressure difference betweagnd and gas).

From the experimental point of view, the point is that clesktesting machines employed in soil
mechanics are designed to work at high levels of confinemedttiaey involve massive elements
that induce high inertia. For these reasons, they are ngitedidor wet granular materials. Direct
measurements of tensile strength by means of approprigriexental setups have been reported
recently [18, 19, 20]. In granular media, it is generally tmagore difficult to access local information
such as contact forces or liquid bonds. Few investigatiave recently been reported to visualize
liquid bonds by means of the index matching technique [2]., 22

Hence, both the numerical implementation of capillaryriattions and the use of appropriate testing
techniques are key aspects of the present work. In this paygepresent a new expression for the
capillary force as an explicit function of the interpartigjap and local volume of the liquid. We show
that this expression provides excellent fit for the capjlfarce between two particles of unequal sizes.
This expression is used to perform DEM simulations of disdatar and simple compression tests,
which are compared with experimental data obtained by mebas appropriate testing setup. In the
following, we first present in Section 2 the numerical apptowith focus on capillary cohesion. In
Section 3, we apply the method to direct shearing of wet dearsamples. The main characteristics of
our experimental setup designed for low confining stressleseribed in this section. We compare the
numerical and experimental data, and we analyze the effeter content and the numerical density
of capillary bonds. A similar approach is presented in ®&ctl in the case of simple compression
tests which confirm the good agreement between numericaégpefimental data as to stress-strain
behavior and the effect of liquid distribution. We concluglith a summary of the main results and
perspectives of this work.
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2. NUMERICAL METHOD

We used the discrete element method (DEM) in the spirit ofemalar dynamics with a velocity
Verlet integration scheme [1, 23]. In DEM simulations, tlggiations of motion of the particles are
integrated incrementally by taking into account the intéoas between the particles according to an
explicit molecular-dynamics-like scheme. The realism wéhs simulations is thus dependent on the
underlying model of the interactions. For numerical sighithe time step was set to 10% below the
elastic response timat. = 7 ./m/K,, wherem is the smallest particle mass aig is the largest
normal stiffness in the system [1, 23]. In quasistatic logdj where the inertia plays no major role, the
particle masses can be increased artificially, allowing flou larger time steps. On the other hand, the
damping rater, should be below the critical valugyiy = 2,/mKy. In this section, we first present the
interaction laws that we used for elastic contact, Couloridbién and capillary cohesion. We discuss
in more detail a new analytical form that we propose for thaltzy force as a function of the gap and
local water volume. Then, we present the protocols for dragithe distribution of liquid in the bulk.

2.1. Normal repulsion force

The force laws involve normal repulsion, capillary cohesiGoulomb friction, and normal damping.
The normal forcefy, is modeled as a sum of three contributions:

fo= £+ f9 4+ £C. (1)

where £, fr? and f < are the repulsive contact force, damping force and capiftarce, respectively.

The repulsive force between two smooth elastic spheresvisngbdy the Hertz approximation
which expresses the repulsion force as a function of thamtist between two spheres [24]. From a
computational viewpoint, it is more common to use a lineg@regimation wheref$ depends linearly
on the normal distancd, between the particles (Fig 1(a)):

—kno for dn <O
e __ nen n
fr _[ 0 for oh>0 ~ @

whereky is the normal stiffness.
The damping ternfrﬁj accounts for inelastic shock between particles. The sistptedel of damping
is a viscous force depending linearly on the normal velogity

fd _ 20!n«/ mlﬁ 5n fOI‘ 5n <0 (3)
n 0 for oh >0 °

wherem = mjm;j /(m; +mj) is the reduced mass of the particieend j, an is a damping rate varying
in the range [0 1[. The rate of normal dissipation or the restitution coéffit between particles can
be expressed as a functionagf [25].

The repulsion forcef together with the viscous damping forctﬁ define a spring-dashpot model
commonly used for the simulation of dry granular media. &utlanges to this framework allow for
more realistic description of shock laws and nonlineartelasgimes [25]. Since we are interested
here in capillary interactions, we stay with this basic feavork and focus on the capillary fordg.

2.2. Capillary force
The capillary forcef ¢ is a function of the liquid bond parameters, namely the &gphe liquid bond
volume Vy, the liquid surface tensiops, and the particle-liquid-gas contact angleThe capillary
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Figure 1. (a) Geometry of a capillary bridge; (b) Capillagyde S as a function of the gapn between two

particles for different values of the liquid volumé, and size ratiad according to the model proposed in this

paper (solid lines), and from direct integration of the laag@-Young equation (open circles); (c) Scaled plot of the
capillary force as a function of gap from the direct data shaw(b).

force can be obtained by integrating the Laplace-Young#éaufL5, 26, 27, 28]. However, for efficient
DEM simulations, we need an explicit expressiorf$fas a function of the liquid bond parameters. On
the other hand, most authors have considered the capithacg for liquid bond between two spheres
of the same diameter. When the diameters are different thj@dren approximation is used. Recently,
by means of experiments and fitting considerations, Satl&. [28] proposed an expression for the
capillary force between two smooth spheres. Here, we pmposew expression for the capillary
force which can be considered as a simplified and analyticéihg of that expression. We show that
this form is well fitted by the data from direct integration tbe Laplace-Young equation both for
monodisperse and polydisperse particles.

The geometry of a capillary bridge between two sphericalgas of unequal diameters is illustrated
in Figure 1(a). At leading order, the capillary forégat contactj.e.for é, < 0, is

whereR is a length depending on the particle rajiand Rj andx is given by [29, 30, 31]
K = 21 s COSH. (5)

Note that a negative value 8f corresponds to an overlap between the particles. The assumigpthat
the overlap is small compared to the particle diameters daiteeobtained from direct integration of the

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geome@000;xx:1-17
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Laplace-Young equation show that the geometric miean ,/R; R; is more suited than the harmonic
mean R R;/(R + Rj) proposed by Derjaguin for polydisperse particles in thétlohsmall gaps
(see below) [32]. We also note th§f in Equation (4) is independent of the bond liquid voluxie

The adhesion forcég at contact is the highest level of the capillary force. Theeladeclines as the
gapdn increases. The capillary bridge is stable as longras: J7'2%, wheredy'@* is the debonding

distance given by [13]
= (14 5) WP ©)

We note that the debonding distance depends only on thel iapiimeVy, whereas the adhesion force
fo at contact is a function only of particle diameters throughgeometric meaR.
Between these two limits, the capillary force falls off erpatially withdp:

f$ = foe™/", 7

where/ is a length scale which should be a functionvfand the particle radii. The role of particle
size is two-fold. On one hand, the liquid volume should be parad to a mean particle radif, a
function of R and R;j, but which can be different frorR introduced in Equation (4) for the adhesion
force. On the other hand, the asymmetry due to unequal [gesties can be taken into account through
a function of the ratio between particle radii. We set

r=maxR /Rj; Rj/R}. 8
Dimensionally, a plausible expression/ois
Vi \ /2
i=chn(p) ©

wherec is a constant anld is a function only of . When introduced in Equations (9) and (7), this form
yields a nice fit for the capillary force obtained from diredegration of the Laplace-Young equation
by settingR’ = 2R Rj /(R + R;), h(r) =r Y2 andc ~ 0.9.

Figure 1(b) shows the plots of Equation 7 for three differaities of the liquid volum#&}, and size
ratior together with the corresponding data from direct integratiVe see that the fit is excellent at
on = 0 (at contact) and for nearly all values &f up to the debonding distance. Figure 1(c) shows
the same plots of the direct data as in Figure 1(b) but wheréattes are normalized byR and the
lengths by. The data collapse on the same plot, indicating again tlesitftex R and the expression
of 1 in Equation (9) characterize correctly the behavior of thgiltary bridge.

In summary, the capillary cohesion can be expressed in tlesviog form:

—x R o for o, <O
fS=1 —x Ren/% for 0<dy <ol | (10)
0 for on > oe*
with .
c 1 I I 1]z
A= —VWp2 1maxXR/Rj; Ri/R 2[—4——} . 11
\/i b { X / J J/ )} R Rj ( )

In the simulations, a capillary bridge is removed as soorhasiebonding distance is reached, and
the liquid is redistributed among the contacts belonginthtosame particle in proportion to grain
diameters [33]. We also assume that the particles are (igrfeettable,i.e. # = 0. This is a good
approximation for water and glass beads.
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6 V. RICHEFEUET AL.

2.3. Friction force

For the friction forcd, we use the well-known viscous-regularized Coulomb law B2f 35],

o

fi = —min{yl16cll, u(fo— )} T
't

(12)

where y; is a tangential viscosity parameter, is the coefficient of friction, andy is the sliding
velocity. In relaxation to equilibriumd; declines but never vanishes due to residual kinetic energy.
The equilibrium state is practically reached as soon as we f#ld|| < u(fn — fy) at all contacts,
i.e.when the friction force is inside the Coulomb cone everywherthe system.

2.4. Distribution of liquid

The capillary forcef S, according to Equation (10), and the debonding distait# in Equation (6)
depend on the bond liquid volumég. It is thus important to use a convenient distribution raethe
allocation of the total volumé&, of the liquid to contacts or adjacent particles within théaeding
distance. To do so, the following conditions must be satisfie

(i) The liquid is fully distributed in the form of capillarydnds (no liquid at the interstitial sites or
pores), so that

Ve=>" Vo (13)

(i) The bond volume is dependent on the mean particle sibé i because the liquid retention
capacity increases with particle size.
(iii) The particle pairs with a gap beyond the debondingatist are not eligible to receive liquid.

For a homogeneous distribution, the liquid is attributedlteligible pairs. We assume that the bond
volumes are proportional to the volumes of the pairs:

Vo = a R®, (14)

whereq is fixed by the condition (13). The use of geometric mé&ar= /R R; is a simple matter
of choice. Any other mean can be used for the same purposen \@lgonding occurs, the bond
liquid volume is redistributed among neighboring bondsisTbcal redistribution can gradually lead
to a globally inhomogeneous distribution. In order to ersmomogeneous distribution all along a
simulation run, the liquid distribution should be updatedularly according to Equation (14). As
a result, new eligible pairs appear and new liquid bonds ammdd. Below, we will refer to this
redistribution procedure as Protocol 1.

The distribution can be made more realistic by taking intmoant the “loss” of liquid in the form of
droplets at the surface of the particles or partial draiming to gravity. The liquid may also cluster in
the interstitial pores [21, 22, 36]. However, most simualatresults presented below are not sensitive
to such refinements. This is because the deformations alangetenough for the liquid distribution
to evolve significantly from the initial homogeneous disttion.

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geome@000;xx:1-17
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Figure 2. Testing cell and shearing setup.

3. DIRECT SHEAR
3.1. Experiments

We designed an experimental setup which, in contrast totdredard Casagrande testing machine,
allowed us to measure the shear strength at very low confimiegsures<{ 1 kPa). Similar setups
have been used by several authors in the past [37, 38, 39M(jresent here the setup, the materials
and the wetting protocol and our main experimental results.

3.1.1. Experimental setupA sketch of the shearing setup is shown in Figure 2. Wettethgrare
poured in a plexiglas cylindrical cell and confined by meaiha circular lid of areaS placed on top

of the material. The lid is equipped with a reservoir allogvto impose an overload by adding desired
amount of sand. The total vertical ford¢ acting on the sample is the sum of the weights of lid and
sand (A). The cell is composed of two disjoint parts kept tbgeduring sample preparation. The upper
part can move horizontally with respect to the lower part bifipg on a rope attached to it and which
supports a cupel through a pulley (B). The pulling foficean be increased by adding sand into the
cupel. The friction force between the two parts of the cetbiduced by water lubricating the rims. In
order to reduce the friction force exerted by the materiahglthe walls, the thicknessof the upper
part of the sample is taken to be below the diameter of thg4@&linm). The heights of the upper and
lower parts are about 10 mm and 15 mm respectively.

The sample is sheared along the common section of the twe pathe cell. This shear plane is
subjected to a tangential stress= T/S and a normal stress = N/S + pgh, wherep is the bulk
density andj the gravity. We gradually increase the shear strefes o kept constant. Unstable failure
occurs wherr reaches the shear strength At this point, an infinitesimal stress increment causes a

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geome@000;xx:1-17
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8 V. RICHEFEUET AL.

finite deformation of the sample manifesting itself as a sundslide of the upper part of the sample.
The upper part is stopped by collision with two bars locatedrs away from the cell. We did not

measure the displacements. We recorggtbr different values o# in the range varying from 200 Pa
to 800 Pa, and for different values of water content.

3.1.2. Materials and wetting protocolFour types of materials were tested: (1) a sand “S” composed
of angular grains with diameters ranging froni @nm to 04 mm, (2) “tightly-graded” polydisperse
glass beads “GB45” with diameters frorm40mm to 05 mm, (3) “well-graded” polydisperse glass
beads “GB48” with diameters from#@ mm to 08 mm, and (4) monodisperse glass beads “GB1" of
diameter 1 mm.

The grains were wetted by adding distilled water to dry matgriaced in a vessel and shaking
energetically until all visible water clusters disapp€eHne vessel used for mixing is transparent
allowing us to check visually the state of the material. Aftexing, the wetted material is poured into
the testing cell. The water content is evaluated by compatie masses of a sample of the material
before and after testing by means of a heat chamber usedyiogdhe sample at 108. The water
content is given byo = m,,/ms, wherem,, andms are the masses of water and grains, respectively.
The wet materials were tested for water contents below 5%esponding to the pendular state for
our materials. The experiments were performed at ambiamitons. Each experiment lasted a few
minutes. The loss of liquid was always below two percentss Tdss is not only due to evaporation but
also to partial wetting of the internal walls of the cell. B low enough to assume a constant liquid
volume (as in simulations, see below).

3.1.3. Results Several tests were carried out with the four materials at@posal (S, GB45, GB48
and GB1) for different values of water contantand normal stress. Figure 3 shows the yield loci
7-0 . Within experimental precision, the data are well fitted bgtiight line for each material, in
agreement with the Mohr-Coulomb model

7 = (tang)o +cC, (15)

where tarp is the internal coefficient of friction andis the Coulomb cohesion. We also observe that
the angle of internal frictiow is independent oi as the Coulomb lines are nearly parallel.

Using a similar experimental setup, Schellart found thawfikeld loci are curved down as the normal
stress tends to zero [38]. In dry granular media, the sheassstvanishes naturally at zero normal
stress. However, in the wet case according to Figure 3, therénite cohesioe corresponding to the
intersection point of the Coulomb line with the axis= 0. Figure 4 displays the evolution ofas a
function of w for the four materials. The evolution afis strongly nonlinear and saturates at a level
¢ = ¢y, for a water contentv = wn, both depending on the material. The experimental estimaibf
cm andwn, as well as the internal angle of friction for our materiais given in Table I.

(D) 1) Cm Wm
S 0.16 mm 33 600Pa 3%
GB45 045mm 30 350Pa 2.5%
GB48 0.6mm 30 300Pa 1%
GB1 1mm 25 150Pa < 1%

Table I. Characteristic data from experimental measurésnen
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Figure 3. Yield loci, fitted by straight lines, for our expaental granular materials.

The experimental data at different levels of water contaotslarger fluctuations for glass beads
(GB) than for sand. These fluctuations stem certainly froendfver level of cohesion for glass beads
and the also from their tighter particle size distributidime differences in the values of, can be
attributed to differences in the mean particles sizes ifediht materials. In the case of sand, the
nonspherical form of the particles might also affect thaugadfcy,. The value ofwn is less clearly
defined and is likely to depend on the surface state of thécper{36]. The sand grains have a rough
surface requiring more water to form a meniscus than the srapoth glass beads. On the other hand,
partial clustering of water may occur and this might reqaitarger amount of water for the formation
of liquid bridges [21, 22].
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Figure 4. Macroscopic cohesianas a function of water content for four tested granular materials. The trends
are represented by dashed lines as a guide to the eyes.

3.2. Numerical simulations

3.2.1. Sample preparationThe numerical samples are composed of 7307 spherical leartf
diameters 2 mm,.5 mm and 1 mm in proportions of 50%, 30% and 20%, respectiVhlg.dimensions
and the total volume of the numerical sample are similar ts¢hof the experimental samples. This
numerical sample can be compared to the sample GB1 of glasts {@able 1) although the size
distribution of the particles is slightly different. In faasing exactly the same particle sizes as in
experiments with the same total volume would require manyenparticles in simulations and thus
much more computation time. The particles are placed rahdoma cylindrical cell. The initial
configuration is prepared under gravity without introdgcirapillary bonds. Then, we attribute a
capillary bond to eligible pairs of particles (within the-dending distance). Finally, the sample is
consolidated under the action of a vertical confining presssuith a zero coefficient of friction. The
consolidation is stopped and the coefficient of frictiontsed.4 as soon as the solid fractign= 0.6

is reached. The subsequent compaction is negligibly small.

As in experiments, the cylindrical cell is composed of twejaint parts. The lower part is fixed
whereas the upper part moves horizontally, giving rise themsplane along the common section of
the two parts. We apply a constant vertical leadthe same as in experiments, on top of the sample.
However, in contrast to experiments, shearing is contldieimposing a constant horizontal velocity
on the upper part. The numerical sample has exactly the san@msgions as in experiments.

During shearing, the number of liquid bonds evolves and ¥adable liquid must be redistributed in
the system. We used two different methods for redistrilmitib) we simply apply the above procedure
every time the contact list is updated (Protocol 1); (2) tbkume of a broken liquid bond is split
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between the corresponding particles (proportionally girttiameters) and conserved for the formation
of new liquid bonds when a contact occurs with the same pesti®rotocol 2). In this method, the
volume of free liquid left after de-bonding is kept with theotparticles (and not distributed to the other
bonds of the same particles) and used only if a new contaotised. This implies that, if the initial
liquid distribution is homogeneous, then it will remain aaridg deformation as in the first method. In
other words, the liquid will not migrate considerably ana&@hould expect quite similar results from
both methods. Indeed, in different tests, we found that bagithods lead to nearly identical results
(see Figure 12 in Section 4.2.2).

3.2.2. Numerical results and comparison with experimeMée performed a series of direct shear
simulations with different values of the water content fro%h to 2%.

300 T T T

2 3 4
3t/ (D)

Figure 5. Stress-strain plot fas = 0% andw = 1%; 0 = 300 Pa. The displacements are normalized by the
average particle diametéb).

Figure 5 shows the shear straiffior a dry and a wet sample with = 1% as a function of horizontal
displacemend¢. The initial configuration is the same in both simulationse Tesidual state is reached
without passing by a stress peak and for a displacement ajrtter of one particle diameter for all
tested values of the water content. The steady state defiormiavolves numerous instabilities that
occur throughout the system and appear in the form of rapdstrops on the stress-strain plots. We
see that in transition from dry to wet materials, the frequyesf such instabilities declines.

The evolution of the Coulomb cohesion can be analyzed as aifumof water contentv as in
experiments. Figure 6(a) shows fitted yield loci from 15 dations with three different values of the
confining pressure and five different values ab. The Coulomb cohesioais drawn as a function
of w in Figure 6(b). The latter is very similar to the correspangexperimental plot (Figure 4(c))
for monodisperse glass beads. We observe a saturationabfstill lower levels of water content
(wm = 0.1%).

The limit valuecn, of the Coulomb cohesion as a function of water content, asrebd here both in
the simulations and experiments, is not intuitive. Althbtige liquid bond volume appears in Equations
(6) and (11), it is important to remark that failure is inidd at contacts where the maximum capillary
force fp is reached and this force is independent of the local liqullime. For this reason, the
Coulomb cohesion is mainly controlled by the density of iitjbonds or equivalently by the bond
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Figure 6. Simulation results. (a) Estimated yield loci. ®ulomb cohesion as a function of water content
(experiments were carried out with 1 mm glass beads).
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Figure 7. The shear stresss a function of shearing distané&normalized by the average particle diametes
for a dry (dashed line) and two wet samples (solid lines) witiigh bond coordination number (thick line) and
with two times less bonds (thin line). The inset shows a zoonsiall deformations.

coordination numbez. In order to illustrate the effect &, in Figure 7 we show the stress-strain plots
for two samples differing in the number of liquid bonds foe Bamewater content. The initial particle
configuration is the same in both samples but there are twastiess bonds in one sample (obtained
by removing half of the bonds in the first sample). We see thahe initial stages of deformation,
the cohesion is close to half that of the sample involving abd® number of water bonds, and it
increases as the wet coordination number grows. The Coubtmhbsion saturates when the bond
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coordination number saturates as the total liquid voluniedeeased. This means that the main effect
of the liquid volume (factok/bl/3 in Equation 6) is to increase the debonding distafagg and thus the
bond coordination number as liquid volume is increasederstimple. The bond coordination number
saturates when each particle has already a bond with a#§ &ifst neighbors.

We observe that the maximum cohesigin = 120 Pa in the simulations is below that,(= 150
Pa) for 1 mm glass beads. The lower valuegfin simulations can be attributed to the larger average
diameter of the particles compared to experimental samipldsed, it can be shown that the Coulomb
cohesion varies in inverse proportion to the average paize [33]. This effect of the particle size
can also be observed for other experimental samples iné&#wherecy, andwp, are lower for larger
values of(D).

4. SIMPLE COMPRESSION

In this section we consider the influence of water contenthenstrength of our granular samples
under simple compression loading. The strains are knowretmbre homogeneous in compression
than in direct shear. On the other hand, the strengths arkewead thus the capillary effects are
straightforward to measure. The experimental data areted from Soulié [41] who compared also
his results with numerical simulations and found qualtatgreement between them. He explained
the quantitative differences of numerical data with experital data by invoking the distribution of
water. We will revisit below the same data in the light of oemmumerical developments.

4.1. Review of experimental results

The experimental tests were carried out with samples oéddaads of diameters ranging from 0.8 mm
to 1.3 mm. The samples were of cylindrical shape with a diam&t25 mm and a height of 17 mm.
The water content was varied from 0.5% to 12%. The beads wettedvin a hermetic seal by mixing
a mass of 0.1 kg of dry beads with the amount of water requoeddch the targeted water content.
The wetted particles were then moulded in a cylindrical es$3gure 8(a) shows a photo of a typical
sample prepared according to this protocol.

Each cylindrical sample is subjected to axial compressipntau failure. Figure 9 shows the
compressive strengtypt, corresponding to the axial stress at failure, as a functfavater content.

4.2. Numerical study

4.2.1. Sample preparationThe numerical samples are of cylindrical shape and compo&s8800
spherical particles with diameters from 0.8 mm to 1.3 mmnaxperiments. The particle size grading
is given in Table I1.

Diameter(mm)| 0.8 09 1 1.1 1.2 1.3
Proportion (%) | 10 20 20 20 20 10

Table Il. Particle size grading in numerical samples

The samples are prepared by initially letting the partiésdsinto a cylindrical box of a diameter
of 25 mm. Then, the sample is “sealed” by adding an upper watiéd vertically. At this point, the
sample is 17 mm high and has a solid fraction of 0.62. Fintlg,capillary cohesion is introduced

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geome@000;xx:1-17
Prepared usingnagauth.cls



14 V. RICHEFEUET AL.

(b)
Figure 8. Typical sample used in simple compression test$lass beads fav = 3%, (b) Spherical particles in
simulations.
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Figure 9. Compressive strength as a function of water corExperimental data obtained by Soulié [41].

between eligible pairs of particles and the surroundingndyical wall is removed. The sample relaxes
to equilibrium due to capillary cohesion with only a sligetttement of about 0.1 mm due to gravity;
see Figure 8(b).

4.2.2. Numerical results and comparison with experimentsimerical simulations were carried out
for 2%, 4% and 6% of water content. In each simulation, theeuppall moves at 1 mm/s for 2
seconds. The axial stressis simply estimated from the axial resultant of the forcesngcon the
upper wall divided by its area, as in experiments. The axiabss is shown in Figure 10 as a function
of axial shortingsh normalized by the average particle diametes. The compressive strengtypt
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corresponds to the axial stress at the peak. Remark thatitdesttess declines beyond the stress peak.
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Figure 10. Axial stress as a function of axial strain for éhdifferent values of the water content.

In Figure 11 a snapshot of the samplewf= 2% is displayed at the end of the simulation. We
observe the barrel shape of the sample, as observed in egres with granular soils. Figure 11 shows
a vertical section of the sample with color-coded partitdplhcements. We observe an immobile cone
at the lower central part of the sample which can be attribatther to the motion of the upper wall or
to the effect of gravity.

Figure 11. Numerical sample at the end of the simulation with- 2%. We observe a nearly immobile region
indicated by dashed lines.

The compressive strengths are plotted as a function of watgent in Figure 12 together with the
numerical data of Soulié and the experimental data of Ei§uiWe see that the numerical data of our
simulations are closer to the experimental data than thi@limumerical data of Soulié. It should be
noted that the capillary law used by Soulié is differenhirthe one employed in the present work. But
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the fits to the data obtained from direct integration of Yoluaglace equations are quite similar.

In order to find hints to explain the observed discrepanewescarried out more simulations using
different protocols for water redistribution. In addititmthe two protocols introduced in Sections 2.4
and 3.2, we used another protocol in which the effect of gydsiaccounted for by transferring the
liquid from broken bond between two particles to the lowesttact located on the lower hemisphere
of each of the two particles (Protocol 3). In this protoclé tolume of the liquid bond is shared by the
two particles proportionally to their sizes. During shagrihe liquid is gradually transported downward
according to the bonding-debonding dynamics of the mdtdtiigs dynamics being generally slow, the
transport of liquid by this mechanism is not effective foradhdeformations.

Two points were checked in more detail: (1) the rule for thiigteibution of water when a capillary
bond fails according to the three protocols introduced & pheceding sections (2.4, 3.2, 4.2), and
(2) the bond coordination numbemwhich simply depends on the initial selection of eligiblérpaf
particles. In fact, as in the case of direct shearing, ow ftat simple compression show that the main
influence comes frora. In order to illustrate this point, in Figure 12 two data geare shown from
two simulations forw = 2% andw = 4% with reduced number of liquid bonds by a factor 2. We see
that the shear strength for this two samples is significaretiyyced compared to the other simulations
with different protocols.

On the other hand, we see that, as long &sthe same, the protocols for water redistribution have
nearly no effect. The difference between our simulatiortstAnse of Soulié is thus only related to the
initial values ofz. Indeed, in contrast to our simulations, Soulié did nodwalthe sample relax after
removal of the cylinder used to mould the sample. The relaxaif the sample before compression
leads to lower liquid bond coordination. In this respecshbuld be noted that also in experiments
water is not distributed to all present or eligible partigsérs. Shaking might be never efficient enough
to allow all pairs to receive liquid bonds. Experimentalgstigation of water distribution seems thus
to be crucial for a better modeling of wet granular media 2,

400
--------- A
300 I AT o
A o .
= < g o -n"
o - .-
& N . e
1 200 LR
S 8 ° Lo
&~ g e
S & ° o Soulié (2005), experiments
: K L AN A Soulié (2005), simulations
100 ¢, 7 0 = Protocol 1
! . ¢ Protocol 2
A ¢ Protocol 3
L7 ® Reduced number of bonds
0 £ * : . : .
0 2 4 6 8 10 12
w (%)

Figure 12. Compressive strengths as a function of liquidestnin simple compression tests from experiments
and simulations for three different redistribution praifsc(see text).
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5. CONCLUSION

In summary, we developed a DEM-type approach for the sinonaif 3D wet granular materials with
spherical particles. The capillary law implemented in fragnework is an analytical expression of the
capillary force as a function of geometrical and materiasameters of a liquid bridge, and it was
shown to provide excellent fit for the data from direct inggrn of Young-Laplace equations. This
code (tapio-K, see [43]) was applied to simulate the quiaiesbehavior of wet granular media for
direct shear and simple compression boundary conditioths@mpared to simulations carried out with
nearly the same parameters and boundary conditions. Trezimental setup was specially designed
to allow for the measurement of weak stresses, a necessadgition for the evaluation of the effects
of capillary cohesion with millimeter-size particles.

Experimental direct shear tests were performed with glassib and sand, and the shear strengths
were analyzed in the Mohr-Coulomb space for weak confiniresses (below 1 kPa). We found that
the internal angle of friction was not sensitive to waterteomw and the Coulomb cohesion increased
in a nonlinear fashion witlw to saturate to a well-defined levg}, of cohesion independent of water
content forw > wm. A similar behavior was observed in numerical simulatidrige cohesiomry, was
found to be quite close between the experiments and nunferittee samples of the same particle size
distribution €, = 120 Pa in numerics v&;, = 150 Pa in experiments). The numerical valuesgf
were found to be systematically below those in experiments.

For simple compression tests, we compared experimentaltsesf Soulié [41] with numerical
simulations performed with cylindrical samples of wet fides. Comparing the influence of water
content between experiments and simulations, we foundegiaacies that were analyzed by further
simulations where the bond coordination number was vaiféel.found that, in contrast to water
content, the bond coordination number plays a major roleompressive strength. Numerically, it
was also shown that the details of the redistribution of watdailed capillary bonds has minor effect
on the behavior.

Our findings and the comparisons made with experimentsechmut with similar boundary
conditions credits the numerical method, and more pagituthe implemented capillary law. On the
other hand, the observed discrepancies open new queriesrodmg the distribution of water in real
samples of wet grains. It seems thus that, in order to pregmesmderstanding the strength properties of
wet granular materials, more detailed observations angned} New experiments are presently under
way to evaluate the local distribution of capillary bridgesl the influence of the mixing protocol.
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