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A model of capillary cohesion for numerical simulations
of 3D polydisperse granular media

V. Richefeu∗,†, M. S. El Youssoufi, R. Peyroux and F. Radjaı̈

LMGC, UMR CNRS 5508, Université Montpellier 2,
cc 048, Place Eugène Bataillon, F-34095 Montpellier Cedex5, France

SUMMARY

We present a three-dimensional discrete-element approachfor numerical investigation of wet granular media. This
approach relies on basic laws of contact and Coulomb friction enriched by a capillary force law between particles.
We show that the latter can be expressed as a simple explicit function of the gap and volume of the liquid bridge
connecting a pair of spherical particles. The length scalesinvolved in this expression are analyzed by comparing
with direct integration of the Laplace-Young equation. We illustrate and validate this approach by application
to direct shear and simple compression loadings. The shear and compression strengths obtained from simulations
reproduce well the experimental measurements under similar material and boundary conditions. Our findings show
clearly that the number density of liquid bonds in the bulk isa decisive parameter for the overall cohesion of wet
granular materials. A homogeneous distribution of the liquid within the bridge debonding distance, even at low
volume contents, leads to highest cohesion. The latter is independent of the liquid content as far as the liquid
remains in the pendular state and the number density of liquid bonds remains constant. Copyrightc© 2000 John
Wiley & Sons, Ltd.

KEY WORDS: capillary cohesion, discrete element approach, shear strength, compression strength

1. INTRODUCTION

Granular materials are composed of well-defined particles with specific kinematics locally dictated by
steric constraints and unilateral interactions that are responsible for the rich behavior of these materials
at the macroscopic scale. These materials can thus be modeled at the particle scale, and various
particle properties (shape, size. . . ) and contact interactions (friction, adhesion. . . ) can be quite naturally
introduced in discrete element numerical simulations of the material. In the same way, external and
environmental factors such as moisture and temperature maybe included in the description through
dependence of local parameters with respect to such factors. In spite of drawbacks, mainly related to
unavoidable simplification of the local description and thenumber of particles limited by computational
efficiency, this approach with the corresponding numericaldevelopments provides new scopes for a
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2 V. RICHEFEUET AL.

better understanding of the behavior of complex materials from their rich microstructural properties.
The discrete element method (DEM) for the simulation of dry granular media, first popularized by
the pioneering work of Cundall [1], has evolved into a maturetechnique during the two last decades
[2, 3, 4, 5]. The focus is now mostly directed towards the inclusion of new ingredients such as cohesion
due to cementation or capillary bonding as in unsaturated soils [6, 7, 8, 9].

This paper is concerned with the mechanical behavior of wet granular materials investigated both by
a discrete element approach and experiments. Wet granular materials are of primary interest to various
fields of science of engineering such as the mechanics of granular soils and wet processing of powders
[10, 11]. The capillary cohesion is negligibly small for coarse soils or at high confining stresses. On the
other hand, the moisture and the resulting cohesion are important for fine surface soils. For example,
when plowing a wet granular soil, large cohesive aggregatesare formed. The largest capillary cohesion
force for millimeter-size sand grains is about 4× 10−4 N independently of the volume of the capillary
bond. This force is nearly four times the grain weight, allowing thus for the formation of cohesive
aggregates. Transformations involving primary particle agglomeration into coherent granules are of
special interest in many applications in a wide range of industries such as pharmaceuticals, agronomic
products and detergents [10, 11].

Recently, several simulations of wet granular media have been reported [12, 13, 14]. Mikamiet al.
[15] used this type of simulation together with a regressionexpression for the liquid bridge force as
a function of liquid bridge volume and separation distance between particles. They mainly studied
bubbling behavior and agglomerate formation in a fluidized bed and they found realistic results. Dense
agglomerates were simulated by Grögeret al. [16] using a cohesive discrete element method. They
found a good agreement with experimental data for the yield stress at all confining pressures down
to the value of the tensile stress. Shear strength behavior of unsaturated granulates was also studied
numerically by Jianget al. [17] as a function of suction (pressure difference between liquid and gas).

From the experimental point of view, the point is that classical testing machines employed in soil
mechanics are designed to work at high levels of confinement and they involve massive elements
that induce high inertia. For these reasons, they are not adapted for wet granular materials. Direct
measurements of tensile strength by means of appropriate experimental setups have been reported
recently [18, 19, 20]. In granular media, it is generally much more difficult to access local information
such as contact forces or liquid bonds. Few investigations have recently been reported to visualize
liquid bonds by means of the index matching technique [21, 22].

Hence, both the numerical implementation of capillary interactions and the use of appropriate testing
techniques are key aspects of the present work. In this paper, we present a new expression for the
capillary force as an explicit function of the interparticle gap and local volume of the liquid. We show
that this expression provides excellent fit for the capillary force between two particles of unequal sizes.
This expression is used to perform DEM simulations of directshear and simple compression tests,
which are compared with experimental data obtained by meansof an appropriate testing setup. In the
following, we first present in Section 2 the numerical approach with focus on capillary cohesion. In
Section 3, we apply the method to direct shearing of wet granular samples. The main characteristics of
our experimental setup designed for low confining stress aredescribed in this section. We compare the
numerical and experimental data, and we analyze the effect of water content and the numerical density
of capillary bonds. A similar approach is presented in Section 4 in the case of simple compression
tests which confirm the good agreement between numerical andexperimental data as to stress-strain
behavior and the effect of liquid distribution. We concludewith a summary of the main results and
perspectives of this work.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.2000;xx:1–17
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2. NUMERICAL METHOD

We used the discrete element method (DEM) in the spirit of molecular dynamics with a velocity
Verlet integration scheme [1, 23]. In DEM simulations, the equations of motion of the particles are
integrated incrementally by taking into account the interactions between the particles according to an
explicit molecular-dynamics-like scheme. The realism of such simulations is thus dependent on the
underlying model of the interactions. For numerical stability, the time step was set to 10% below the
elastic response time1tc = π

√
m/Kn, wherem is the smallest particle mass andKn is the largest

normal stiffness in the system [1, 23]. In quasistatic loadings, where the inertia plays no major role, the
particle masses can be increased artificially, allowing thus for larger time steps. On the other hand, the
damping rateνn should be below the critical valueνcrit = 2

√
mKn. In this section, we first present the

interaction laws that we used for elastic contact, Coulomb friction and capillary cohesion. We discuss
in more detail a new analytical form that we propose for the capillary force as a function of the gap and
local water volume. Then, we present the protocols for deriving the distribution of liquid in the bulk.

2.1. Normal repulsion force

The force laws involve normal repulsion, capillary cohesion, Coulomb friction, and normal damping.
The normal forcefn is modeled as a sum of three contributions:

fn = f e
n + f d

n + f c
n . (1)

where f e
n , f d

n and f c
n are the repulsive contact force, damping force and capillary force, respectively.

The repulsive force between two smooth elastic spheres is given by the Hertz approximation
which expresses the repulsion force as a function of the distance between two spheres [24]. From a
computational viewpoint, it is more common to use a linear approximation wheref e

n depends linearly
on the normal distanceδn between the particles (Fig 1(a)):

f e
n =

{

−knδn for δn < 0
0 for δn ≥ 0

, (2)

wherekn is the normal stiffness.
The damping termf d

n accounts for inelastic shock between particles. The simplest model of damping
is a viscous force depending linearly on the normal velocityδ̇n:

f d
n =

{

2αn
√

mkn δ̇n for δn < 0
0 for δn ≥ 0

, (3)

wherem = mi m j /(mi + m j ) is the reduced mass of the particlesi and j , αn is a damping rate varying
in the range [0, 1[. The rate of normal dissipation or the restitution coefficient between particles can
be expressed as a function ofαn [25].

The repulsion forcef e
n together with the viscous damping forcef d

n define a spring-dashpot model
commonly used for the simulation of dry granular media. Subtle changes to this framework allow for
more realistic description of shock laws and nonlinear elastic regimes [25]. Since we are interested
here in capillary interactions, we stay with this basic framework and focus on the capillary forcef c

n .

2.2. Capillary force

The capillary forcef c
n is a function of the liquid bond parameters, namely the gapδn, the liquid bond

volume Vb, the liquid surface tensionγs, and the particle-liquid-gas contact angleθ . The capillary

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.2000;xx:1–17
Prepared usingnagauth.cls



4 V. RICHEFEUET AL.

Figure 1. (a) Geometry of a capillary bridge; (b) Capillary force f c
n as a function of the gapδn between two

particles for different values of the liquid volumeVb and size ratior according to the model proposed in this
paper (solid lines), and from direct integration of the Laplace-Young equation (open circles); (c) Scaled plot of the

capillary force as a function of gap from the direct data shown in (b).

force can be obtained by integrating the Laplace-Young equation [15, 26, 27, 28]. However, for efficient
DEM simulations, we need an explicit expression off c

n as a function of the liquid bond parameters. On
the other hand, most authors have considered the capillary force for liquid bond between two spheres
of the same diameter. When the diameters are different the Derjaguin approximation is used. Recently,
by means of experiments and fitting considerations, Souliéet al. [28] proposed an expression for the
capillary force between two smooth spheres. Here, we propose a new expression for the capillary
force which can be considered as a simplified and analytical writing of that expression. We show that
this form is well fitted by the data from direct integration ofthe Laplace-Young equation both for
monodisperse and polydisperse particles.

The geometry of a capillary bridge between two spherical particles of unequal diameters is illustrated
in Figure 1(a). At leading order, the capillary forcef0 at contact,i.e. for δn ≤ 0, is

f0 = −κ R, (4)

whereR is a length depending on the particle radiiRi andRj andκ is given by [29, 30, 31]

κ = 2πγs cosθ. (5)

Note that a negative value ofδn corresponds to an overlap between the particles. The assumption is that
the overlap is small compared to the particle diameters. Thedata obtained from direct integration of the

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.2000;xx:1–17
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Laplace-Young equation show that the geometric meanR =
√

Ri Rj is more suited than the harmonic
mean 2Ri Rj /(Ri + Rj ) proposed by Derjaguin for polydisperse particles in the limit of small gaps
(see below) [32]. We also note thatf0 in Equation (4) is independent of the bond liquid volumeVb.

The adhesion forcef0 at contact is the highest level of the capillary force. The latter declines as the
gapδn increases. The capillary bridge is stable as long asδn < δmax

n , whereδmax
n is the debonding

distance given by [13]

δmax
n =

(

1 +
θ

2

)

V1/3
b . (6)

We note that the debonding distance depends only on the liquid volumeVb whereas the adhesion force
f0 at contact is a function only of particle diameters through the geometric meanR.

Between these two limits, the capillary force falls off exponentially withδn:

f c
n = f0e−δn/λ, (7)

whereλ is a length scale which should be a function ofVb and the particle radii. The role of particle
size is two-fold. On one hand, the liquid volume should be compared to a mean particle radiusR′, a
function of Ri andRj , but which can be different fromR introduced in Equation (4) for the adhesion
force. On the other hand, the asymmetry due to unequal particle sizes can be taken into account through
a function of the ratio between particle radii. We set

r =max{Ri /Rj ; Rj /Ri }. (8)

Dimensionally, a plausible expression ofλ is

λ = c h(r )

(

Vb

R′

)1/2

, (9)

wherec is a constant andh is a function only ofr . When introduced in Equations (9) and (7), this form
yields a nice fit for the capillary force obtained from directintegration of the Laplace-Young equation
by settingR′ = 2Ri Rj /(Ri + Rj ), h(r ) = r −1/2 andc ≃ 0.9.

Figure 1(b) shows the plots of Equation 7 for three differentvalues of the liquid volumeVb and size
ratio r together with the corresponding data from direct integration. We see that the fit is excellent at
δn = 0 (at contact) and for nearly all values ofδn up to the debonding distance. Figure 1(c) shows
the same plots of the direct data as in Figure 1(b) but where the forces are normalized byκ R and the
lengths byλ. The data collapse on the same plot, indicating again that the forceκ R and the expression
of λ in Equation (9) characterize correctly the behavior of the capillary bridge.

In summary, the capillary cohesion can be expressed in the following form:

f c
n =







−κ R for δn < 0
−κ R e−δn/λ for 0 ≤ δn ≤ δmax

n
0 for δn > δmax

n

, (10)

with

λ =
c

√
2

Vb
1
2
{

max(Ri /Rj ; Rj /Ri )
}− 1

2

{

1

Ri
+

1

Rj

}
1
2

. (11)

In the simulations, a capillary bridge is removed as soon as the debonding distance is reached, and
the liquid is redistributed among the contacts belonging tothe same particle in proportion to grain
diameters [33]. We also assume that the particles are perfectly wettable,i.e. θ = 0. This is a good
approximation for water and glass beads.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.2000;xx:1–17
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2.3. Friction force

For the friction forceft , we use the well-known viscous-regularized Coulomb law [25, 34, 35],

ft = − min
{

γt ||δ̇δδt ||, µ( fn − f c
n )

} δ̇δδt

||δ̇δδt ||
, (12)

whereγt is a tangential viscosity parameter,µ is the coefficient of friction, anḋδδδt is the sliding
velocity. In relaxation to equilibrium,̇δδδt declines but never vanishes due to residual kinetic energy.
The equilibrium state is practically reached as soon as we have γt ||δ̇δδt || < µ( fn − f c

n ) at all contacts,
i.e.when the friction force is inside the Coulomb cone everywhere in the system.

2.4. Distribution of liquid

The capillary forcef c
n , according to Equation (10), and the debonding distanceδmax

n in Equation (6)
depend on the bond liquid volumeVb. It is thus important to use a convenient distribution rule for the
allocation of the total volumeVℓ of the liquid to contacts or adjacent particles within the debonding
distance. To do so, the following conditions must be satisfied:

(i) The liquid is fully distributed in the form of capillary bonds (no liquid at the interstitial sites or
pores), so that

Vℓ =
∑

Vb. (13)

(ii) The bond volume is dependent on the mean particle size. This is because the liquid retention
capacity increases with particle size.

(iii) The particle pairs with a gap beyond the debonding distance are not eligible to receive liquid.

For a homogeneous distribution, the liquid is attributed toall eligible pairs. We assume that the bond
volumes are proportional to the volumes of the pairs:

Vb = α R3, (14)

whereα is fixed by the condition (13). The use of geometric meanR ≡
√

Ri Rj is a simple matter
of choice. Any other mean can be used for the same purpose. When debonding occurs, the bond
liquid volume is redistributed among neighboring bonds. This local redistribution can gradually lead
to a globally inhomogeneous distribution. In order to ensure homogeneous distribution all along a
simulation run, the liquid distribution should be updated regularly according to Equation (14). As
a result, new eligible pairs appear and new liquid bonds are formed. Below, we will refer to this
redistribution procedure as Protocol 1.

The distribution can be made more realistic by taking into account the “loss” of liquid in the form of
droplets at the surface of the particles or partial drainingdue to gravity. The liquid may also cluster in
the interstitial pores [21, 22, 36]. However, most simulation results presented below are not sensitive
to such refinements. This is because the deformations are notlarge enough for the liquid distribution
to evolve significantly from the initial homogeneous distribution.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.2000;xx:1–17
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Figure 2. Testing cell and shearing setup.

3. DIRECT SHEAR

3.1. Experiments

We designed an experimental setup which, in contrast to the standard Casagrande testing machine,
allowed us to measure the shear strength at very low confiningpressures (< 1 kPa). Similar setups
have been used by several authors in the past [37, 38, 39, 40].We present here the setup, the materials
and the wetting protocol and our main experimental results.

3.1.1. Experimental setupA sketch of the shearing setup is shown in Figure 2. Wetted grains are
poured in a plexiglas cylindrical cell and confined by means of a circular lid of areaS placed on top
of the material. The lid is equipped with a reservoir allowing to impose an overload by adding desired
amount of sand. The total vertical forceN acting on the sample is the sum of the weights of lid and
sand (A). The cell is composed of two disjoint parts kept together during sample preparation. The upper
part can move horizontally with respect to the lower part by pulling on a rope attached to it and which
supports a cupel through a pulley (B). The pulling forceT can be increased by adding sand into the
cupel. The friction force between the two parts of the cell isreduced by water lubricating the rims. In
order to reduce the friction force exerted by the material along the walls, the thicknessh of the upper
part of the sample is taken to be below the diameter of the cell(46 mm). The heights of the upper and
lower parts are about 10 mm and 15 mm respectively.

The sample is sheared along the common section of the two parts of the cell. This shear plane is
subjected to a tangential stressτ = T/S and a normal stressσ = N/S + ρgh, whereρ is the bulk
density andg the gravity. We gradually increase the shear stressτ for σ kept constant. Unstable failure
occurs whenτ reaches the shear strengthτm. At this point, an infinitesimal stress increment causes a

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.2000;xx:1–17
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finite deformation of the sample manifesting itself as a sudden slide of the upper part of the sample.
The upper part is stopped by collision with two bars located 5mm away from the cell. We did not
measure the displacements. We recordedτm for different values ofσ in the range varying from 200 Pa
to 800 Pa, and for different values of water content.

3.1.2. Materials and wetting protocolFour types of materials were tested: (1) a sand “S” composed
of angular grains with diameters ranging from 0.1 mm to 0.4 mm, (2) “tightly-graded” polydisperse
glass beads “GB45” with diameters from 0.4 mm to 0.5 mm, (3) “well-graded” polydisperse glass
beads “GB48” with diameters from 0.4 mm to 0.8 mm, and (4) monodisperse glass beads “GB1” of
diameter 1 mm.

The grains were wetted by adding distilled water to dry material placed in a vessel and shaking
energetically until all visible water clusters disappear.The vessel used for mixing is transparent
allowing us to check visually the state of the material. After mixing, the wetted material is poured into
the testing cell. The water content is evaluated by comparing the masses of a sample of the material
before and after testing by means of a heat chamber used for drying the sample at 105◦C. The water
content is given byw = mw/ms, wheremw andms are the masses of water and grains, respectively.
The wet materials were tested for water contents below 5% corresponding to the pendular state for
our materials. The experiments were performed at ambient conditions. Each experiment lasted a few
minutes. The loss of liquid was always below two percents. This loss is not only due to evaporation but
also to partial wetting of the internal walls of the cell. Butit is low enough to assume a constant liquid
volume (as in simulations, see below).

3.1.3. Results Several tests were carried out with the four materials at ourdisposal (S, GB45, GB48
and GB1) for different values of water contentw and normal stressσ . Figure 3 shows the yield loci
τ -σ . Within experimental precision, the data are well fitted by astraight line for each material, in
agreement with the Mohr-Coulomb model

τ = (tanϕ)σ + c, (15)

where tanϕ is the internal coefficient of friction andc is the Coulomb cohesion. We also observe that
the angle of internal frictionϕ is independent ofw as the Coulomb lines are nearly parallel.

Using a similar experimental setup, Schellart found that the yield loci are curved down as the normal
stress tends to zero [38]. In dry granular media, the shear stress vanishes naturally at zero normal
stress. However, in the wet case according to Figure 3, thereis a finite cohesionc corresponding to the
intersection point of the Coulomb line with the axisσ = 0. Figure 4 displays the evolution ofc as a
function ofw for the four materials. The evolution ofc is strongly nonlinear and saturates at a level
c = cm for a water contentw = wm, both depending on the material. The experimental estimations of
cm andwm, as well as the internal angle of friction for our materials are given in Table I.

〈D〉 ϕ cm wm

S 0.16 mm 33◦ 600 Pa 3%
GB45 0.45 mm 30◦ 350 Pa 2.5%
GB48 0.6 mm 30◦ 300 Pa 1%
GB1 1 mm 25◦ 150 Pa < 1%

Table I. Characteristic data from experimental measurements.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.2000;xx:1–17
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Figure 3. Yield loci, fitted by straight lines, for our experimental granular materials.

The experimental data at different levels of water content show larger fluctuations for glass beads
(GB) than for sand. These fluctuations stem certainly from the lower level of cohesion for glass beads
and the also from their tighter particle size distribution.The differences in the values ofcm can be
attributed to differences in the mean particles sizes in different materials. In the case of sand, the
nonspherical form of the particles might also affect the value ofcm. The value ofwm is less clearly
defined and is likely to depend on the surface state of the particles [36]. The sand grains have a rough
surface requiring more water to form a meniscus than the moresmooth glass beads. On the other hand,
partial clustering of water may occur and this might requirea larger amount of water for the formation
of liquid bridges [21, 22].

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.2000;xx:1–17
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c
(P

a
)

w (%)

Figure 4. Macroscopic cohesionc as a function of water contentw for four tested granular materials. The trends
are represented by dashed lines as a guide to the eyes.

3.2. Numerical simulations

3.2.1. Sample preparationThe numerical samples are composed of 7307 spherical particles of
diameters 2 mm, 1.5 mm and 1 mm in proportions of 50%, 30% and 20%, respectively.The dimensions
and the total volume of the numerical sample are similar to those of the experimental samples. This
numerical sample can be compared to the sample GB1 of glass beads (Table I) although the size
distribution of the particles is slightly different. In fact, using exactly the same particle sizes as in
experiments with the same total volume would require many more particles in simulations and thus
much more computation time. The particles are placed randomly in a cylindrical cell. The initial
configuration is prepared under gravity without introducing capillary bonds. Then, we attribute a
capillary bond to eligible pairs of particles (within the de-bonding distance). Finally, the sample is
consolidated under the action of a vertical confining pressure with a zero coefficient of friction. The
consolidation is stopped and the coefficient of friction setto 0.4 as soon as the solid fractionφ = 0.6
is reached. The subsequent compaction is negligibly small.

As in experiments, the cylindrical cell is composed of two disjoint parts. The lower part is fixed
whereas the upper part moves horizontally, giving rise to a shear plane along the common section of
the two parts. We apply a constant vertical loadσ , the same as in experiments, on top of the sample.
However, in contrast to experiments, shearing is controlled by imposing a constant horizontal velocity
on the upper part. The numerical sample has exactly the same dimensions as in experiments.

During shearing, the number of liquid bonds evolves and the available liquid must be redistributed in
the system. We used two different methods for redistribution: (1) we simply apply the above procedure
every time the contact list is updated (Protocol 1); (2) the volume of a broken liquid bond is split

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.2000;xx:1–17
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between the corresponding particles (proportionally to their diameters) and conserved for the formation
of new liquid bonds when a contact occurs with the same particles (Protocol 2). In this method, the
volume of free liquid left after de-bonding is kept with the two particles (and not distributed to the other
bonds of the same particles) and used only if a new contact is formed. This implies that, if the initial
liquid distribution is homogeneous, then it will remain so during deformation as in the first method. In
other words, the liquid will not migrate considerably and one should expect quite similar results from
both methods. Indeed, in different tests, we found that bothmethods lead to nearly identical results
(see Figure 12 in Section 4.2.2).

3.2.2. Numerical results and comparison with experimentsWe performed a series of direct shear
simulations with different values of the water content from0% to 2%.

τ
(P

a
)

δℓ/〈D〉

w = 1%

w = 0%

Figure 5. Stress-strain plot forw = 0% andw = 1%; σ = 300 Pa. The displacements are normalized by the
average particle diameter〈D〉.

Figure 5 shows the shear strainτ for a dry and a wet sample withw = 1% as a function of horizontal
displacementδℓ. The initial configuration is the same in both simulations. The residual state is reached
without passing by a stress peak and for a displacement of theorder of one particle diameter for all
tested values of the water content. The steady state deformation involves numerous instabilities that
occur throughout the system and appear in the form of rapid stress drops on the stress-strain plots. We
see that in transition from dry to wet materials, the frequency of such instabilities declines.

The evolution of the Coulomb cohesion can be analyzed as a function of water contentw as in
experiments. Figure 6(a) shows fitted yield loci from 15 simulations with three different values of the
confining pressureσ and five different values ofw. The Coulomb cohesionc is drawn as a function
of w in Figure 6(b). The latter is very similar to the corresponding experimental plot (Figure 4(c))
for monodisperse glass beads. We observe a saturation ofc at still lower levels of water content
(wm ≃ 0.1%).

The limit valuecm of the Coulomb cohesion as a function of water content, as observed here both in
the simulations and experiments, is not intuitive. Although the liquid bond volume appears in Equations
(6) and (11), it is important to remark that failure is initiated at contacts where the maximum capillary
force f0 is reached and this force is independent of the local liquid volume. For this reason, the
Coulomb cohesion is mainly controlled by the density of liquid bonds or equivalently by the bond
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Figure 6. Simulation results. (a) Estimated yield loci. (b)Coulomb cohesion as a function of water content
(experiments were carried out with 1 mm glass beads).
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Figure 7. The shear stressτ as a function of shearing distanceδℓ normalized by the average particle diameter〈D〉
for a dry (dashed line) and two wet samples (solid lines) witha high bond coordination number (thick line) and

with two times less bonds (thin line). The inset shows a zoom for small deformations.

coordination numberz. In order to illustrate the effect ofz, in Figure 7 we show the stress-strain plots
for two samples differing in the number of liquid bonds for thesamewater content. The initial particle
configuration is the same in both samples but there are two times less bonds in one sample (obtained
by removing half of the bonds in the first sample). We see that in the initial stages of deformation,
the cohesion is close to half that of the sample involving a double number of water bonds, and it
increases as the wet coordination number grows. The Coulombcohesion saturates when the bond
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coordination number saturates as the total liquid volume isincreased. This means that the main effect
of the liquid volume (factorV1/3

b in Equation 6) is to increase the debonding distanceδmax and thus the
bond coordination number as liquid volume is increased in the sample. The bond coordination number
saturates when each particle has already a bond with all of its first neighbors.

We observe that the maximum cohesioncm = 120 Pa in the simulations is below that (cm = 150
Pa) for 1 mm glass beads. The lower value ofcm in simulations can be attributed to the larger average
diameter of the particles compared to experimental samples. Indeed, it can be shown that the Coulomb
cohesion varies in inverse proportion to the average particle size [33]. This effect of the particle size
can also be observed for other experimental samples in Figure 4 wherecm andwm are lower for larger
values of〈D〉.

4. SIMPLE COMPRESSION

In this section we consider the influence of water content on the strength of our granular samples
under simple compression loading. The strains are known to be more homogeneous in compression
than in direct shear. On the other hand, the strengths are weaker and thus the capillary effects are
straightforward to measure. The experimental data are borrowed from Soulié [41] who compared also
his results with numerical simulations and found qualitative agreement between them. He explained
the quantitative differences of numerical data with experimental data by invoking the distribution of
water. We will revisit below the same data in the light of our new numerical developments.

4.1. Review of experimental results

The experimental tests were carried out with samples of glass beads of diameters ranging from 0.8 mm
to 1.3 mm. The samples were of cylindrical shape with a diameter of 25 mm and a height of 17 mm.
The water content was varied from 0.5% to 12%. The beads were wetted in a hermetic seal by mixing
a mass of 0.1 kg of dry beads with the amount of water required to reach the targeted water content.
The wetted particles were then moulded in a cylindrical vessel. Figure 8(a) shows a photo of a typical
sample prepared according to this protocol.

Each cylindrical sample is subjected to axial compression up to failure. Figure 9 shows the
compressive strengthσrupt, corresponding to the axial stress at failure, as a functionof water content.

4.2. Numerical study

4.2.1. Sample preparationThe numerical samples are of cylindrical shape and composedof 8000
spherical particles with diameters from 0.8 mm to 1.3 mm, as in experiments. The particle size grading
is given in Table II.

Diameter (mm) 0.8 0.9 1 1.1 1.2 1.3
Proportion (%) 10 20 20 20 20 10

Table II. Particle size grading in numerical samples

The samples are prepared by initially letting the particlesfall into a cylindrical box of a diameter
of 25 mm. Then, the sample is “sealed” by adding an upper wall loaded vertically. At this point, the
sample is 17 mm high and has a solid fraction of 0.62. Finally,the capillary cohesion is introduced
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(a) (b)

Figure 8. Typical sample used in simple compression tests. (a) Glass beads forw = 3%, (b) Spherical particles in
simulations.
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Figure 9. Compressive strength as a function of water content. Experimental data obtained by Soulié [41].

between eligible pairs of particles and the surrounding cylindrical wall is removed. The sample relaxes
to equilibrium due to capillary cohesion with only a slight settlement of about 0.1 mm due to gravity;
see Figure 8(b).

4.2.2. Numerical results and comparison with experimentsNumerical simulations were carried out
for 2%, 4% and 6% of water content. In each simulation, the upper wall moves at 1 mm/s for 2
seconds. The axial stressσ is simply estimated from the axial resultant of the forces acting on the
upper wall divided by its area, as in experiments. The axial stressσ is shown in Figure 10 as a function
of axial shortingδh normalized by the average particle diameter〈D〉. The compressive strengthσrupt
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corresponds to the axial stress at the peak. Remark that the axial stress declines beyond the stress peak.

σ
(P

a
)

w = 2%

w = 4%

w = 6%

δh/〈D〉

Figure 10. Axial stress as a function of axial strain for three different values of the water content.

In Figure 11 a snapshot of the sample ofw = 2% is displayed at the end of the simulation. We
observe the barrel shape of the sample, as observed in experiments with granular soils. Figure 11 shows
a vertical section of the sample with color-coded particle displacements. We observe an immobile cone
at the lower central part of the sample which can be attributed either to the motion of the upper wall or
to the effect of gravity.

Figure 11. Numerical sample at the end of the simulation withw = 2%. We observe a nearly immobile region
indicated by dashed lines.

The compressive strengths are plotted as a function of watercontent in Figure 12 together with the
numerical data of Soulié and the experimental data of Figure 9. We see that the numerical data of our
simulations are closer to the experimental data than the initial numerical data of Soulié. It should be
noted that the capillary law used by Soulié is different from the one employed in the present work. But
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the fits to the data obtained from direct integration of Young-Laplace equations are quite similar.
In order to find hints to explain the observed discrepancies,we carried out more simulations using

different protocols for water redistribution. In additionto the two protocols introduced in Sections 2.4
and 3.2, we used another protocol in which the effect of gravity is accounted for by transferring the
liquid from broken bond between two particles to the lowest contact located on the lower hemisphere
of each of the two particles (Protocol 3). In this protocol, the volume of the liquid bond is shared by the
two particles proportionally to their sizes. During shearing the liquid is gradually transported downward
according to the bonding-debonding dynamics of the material. This dynamics being generally slow, the
transport of liquid by this mechanism is not effective for small deformations.

Two points were checked in more detail: (1) the rule for the redistribution of water when a capillary
bond fails according to the three protocols introduced in the preceding sections (2.4, 3.2, 4.2), and
(2) the bond coordination numberz which simply depends on the initial selection of eligible pairs of
particles. In fact, as in the case of direct shearing, our data from simple compression show that the main
influence comes fromz. In order to illustrate this point, in Figure 12 two data pointsare shown from
two simulations forw = 2% andw = 4% with reduced number of liquid bonds by a factor 2. We see
that the shear strength for this two samples is significantlyreduced compared to the other simulations
with different protocols.

On the other hand, we see that, as long asz is the same, the protocols for water redistribution have
nearly no effect. The difference between our simulations and those of Soulié is thus only related to the
initial values ofz. Indeed, in contrast to our simulations, Soulié did not allow the sample relax after
removal of the cylinder used to mould the sample. The relaxation of the sample before compression
leads to lower liquid bond coordination. In this respect, itshould be noted that also in experiments
water is not distributed to all present or eligible particlepairs. Shaking might be never efficient enough
to allow all pairs to receive liquid bonds. Experimental investigation of water distribution seems thus
to be crucial for a better modeling of wet granular media [21,22].

w (%)

σ
r
u

p
t

(P
a)

Figure 12. Compressive strengths as a function of liquid content in simple compression tests from experiments
and simulations for three different redistribution protocols (see text).
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5. CONCLUSION

In summary, we developed a DEM-type approach for the simulation of 3D wet granular materials with
spherical particles. The capillary law implemented in thisframework is an analytical expression of the
capillary force as a function of geometrical and materials parameters of a liquid bridge, and it was
shown to provide excellent fit for the data from direct integration of Young-Laplace equations. This
code (tapio-K, see [43]) was applied to simulate the quasi-static behavior of wet granular media for
direct shear and simple compression boundary conditions and compared to simulations carried out with
nearly the same parameters and boundary conditions. The experimental setup was specially designed
to allow for the measurement of weak stresses, a necessary condition for the evaluation of the effects
of capillary cohesion with millimeter-size particles.

Experimental direct shear tests were performed with glass beads and sand, and the shear strengths
were analyzed in the Mohr-Coulomb space for weak confining stresses (below 1 kPa). We found that
the internal angle of friction was not sensitive to water contentw and the Coulomb cohesion increased
in a nonlinear fashion withw to saturate to a well-defined levelcm of cohesion independent of water
content forw > wm. A similar behavior was observed in numerical simulations.The cohesioncm was
found to be quite close between the experiments and numericsfor the samples of the same particle size
distribution (cm = 120 Pa in numerics vs.cm = 150 Pa in experiments). The numerical values ofwm

were found to be systematically below those in experiments.
For simple compression tests, we compared experimental results of Soulié [41] with numerical

simulations performed with cylindrical samples of wet particles. Comparing the influence of water
content between experiments and simulations, we found discrepancies that were analyzed by further
simulations where the bond coordination number was varied.We found that, in contrast to water
content, the bond coordination number plays a major role in compressive strength. Numerically, it
was also shown that the details of the redistribution of water at failed capillary bonds has minor effect
on the behavior.

Our findings and the comparisons made with experiments carried out with similar boundary
conditions credits the numerical method, and more particularly the implemented capillary law. On the
other hand, the observed discrepancies open new queries concerning the distribution of water in real
samples of wet grains. It seems thus that, in order to progress in understanding the strength properties of
wet granular materials, more detailed observations are required. New experiments are presently under
way to evaluate the local distribution of capillary bridgesand the influence of the mixing protocol.

REFERENCES

1. Cundall PA, Strack ODL. A discrete numerical model for granular assemblies.Géotechnique1979;29: 47–65.
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41. Soulié F.Cohésion par capillarité et comportement mécanique de milieux granulaires. Ph.D. Thesis. Université
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