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ENTROPIC PROJECTIONS AND DOMINATING POINTS

CHRISTIAN LÉONARD

Abstract. Entropic projections and dominating points are solutions to convex mini-
mization problems related to conditional laws of large numbers. They appear in many
areas of applied mathematics such as statistical physics, information theory, mathemat-
ical statistics, ill-posed inverse problems or large deviation theory. By means of convex
conjugate duality and functional analysis, criteria are derived for the existence of entropic
projections, generalized entropic projections and dominating points. Representations of
the generalized entropic projections are presented. It is shown that they are the “mea-
sure component” of some extended entropy minimization problem. This approach leads
to new results and offers a new point of view. It also permits to extend previous results
on the subject by removing unnecessary topological restrictions. As a by-product, new
proofs of already known results are provided.
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1. Introduction

Entropic projections and dominating points are solutions to convex minimization prob-
lems related to conditional laws of large numbers. They appear in many areas of applied
mathematics such as statistical physics, information theory, mathematical statistics, ill-
posed inverse problems or large deviation theory.

Conditional laws of large numbers. Suppose that the empirical measures

Ln :=
1

n

n∑

i=1

δZi
, n ≥ 1, (1.1)

of the Z-valued random variables Z1, Z2, . . . (δz is the Dirac measure at z) obey a Large
Deviation Principle (LDP) in the set PZ of all probability measures on Z with the rate
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2 CHRISTIAN LÉONARD

function I. This approximately means that P(Ln ∈ A) ≍
n→∞

exp[−n infP∈A I(P )] for

A ⊂ PZ . With regular enough subsets A and C of PZ , one can expect that for “all” A

lim
n→∞

P(Ln ∈ A | Ln ∈ C) =

{
1, if A ∋ P∗

0, otherwise

where P∗ is a minimizer of I on C. To see this, remark that (formally) P(Ln ∈ A | Ln ∈
C) ≍

n→∞
exp[−n(infP∈A∩C I(P ) − infP∈C I(P ))]. If I is strictly convex and C is convex, P∗

is unique and this roughly means that conditionally on Ln ∈ C, as n tends to infinity Ln

tends to the solution P∗ of the minimization problem

minimize I(P ) subject to P ∈ C, P ∈ PZ (1.2)

Such conditional Laws of Large Numbers (LLN) appear in information theory and in
statistical physics where they are often called Gibbs conditioning principles (see [7, Sec-
tion 7.3] and the references therein). If the variables Zi are independent and identically
distributed with law R, the LDP for the empirical measures is given by Sanov’s theorem
and the rate function I is the relative entropy

I(P ) = I(P |R) =

∫

Z

log

(
dP

dR

)
dP, P ∈ PZ .

Instead of the empirical probability measure of a random sample, one can consider an-
other kind of random measure. Let z1, z2, . . . be deterministic points in Z such that
the empirical measure 1

n

∑n
i=1 δzi

converges to R ∈ PZ . Let W1,W2, . . . be a sequence of
independent random real variables. The random measure of interest is

Ln =
1

n

n∑

i=1

Wiδzi
(1.3)

where the Wi’s are interpreted as random weights. If the weights are independent copies
of W, as n tends to infinity, Ln tends to the deterministic measure EW.R and obeys the
LDP in the space MZ of measures on Z with rate function I(Q) =

∫
Z
γ∗(dQ

dR
) dR, Q ∈MZ

where γ∗ is the Cramér transform of the law of W. In case the Wi’s are not identically
distributed, but have a law which depends (continuously) on zi, one can again show that
under additional assumptions Ln obeys the LDP in MZ with rate function

I(Q) =

{ ∫
Z
γ∗z(

dQ

dR
(z))R(dz), if Q ≺ R

+∞, otherwise
, Q ∈MZ (1.4)

where γ∗z is the Cramér transform of Wz. As γ∗ is the convex conjugate of the log-Laplace
transform of W, it is a convex function: I is a convex integral functional. It is often called
an entropy. Again, conditional LLNs hold for Ln and lead to the entropy minimization
problem:

minimize I(Q) subject to Q ∈ C, Q ∈MZ (1.5)

The large deviations of these random measures and their conditional LLNs enter the
framework of Maximum Entropy in the Mean (MEM) which has been studied among
others by Dacunha-Castelle, Csiszár, Gamboa, Gassiat, Najim see [5, 6, 10, 21] and also
[7, Theorem 7.2.3]. This problem also arises in the context of statistical physics. It has
been studied among others by Boucher, Ellis, Gough, Puli and Turkington, see [1, 9].

The relative entropy corresponds to γ∗(t) = t log t− t+ 1 in (1.4): the problem (1.2) is
a special case of (1.5) with the additional constraint that Q(Z) = 1.
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In this paper, the constraint set C is assumed to be convex as is almost always done in
the literature on the subject. This allows to rely on convex analysis, saddle-point theory
or on the geometric theory of projection on convex sets.

Entropic projections. The minimizers of (1.5) are called entropic projections. It may
happen that even if the minimizer is not attained, any minimizing sequence converges to
some measure Q∗ which does not belong to C. This intriguing phenomenon was discovered
by Csiszár [3]. Such a Q∗ is called a generalized entropic projection.

In the special case where I is the relative entropy, Csiszár has obtained existence results
in [2] together with dual equalities. His proofs are based on geometric properties of the
relative entropy; no convex analysis is needed. Based on the same geometric ideas, he
obtained later in [3] a powerful Gibbs conditioning principle for noninteracting particles.
For general entropies as in (1.4), he studies the problem of existence of entropic and
generalized entropic projections in [4].

The minimization problem (1.5) is interesting in its own right, even when conditional
LLNs are not at stake. The literature on this subject is huge. Some bibliographical entries
are given in [15].

Dominating points. Let the constraint set C be described by

C = {Q ∈ MZ ;TQ ∈ C} (1.6)

where C is a subset of a vector space X and T : MZ → X is a linear operator. As
a typical example, one can think of TQ =

∫
Z
θ(z)Q(dz) where θ : Z → X is some

function and the integral should be taken formally for the moment. With Ln given
at (1.1) or (1.3), if T is regular enough, we obtain by the contraction principle that
Xn := TLn = 1

n

∑n

i=1 θ(Zi) ∈ X or Xn := TLn = 1
n

∑n

i=1Wiθ(zi) obeys the LDP in
X with rate function J(x) = inf{I(Q);Q ∈ MZ , TQ = x}, x ∈ X . Once again, the
conditional LLN for Xn is of the form: For “all” A ⊂ X ,

lim
n→∞

P(Xn ∈ A | Xn ∈ C) =

{
1, if A ∋ x∗
0, otherwise

where x∗ is a solution to the minimization problem

minimize J(x) subject to x ∈ C, x ∈ X (1.7)

The minimizers of (1.7) are called dominating points. This notion was introduced by Ney
[22, 23] in the special case where (Zi)i≥1 is an iid sequence in Z = R

d and θ is the identity,
i.e. Xn = 1

n

∑n

i=1 Zi. Later, Einmahl and Kuelbs [8, 13] have extended this study to a
Banach space Z. In this iid case, J is the Cramér transform of the law of Z1.

Presentation of the results. One treats the problems of existence of entropic projec-
tions and dominating points in a unified way, taking advantage of the mapping TQ = x.
Although it is simple, this connection does not seem to be used in previous literature.
Hence, one mainly concentrates efforts on the entropic projections and then transports
the results to the dominating points.

It will be proved at Proposition 5.5 that the entropic projection exists on C if the
supporting hyperplanes of C are directed by sufficiently integrable functions. In some cases
of not enough integrable supporting hyperplanes, the representation of the generalized
projection is still available and given at Theorem 5.6. It will appear that the generalized
projection is the “measure” part of the minimizer of an extended minimization problem.

For instance, with the relative entropy I(.|R), the projection exists in C if its supporting
hyperplanes are directed by functions u such that

∫
Z
eα|u| dR < ∞ for all α > 0, see
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Proposition 5.10. If these u only satisfy
∫
Z
eα|u| dR < ∞ for some α > 0, the projection

may not exist in C, but the generalized projection is computable: its Radon-Nykodym
derivative with respect to R is characterized at Proposition 5.13.

One finds again some already known results of Csiszár [3, 4], U. Einmahl and Kuelbs
[8, 13] with different proofs and a new point of view. The representations of the generalized
projections are new results. The conditions on C to obtain dominating points are improved
and an interesting phenomenon noticed in [13] is clarified at Remark 6.9 by connecting it
with the generalized entropic projection.

The main results are Theorems 4.1, 4.7, 5.6 and 6.8.

Outline of the paper. At Section 2, one gives a precise formulation of the entropy
minimization problem (1.5) and a natural extension of it, see (PC) at Section 2.3. Then
one recalls at Theorems 2.14 and 2.17 results from [15] about the existence and uniqueness
of the solutions of (1.5) and (PC), related dual equalities and the characterizations of their
solutions in terms of integral representations.

Examples of standard entropies and constraints are presented at Section 3.
One shows at Theorem 4.7 in Section 4 that under “bad” constraints (this notion is

specified at Section 2.4 in terms of the set C and the operator T appearing in (1.6)),
although the problem (1.5) may not be attained, its minimizing sequences may converge
in some sense to some measure Q∗ : the generalized entropic projection.

Section 5 is mainly a restatement of Sections 2 and 4 in terms of entropic projections.
The results are also stated explicitly for the special important case of the relative entropy.

Section 6 is devoted to dominating points. As they are continuous images of entropic
projections, the main results of this section are corollaries of the results of Section 5.

Notation. Let X and Y be topological vector spaces. The algebraic dual space of X is
X∗, the topological dual space of X is X ′. The topology of X weakened by Y is σ(X, Y )
and one writes 〈X, Y 〉 to specify that X and Y are in separating duality.
Let f : X → [−∞,+∞] be an extended numerical function. Its convex conjugate with
respect to 〈X, Y 〉 is f ∗(y) = supx∈X{〈x, y〉−f(x)} ∈ [−∞,+∞], y ∈ Y. Its subdifferential
at x with respect to 〈X, Y 〉 is ∂Y f(x) = {y ∈ Y ; f(x+ ξ) ≥ f(x) + 〈y, ξ〉, ∀ξ ∈ X}. If no
confusion occurs, one writes ∂f(x).
Let A be a subset of X, its intrinsic core is icorA = {x ∈ A; ∀x′ ∈ affA, ∃t > 0, [x, x +
t(x′ − x)[⊂ A} where affA is the affine space spanned by A. Let us denote dom f = {x ∈
X; f(x) <∞} the effective domain of f and icordom f the intrisic core of dom f.
The indicator of a subset A of X is defined by

ιA(x) =

{
0, if x ∈ A
+∞, otherwise

, x ∈ X.

One writes

Iϕ(u) :=

∫

Z

ϕ(z, u(z))R(dz) =

∫

Z

ϕ(u) dR

and I = Iγ∗ for short, instead of (1.4).

2. Minimizing entropy under convex constraints

In this section, the main results of [15] are recalled.
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2.1. Orlicz spaces. The fact that the generalized projection may not belong to C is
connected with some properties of Orlicz spaces associated to I. Let us recall some basic
definitions and results.

A set Z is furnished with a σ-finite nonnegative measure R on a σ-field which is assumed
to be R-complete. A function ρ : Z × R is said to be a Young function if for R-almost
every z, ρ(z, ·) is a convex even [0,∞]-valued function on R such that ρ(z, 0) = 0 and
there exists a measurable function z 7→ sz > 0 such that 0 < ρ(z, sz) <∞.
In the sequel, every numerical function on Z is supposed to be measurable.

Definitions 2.1 (The Orlicz spaces Lρ and Eρ). The Orlicz space associated with ρ is
defined by Lρ = {u : Z → R; ‖u‖ρ < +∞} where the Luxemburg norm ‖ · ‖ρ is defined by
‖u‖ρ = inf

{
β > 0 ;

∫
Z
ρ(z, u(z)/β)R(dz) ≤ 1

}
and R-a.e. equal functions are identified.

Hence,

Lρ =

{
u : Z → R ; ∃αo > 0,

∫

Z

ρ
(
z, αou(z)

)
R(dz) <∞

}
.

A subspace of interest is

Eρ =

{
u : Z → R ; ∀α > 0,

∫

Z

ρ
(
z, αu(z)

)
R(dz) <∞

}
.

Of course Eρ ⊂ Lρ. Note that if ρ doesn’t depend on z and ρ(so) = ∞ for some so > 0,
Eρ reduces to the null space and if in addition R is bounded, Lρ is L∞. On the other
hand, if ρ is a finite function which doesn’t depend on z and R is bounded, Eρ contains
all the bounded functions.

Duality in Orlicz spaces is intimately linked with the convex conjugacy. The convex
conjugate ρ∗ of ρ is defined by ρ∗(z, t) = sups∈R

{st− ρ(z, s)}. It is also a Young function
so that one may consider the Orlicz space Lρ∗ .

A continuous linear form ℓ ∈ L′
ρ is said to be singular if for all u ∈ Lρ, there exists a

decreasing sequence of measurable sets (An) such that R(∩nAn) = 0 and for all n ≥ 1,
〈ℓ, u1Z\An

〉 = 0. Let us denote Ls
ρ the subspace of L′

ρ of all singular forms.

Theorem 2.2 (Representation of E ′
ρ and L′

ρ).

(a) Suppose that ρ is a finite Young function. Then,
(i) E ′

ρ is isomorphic to Lρ∗ ;
(ii) ℓ ∈ L′

ρ is singular if and only if 〈ℓ, u〉 = 0, for all u in Eρ.
(b) Let ρ be any Young function. Any ℓ ∈ L′

ρ is uniquely decomposed as

ℓ = ℓa + ℓs (2.3)

with ℓa ∈ Lρ∗R and ℓs ∈ Ls
ρ. This means that L′

ρ is the direct sum L′
ρ = Lρ∗R ⊕ Ls

ρ.

We denote the space of R-absolutely continuous signed measures having a density in
the Orlicz space Lρ∗ by Lρ∗R.

Proof. For a proof of (a), see [11, Thm 4.8] and [12, Proposition 2.1].
About (b): When Lρ = L∞ this result is the usual representation of L′

∞. When ρ is a
finite function, this result is ([12], Theorem 2.2). The general result is proved in [24], with
ρ not depending on z but the extension to a z-dependent ρ is obvious. �

In the decomposition (2.3), ℓa is called the absolutely continuous part of ℓ while ℓs is
its singular part. ℓa is a measure which is absolutely continuous with respect to R and ℓs

is not a measure: it is additive but not σ-additive.
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Definition 2.4 (∆2-condition). The function ρ is said to satisfy the ∆2-condition if there
exist C > 0, so ≥ 0 such that for all s ≥ so, ρ(2s) ≤ Cρ(s).

When R is bounded, in order that Eρ = Lρ, it is enough that ρ satisfies the ∆2-condition.
If R is unbounded, for Eρ = Lρ, it is enough that the ∆2-condition holds globally, i.e.
with so = 0. Consequently, if ρ satisfies the ∆2-condition we have L′

ρ = Lρ∗R so that Ls
ρ

reduces to the null vector space.

2.2. The entropy minimization problem (PC).

Entropy. Let R be a positive measure on a space Z and take a [0,∞]-valued measurable
function γ∗ on Z × R such that γ∗(z, ·) := γ∗z is convex and lower semicontinuous for all
z ∈ Z. Denote MZ the space of all signed measures Q on Z. The entropy functional to
be considered is defined by

I(Q) =

{ ∫
Z
γ∗z(

dQ

dR
(z))R(dz) if Q ≺ R

+∞ otherwise
, Q ∈MZ . (2.5)

where Q ≺ R means that Q is absolutely continuous with respect to R. Assume that for
each z there exists a unique m(z) which minimizes γ∗z with

γ∗z (m(z)) = 0, ∀z ∈ Z.

Then, I is [0,∞]-valued, its unique minimizer is mR and I(mR) = 0.

Relevant Orlicz spaces. Since γ∗z is closed convex for each z, it is the convex conjugate of
some closed convex function γz. Defining

λ(z, s) = γ(z, s) −m(z)s, z ∈ Z, s ∈ R,

one sees that for R-a.e. z, λz is a nonnegative convex function and it vanishes at 0. Hence,

λ⋄(z, s) = max[λ(z, s), λ(z,−s)] ∈ [0,∞], z ∈ Z, s ∈ R

is a Young function and one can consider the corresponding Orlicz spaces Lλ⋄
and Lλ∗

⋄

where λ∗⋄(z, ·) is the convex conjugate of λ⋄(z, ·).
The effective domain of I is included in mR+Lλ∗

⋄
R. It will be assumed from now on that

m ∈ Lλ∗
⋄

so that dom I = Lλ∗
⋄
R.

Constraint. In order to define the constraint, take Xo a vector space and a function
θ : Z → Xo. One wants to give some meaning to the formal constraint

∫
Z
θ dℓ = x with

ℓ ∈ Lλ∗
⋄
R and x ∈ Xo. Suppose that Xo is the algebraic dual space of some vector space

Yo and define for all y ∈ Yo and z ∈ Z, 〈y, θ(z)〉Yo,Xo
, Assuming that

〈Yo, θ(·)〉 ⊂ Lλ⋄
, (2.6)

Hölder’s inequality in Orlicz spaces allows to define the constraint operator ℓ ∈ L′
λ⋄

7→

〈θ, ℓ〉 ∈ Xo by:
〈
y, 〈θ, ℓ〉

〉
Yo,Xo

=
〈
〈y, θ〉, ℓ

〉
Lλ⋄

,L′
λ⋄

, ∀y ∈ Yo. If ℓ ∈ Lλ∗
⋄
R, one sometimes

write 〈θ, ℓ〉 =
∫
Z
θ dℓ. One sometimes denote

Tℓ = 〈θ, ℓ〉, ℓ ∈ L′
λ⋄
.

Minimization problem. We are now ready to state the minimization problem (1.5) pre-
cisely:

minimize I(Q) subject to

∫

Z

θ dQ ∈ C, Q ∈ Lλ∗
⋄
R (PC)

where C is a convex subset of Xo.
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2.3. The extended entropy minimization problem(PC). The extended entropy is
defined by

Ī(ℓ) = I(ℓa) + Is(ℓs), ℓ ∈ L′
λ⋄

(2.7)

where, using the notation of Theorem 2.2,

Is(ℓs) = ι∗dom Iγ
(ℓs) = sup {〈ℓs, u〉; u ∈ Lλ⋄

, Iγ(u) <∞} ∈ [0,∞].

The associated extended minimization problem is

minimize Ī(ℓ) subject to 〈θ, ℓ〉 ∈ C, ℓ ∈ L′
λ⋄

(PC)

Ī is the greatest convex σ(L′
λ⋄
, Lλ⋄

)-lower semicontinuous extension of I to L′
λ⋄

⊃ Lλ∗
⋄
R,

see [15] for references about this result.

2.4. Good and bad constraints. If the Young function λ⋄ doesn’t satisfy the ∆2-
condition (see Definition 2.4), for instance if it has an exponential growth at infinity as
in (3.1) below, the small Orlicz space Eλ⋄

may be a proper subset of Lλ⋄
. Consequently,

for some functions θ, the integrability property

〈Yo, θ(·)〉 ⊂ Eλ⋄
(2.8)

or equivalently

∀y ∈ Yo,

∫

Z

λ(z, 〈y, θ(z)〉)R(dz) <∞ (A∀
θ)

may not be satisfied while the weaker property (2.6): 〈Yo, θ(·)〉 ⊂ Lλ⋄
, or equivalently

∀y ∈ Yo, ∃α > 0,

∫

Z

λ(z, α〈y, θ(z)〉)R(dz) <∞ (A∃
θ)

holds. In this situation, analytical complications occur (see Section 4). This is the reason
why constraint satisfying (A∀

θ) are called good constraints, while constraints satisfying
(A∃

θ) but not (A∀
θ) are called bad constraints.

One denotes YL the subset of X ∗
o which is isomorphic to the strong closure of the

subspace {〈y, θ〉; y ∈ Yo} in Lλ⋄
. Under the assumption (A∀

θ), for all y ∈ Yo, 〈y, θ〉 ∈ Eλ⋄

and YL = YE : the strong closure of {〈y, θ〉; y ∈ Yo} in Eλ⋄
.

Under the assumption (A∀
θ), the convex set C is said to be a good constraint set if

T−1C ∩ Lλ∗
⋄
R =

⋂

y∈Y

{
fR ∈ Lλ∗

⋄
R;

∫

Z

〈y, θ〉f dR ≥ ay

}
for some Y ⊂ YE (2.9)

and some function y ∈ Y 7→ ay ∈ R. Under the assumption (A∃
θ), it is said to be a bad

constraint set if

T−1C =
⋂

y∈Y

{
ℓ ∈ L′

λ⋄
; 〈〈y, θ〉, ℓ〉 ≥ ay

}
for some Y ⊂ YL (2.10)

These special shapes (2.9) and (2.10) imply some closure property of C. For comparison, if
(A∃

θ) holds and C is only supposed to be convex, T−1C =
⋂

(y,a)∈A

{
ℓ ∈ L′

λ⋄
; 〈〈y, θ〉, ℓ〉 > a

}

with A ⊂ YL × R.
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2.5. Several function spaces and cones. To state the extended dual problems (D̃C)
and (DC) below, notation is needed. If λ is not an even function, one has to consider

{
λ+(z, s) = λ(z, |s|)
λ−(z, s) = λ(z,−|s|)

(2.11)

which are Young functions and the corresponding Orlicz spaces.
Let E be a Riesz vector space for the order relation ≤ . Any e ∈ E admits a positive

part: e+ := e∨ 0 and a negative part: e− := (−e) ∨ 0. One writes |e| = e+ + e−. There is
a natural order on the algebraic dual space E∗ of a Riesz vector space E which is defined
by: e∗ ≤ f ∗ ⇔ 〈e∗, e〉 ≤ 〈f ∗, e〉 for any e ∈ E with e ≥ 0. A linear form e∗ ∈ E∗ is said to
be relatively bounded if for any f ∈ E, f ≥ 0, we have supe:|e|≤f |〈e

∗, e〉| < +∞. Although

E∗ may not be a Riesz space in general, the vector space Eb of all the relatively bounded
linear forms on E is always a Riesz space. In particular, the elements of Eb admit a
decomposition in positive and negative parts e∗ = e∗+ − e∗−.

Definitions 2.12. For any relatively bounded linear form ζ on L′
λ⋄

i.e. ζ ∈ L′b
λ⋄
, one

writes:

• ζ ∈ K ′′
λ to specify that ζ±|L′

λ±
∩L′

λ⋄

∈ L′′
λ±

• ζ ∈ K ′
λ∗ to specify that ζ±|Lλ∗

±
R∩L′

λ⋄

∈ L′
λ∗
±

• ζ ∈ Kλ to specify that ζ±|Lλ∗
±

R∩L′
λ⋄

∈ Lλ±

• ζ ∈ Ks
λ∗ to specify that ζ±|Lλ∗

±
R∩L′

λ⋄

∈ Ls
λ∗
±

• ζ ∈ Ks′
λ to specify that ζ±|Ls

λ±
∩L′

λ⋄

∈ Ls′
λ±

where λ± are defined at (2.11) and ζ±|L±∩L′
λ⋄

∈ L′
± means that the restriction of ζ± to

L± ∩ L′
λ⋄

is continuous with respect to relative topology generated by the strong topology
of L± on L± ∩ L′

λ⋄
.

(1) The sets K ′′
λ, K

′
λ∗ , Kλ, K

s
λ∗ and Ks′

λ are defined to be the corresponding subsets of
L′b

λ⋄
. They are not vector spaces in general but convex cones with vertex 0.

(2) The σ(K ′′
λ , K

′
λ)-closure A of a set A is defined as follows: ζ ∈ L′b

λ⋄
is in A if

ζ±|L′
λ±

∩L′
λ⋄

is in the σ(L′′
λ±

∩L′b
λ⋄
, L′

λ±
∩L′

λ⋄
)-closure of A± = {ζ±; ζ ∈ A}. Clearly,

A± = {ζ±; ζ ∈ A}.
One defines similarly the σ(K ′

λ∗ , Kλ∗), σ(Kλ, K
′
λ), σ(Ks

λ∗ , Kλ∗) and σ(Ks′
λ , K

s
λ)-

closures.
(3) Let A be a subset of Lλ⋄

. Its strong closure s-clA in Kλ is the set of all measurable
functions u such that u± is in the ‖ · ‖λ±

-closure of A± = {v±; v ∈ A}.

Let ρ be a Young function. By Theorem 2.2, we have L′′
ρ = [Lρ.R ⊕ Ls

ρ] ⊕ Ls′
ρ . For any

ζ ∈ L′′
ρ = (Lρ∗R ⊕ Ls

ρ)
′, let us denote the restrictions ζ1 = ζ|Lρ∗R and ζ2 = ζ|Ls

ρ
. Since,

(Lρ∗R)′ ≃ Lρ ⊕ Ls
ρ∗ , one sees that any ζ ∈ L′′

ρ is uniquely decomposed into

ζ = ζa
1 + ζs

1 + ζ2 (2.13)

with ζ1 = ζa
1 + ζs

1 ∈ L′
ρ∗ , ζ

a
1 ∈ Lρ, ζ

s
1 ∈ Ls

ρ∗ and ζ2 ∈ Ls′
ρ . With our definitions, K ′′

λ =
[Kλ ⊕Ks

λ∗ ] ⊕Ks′
λ and the decomposition (2.13) holds for any ζ ∈ K ′′

λ with
{
ζ1 = ζa

1 + ζs
1 ∈ Kλ ⊕Ks

λ∗ = K ′
λ∗ ,

ζ2 ∈ Ks′
λ .
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2.6. The assumptions. Let us first collect the assumptions on R, γ∗ and θ.

Assumptions (A).

(AR) It is assumed that the reference measure R is a σ-finite nonnegative measure on a
space Z endowed with some R-complete σ-field.

(Aγ∗) Assumptions on γ∗.
(1) γ∗(·, t) is z-measurable for all t and for R-almost every z ∈ Z, γ∗(z, ·) is

a lower semicontinuous strictly convex [0,+∞]-valued function on R which
attains a unique minimum. Let m(z) denote this minimizer.

(2) It is also assumed that for R-almost every z ∈ Z, the minimum value is
γ∗(z,m(z)) = 0 and there exist a(z), b(z) > 0 such that 0 < γ∗(z,m(z) +
a(z)) <∞ and 0 < γ∗(z,m(z) − b(z)) <∞.

(3)
∫
Z
λ∗(z, αm(z))R(dz) +

∫
Z
λ∗(z,−αm(z))R(dz) <∞, for some α > 0.

(4) For R-almost every z ∈ Z, limt→±∞ γ∗z(t)/t = +∞.
(Aθ) Assumptions on θ.

(1) for any y ∈ Yo, the function z ∈ Z 7→ 〈y, θ(z)〉 ∈ R is measurable;
(2) for any y ∈ Yo, 〈y, θ(·)〉 = 0, R-a.e. implies that y = 0;
(∃) ∀y ∈ Yo, ∃α > 0,

∫
Z
λ(z, α〈y, θ(z)〉)R(dz) <∞.

2.7. The solution of (PC). The dual problem associated with (PC) is

maximize inf
x∈C∩XL

〈y, x〉 − Iγ(〈y, θ〉), y ∈ YL (DC)

and the extended dual problem associated with (PC) is

maximize inf
x∈C∩XL

〈ω, x〉 − Iγ(〈ω, θ〉), ω ∈ Ỹ (D̃C)

where Ỹ is the convex cone of all linear forms ω on Xo such that 〈ω, θ(·)〉X ∗
o ,Xo

is in the
σ(Kλ, Kλ∗)-closure of {〈y, θ〉; y ∈ Yo}.
Let us define

Γ∗(x) = sup
y∈Yo

{
〈y, x〉 −

∫

Z

γ(〈y, θ〉) dR

}
, x ∈ Xo

the convex conjugate of

Γ(y) =

∫

Z

γ(〈y, θ〉) dR, y ∈ Yo.

Theorem 2.14 (Problem (PC)). Suppose that

(1) the assumptions (A) and (A∀
θ) are satisfied;

(2) C satisfies (2.9).

Then:

(a) The following dual equality for (PC) holds:

inf(PC) = sup(DC) = sup(D̃C) = inf
x∈C

Γ∗(x) ∈ [0,∞].

(b) If C∩dom Γ∗ 6= ∅ or equivalently C∩Tdom I 6= ∅, then (PC) admits a unique solution

Q̂ in Lλ∗
⋄
R and any minimizing sequence (Qn)n≥1 converges to Q̂ with respect to the

topology σ(Lλ∗
⋄
.R, Eλ⋄

).

Suppose that in addition C ∩ icordom Γ∗ 6= ∅ or equivalently C ∩ icor (Tdom I) 6= ∅.
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(c) Let us define x̂
△

=
∫
Z
θ dQ̂ in the weak sense with respect to the duality 〈Yo,Xo〉. There

exists ω̃ ∈ Ỹ such that



(a) x̂ ∈ C ∩ dom Γ∗

(b) 〈ω̃, x̂〉X ∗
o ,Xo

≤ 〈ω̃, x〉X ∗
o ,Xo

, ∀x ∈ C ∩ dom Γ∗

(c) Q̂(dz) = γ′z(〈ω̃, θ(z)〉)R(dz).
(2.15)

Furthermore, Q̂ ∈ Lλ∗
⋄
R and ω̃ ∈ Ỹ satisfy (2.15) if and only if Q̂ solves (PC) and ω̃

solves (D̃C).
(d) Of course, (2.15-c) implies

x̂ =

∫

Z

θγ′(〈ω̃, θ〉) dR (2.16)

in the weak sense. Moreover,
1. x̂ minimizes Γ∗ on C,

2. I(Q̂) = Γ∗(x̂) =
∫
Z
γ∗ ◦ γ′(〈ω̃, θ〉) dR <∞ and

3. I(Q̂) +
∫
Z
γ(〈ω̃, θ〉) dR =

∫
Z
〈ω̃, θ〉 dQ̂.

Proof. This result is [15, Theorem 5.2]. �

Following the terminology of Ney [22, 23], as it shares the properties (a), (b) and (2.16),
the minimizer x̂ is called a dominating point of C with respect to Γ∗ (see Definition 6.2
below).

2.8. The solutions of (PC). Let us turn our attention to the extended problem (PC).
Denoting the operator T : ℓ ∈ L′

λ⋄
7→ 〈θ, ℓ〉 ∈ Xo, it is shown in [15] that TL′

λ⋄
⊂ XL

where XL ⊂ Xo is the topological dual space of (YL, | · |L) with |y|L = ‖〈y, θ(·)〉‖Lλ⋄
.

Hence T : L′
λ⋄

→ XL and one can define its adjoint T ∗ : X ∗
L → L′∗

λ⋄
for all ω ∈ X ∗

L by:
〈ℓ, T ∗ω〉L′

λ⋄
,L′∗

λ⋄
= 〈Tℓ, ω〉XL,X ∗

L
, ∀ℓ ∈ L′

λ⋄
. We have the inclusions Yo ⊂ YL ⊂ X ∗

L.

The extended dual problem is

maximize inf
x∈C∩XL

〈ω, x〉 − Iγ
(
[T ∗ω]a1

)
− ιD

(
[T ∗ω]2

)
, ω ∈ Y (DC)

where D is the σ(Ks′
λ , K

s
λ)-closure of dom Iγ and Y is the cone of all ω ∈ X ∗

L such that
T ∗ω ∈ K ′′

λ and [T ∗ω]s1 = 0.
As R is assumed to be σ-finite, there exists a measurable partition (Zk)k≥1 of Z :

⊔
k Zk =

Z, such that R(Zk) <∞ for each k ≥ 1.

Theorem 2.17 (Problem (PC)). Suppose that

(1) the assumptions (A) are satisfied;
(2) C satisfies (2.10);
(3) for each k ≥ 1, Lλ⋄

(Zk, R|Zk
) is dense in Lλ+(Zk, R|Zk

) and Lλ−
(Zk, R|Zk

) with
respect to the topologies associated with ‖ · ‖λ+ and ‖ · ‖λ−

.

Then:

(a) The following dual equality for (PC) holds:

inf(PC) = inf
x∈C

Γ∗(x) = sup(DC) = sup(DC) ∈ [0,∞].

(b) If C∩domΓ∗ 6= ∅ or equivalently C∩Tdom Ī 6= ∅, then (PC) admits solutions in L′
λ⋄
, any

minimizing sequence admits σ(L′
λ⋄
, Lλ⋄

)-cluster points and every such point is a solution

to (PC).
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Suppose that in addition we have

C ∩ icordom Γ∗ 6= ∅

or equivalently C ∩ icor (Tdom Ī) 6= ∅. Then:

(c) Let ℓ̂ be a solution to (PC) and denote x̂
△

= T ℓ̂. There exists ω̄ ∈ Y such that




(a) x̂ ∈ C ∩ dom Γ∗

(b) 〈ω̄, x̂〉X ∗
L

,XL
≤ 〈ω̄, x〉X ∗

L
,XL
, ∀x ∈ C ∩ domΓ∗

(c) ℓ̂ ∈ γ′z([T
∗ω̄]a1)R+D⊥([T ∗ω̄]2)

(2.18)

where

D⊥(η) = {ℓ ∈ Ls
λ⋄

; ∀h ∈ Lλ⋄
, η + h ∈ D ⇒ 〈h, ℓ〉 ≤ 0}

is the outer normal cone of D at η.
T ∗ω̄ is in the σ(K ′′

λ, K
′
λ)-closure of T ∗(domΓ) and there exists some ω̃ ∈ X ∗

o such that

[T ∗ω̄]a1 = 〈ω̃, θ(·)〉X ∗
o ,Xo

is a measurable function in the strong closure of T ∗(domΓ) in Kλ.

Furthermore, ℓ̂ ∈ L′
λ⋄

and ω̄ ∈ Y satisfy (2.18) if and only if ℓ̂ solves (PC) and ω̄ solves

(DC).
(d) Of course, (2.18-c) implies

x̂ =

∫

Z

θγ′(〈ω̃, θ〉) dR+ 〈θ, ℓ̂s〉. (2.19)

Moreover,
1. x̂ minimizes Γ∗ on C,
2. Ī(ℓ̂) = Γ∗(x̂) =

∫
Z
γ∗ ◦ γ′(〈ω̃, θ〉) dR+ 〈T ∗ω̄, ℓ̂s〉Ks

λ
′,Ks

λ
<∞,

3. I(ℓ̂a) +
∫
Z
γ(〈ω̃, θ〉) dR =

∫
Z
〈ω̃, θ〉 dℓ̂a and

4. Ī(ℓ̂s) = sup{〈u, ℓ̂s〉; u ∈ dom Iγ} = 〈T ∗ω̄, ℓ̂s〉Ks
λ
′,Ks

λ
.

Proof. This result is [15, Theorem 4.6] which is proved without assuming (A4
γ∗). �

Proposition 2.20. For the assumption (3) of Theorem 2.17 to be satisfied, it is enough
that one of these conditions holds

(i) λ is even or more generally 0 < lim inft→∞
λ+

λ−
(t) ≤ lim supt→∞

λ+

λ−
(t) < +∞;

(ii) limt→∞
λ+

λ−
(t) = +∞ and λ− satisfies the ∆2-condition (2.4).

Proof. This result is [15, Proposition 4.9]. �

Remark 2.21. Since it is assumed that x ∈ icordom Γ∗, no infinite force field (see [18]
for this notion) enters the dual representation of ℓx. If 0 is the left bound of dom γ∗,
one has γ′(−∞) = 0 and in case x ∈ dom Γ∗ \ icordom Γ∗, it may happen that 〈yx, θ〉
takes (formally) the value −∞ on some subset Z0 of Z so that dℓa

x

dR
vanishes on Z0. A

similar phenomenon occurs if dom γ∗z admits a finite right bound κz on a set Zκ such that

R(Zκ) > 0. Then, γ′z(+∞) = κz <∞ and dℓa
x

dR
(z) = κz on Zκ. For the details, see [18].

3. Some examples

3.1. Some examples of entropies. Important examples of entropies occur in statistical
physics, probability theory and mathematical statistics. Among them the relative entropy
plays a prominent role.
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Relative entropy. The reference measure R is assumed to be a probability measure. The
relative entropy of Q ∈MZ with respect to R ∈ PZ is

I(Q|R) =

{ ∫
Z

log
(

dQ

dR

)
dQ if Q ≺ R and Q ∈ PZ

+∞ otherwise
, Q ∈MZ .

It corresponds to γ∗z(t) =





t log t− t+ 1 if t > 0
1 if t = 0
+∞ if t < 0

, m(z) = 1 and

λz(s) = es − s− 1, s ∈ R, z ∈ Z. (3.1)

A variant. Taking the same γ∗ and removing the unit mass constraint gives

H(Q|R) =

{ ∫
Z

[
dQ

dR
log

(
dQ

dR

)
− dQ

dR
+ 1

]
dR if 0 ≤ Q ≺ R

+∞, otherwise
, Q ∈MZ

This entropy is the rate function of (1.3) when (Wi)i≥1 is an iid sequence of Poisson(1)
random weights. If R is σ-finite, it is the rate function of the LDP of normalized Poisson
random measures, see [16].

Extended relative entropy. Since λ(s) = es − s− 1 and R ∈ PZ is a bounded measure, we
have λ⋄(s) = τ(s) := e|s| − |s| − 1 and the relevant Orlicz spaces are

Lτ∗ = {f : Z → R;

∫

Z

|f | log |f | dR <∞}

Eτ = {u : Z → R; ∀α > 0,

∫

Z

eα|u| dR <∞}

Lτ = {u : Z → R; ∃α > 0,

∫

Z

eα|u| dR <∞}

The extended relative entropy is defined by

Ī(ℓ|R) = I(ℓa|R) + sup

{
〈ℓs, u〉; u,

∫

Z

eu dR <∞

}
, ℓ ∈ E(Z) (3.2)

where ℓ = ℓa + ℓs is the decomposition into absolutely continuous and singular parts of ℓ
in L′

τ = Lτ∗ ⊕ Ls
τ , and E(Z) = {ℓ ∈ L′

τ ; ℓ ≥ 0, 〈ℓ, 1〉 = 1}. Note that E(Z) depends on R
and that for all ℓ ∈ E(Z), ℓa ∈ PZ ∩ Lτ∗R.

3.2. Some examples of constraints. Let us consider the two standard constraints
which are the moment constraints and the marginal constraints.

3.2.1. Moment constraints. Let θ = (θk)1≤k≤K be a measurable function from Z to Xo =
R

K . The moment constraint is specified by the operator
∫

Z

θ dℓ =

(∫

Z

θk dℓ

)

1≤k≤K

∈ R
K ,

which is defined for each ℓ ∈MZ which integrates all the real valued measurable functions
θk. The adjoint operator is

〈y, θ〉 =
∑

1≤k≤K

ykθk, y = (y1, . . . , yK) ∈ R
K .
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Marginal constraints. Let Z = A×B be a product space, MAB be the space of all bounded
signed measures on A×B and UAB be the space of all measurable bounded functions u
on A×B. Denote ℓA = ℓ(· × B) and ℓB = ℓ(A × ·) the marginal measures of ℓ ∈ MAB.
The constraint of prescribed marginal measures is specified by

∫

A×B

θ dℓ = (ℓA, ℓB) ∈MA ×MB, ℓ ∈ MAB

where MA and MB are the spaces of all bounded signed measures on A and B. The
function θ which gives the marginal constraint is

θ(a, b) = (δa, δb), a ∈ A, b ∈ B

where δa is the Dirac measure at a. Indeed, (ℓA, ℓB) =
∫

A×B
(δa, δb) ℓ(dadb).

More precisely, let UA, UB be the spaces of measurable functions on A and B and take
Yo = UA × UB and Xo = U∗

A × U∗
B. Then, θ is a measurable function from Z = A×B to

Xo = U∗
A × U∗

B and the adjoint of the marginal operator

〈θ, ℓ〉 = (ℓA, ℓB) ∈ U∗
A × U∗

B, ℓ ∈ U∗
AB

where 〈f, ℓA〉 := 〈f ⊗ 1, ℓ〉 and 〈g, ℓB〉 := 〈1⊗ g, ℓ〉 for all f ∈ UA and g ∈ UB, is given by

〈(f, g), θ〉 = f ⊕ g ∈ UAB, f ∈ UA, g ∈ UB (3.3)

where f ⊕ g(a, b) := f(a) + g(b), a ∈ A, b ∈ B.

4. Solving (PC) with bad constraints

In this section, the minimization problem (PC) is considered when the constraint func-
tion θ satisfies (A∃

θ) but not necessarily (A∀
θ). This means that the constraint is bad.

Problem (PC) may not be attained anymore. Nevertheless, minimizing sequences may
admit a limit in some sense. As will be seen at Section 5, this phenomenon is tightly
linked to the notion of generalized entropic projection introduced by Csiszár.

4.1. The results about minimizing sequences. One starts this section stating its
main results at Theorems 4.1 and 4.7.

Theorem 4.1. The hypotheses of Theorem 2.17 are assumed.

(a) Suppose that C ∩ dom Γ∗ 6= ∅. Then, the minimization problem (PC) is attained in
L′

λ⋄
and all its solutions share the same unique absolutely continuous part Q⋄ ∈ Lλ∗

⋄
R.

(b) Suppose that C ∩ icordom Γ∗ 6= ∅. Then, (D̃C) is attained in Ỹ and

Q⋄(dz) = γ′z(〈ω⋄, θ(z)〉)R(dz) (4.2)

where ω⋄ ∈ Ỹ is any solution to (D̃C). More, for each such ω⋄, 〈ω⋄, θ(·)〉 is in the
strong closure of T ∗dom Γ in Kλ and there exists ω̄ ∈ Y solution of (DC) such that
[T ∗ω̄]a1 = 〈ω⋄, θ(·)〉.

Proof. • Proof of (a). The attainment statement is Theorem 2.17-b. Let us show that as
γ∗ is strictly convex, if k∗ and ℓ∗ are two solutions of (PC), their absolutely continuous
parts match:

ka
∗ = ℓa∗. (4.3)
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k∗, ℓ∗ are in the convex set {ℓ ∈ L′
λ⋄

;Tℓ ∈ C} and inf(PC) = Ī(k∗) = Ī(ℓ∗). For all
0 ≤ p, q ≤ 1 such that p+ q = 1, as I and Is are convex functions, we have

inf(PC) ≤ Ī(pk∗ + qℓ∗)

= I(pka
∗ + qℓa∗) + Is(pks

∗ + qℓs∗)

≤ pI(ka
∗) + qI(ℓa∗) + pIs(ks

∗) + qIs(ℓs∗)

= pĪ(k∗) + qĪ(ℓ∗) = inf(PC)

It follows that I(pka
∗+qℓ

a
∗)+I

s(pks
∗+qℓ

s
∗) = pI(ka

∗)+qI(ℓ
a
∗)+pI

s(ks
∗)+qI

s(ℓs∗). Suppose that
ka
∗ 6= ℓa∗. As I is strictly convex, with 0 < p < 1, one gets: I(pka

∗ + qℓa∗) < pI(ka
∗) + qI(ℓa∗)

and this implies that Is(pks
∗ + qℓs∗) > pIs(ks

∗) + qIs(ℓs∗) which is impossible since Is is
convex. This proves (4.3).

• Proof of (b). Let ℓ̄ be any solution to (PC). Denoting x̄a = T ℓ̄a and x̄s = T ℓ̄s one sees
with (2.18) that





(a) x̄a ∈ [C − x̄s] ∩ dom Γ∗

(b) 〈ω̄, x̄a〉 ≤ 〈ω̄, x〉, ∀x ∈ [C − x̄s] ∩ dom Γ∗

(c) ℓ̄a = γ′z(〈ω̃, θ〉)R

By Theorem 2.17-c, this implies that ω̃ solves (D̃C−x̄s).

It remains to show that ω̃ also solves (D̃C). Thanks to Theorem 2.17, we have: infx∈C〈ω̄, x〉 =
〈T ∗ω̄, ℓ̄〉 = 〈〈ω̃, θ〉, ℓ̄a〉 + Ī(ℓ̄s) and infx∈C〈ω̄, x〉 − Iγ(〈ω̃, θ〉) = sup(DC) = inf(PC) =
I(ℓ̄a) + Ī(ℓ̄s) = inf(PC−x̄s) + Ī(ℓ̄s) = sup(DC−x̄s) + Ī(ℓ̄s). Therefore infx∈C〈ω̄, x〉 =
infx∈C−x̄s〈ω̃, x〉 + Ī(ℓ̄s) and subtracting Ī(ℓ̄s) from (DC), one sees that ω̃ which solves

(D̃C−x̄s) also solves (D̃C). One completes the proof of the proposition, taking ω⋄ = ω̃. �

Remark 4.4. Replacing ℓ̄s with tℓ̄s, the same proof shows that ω̃ solves (D̃C+(t−1)x̄s) for
any t ≥ 0.

From now on, one denotes Q⋄ ∈ Lλ∗
⋄
R the absolutely continuous part shared by all the

solutions of (PC). Let us introduce

C =

{
Q ∈ Lλ∗

⋄
R; TQ :=

∫

Z

θ dQ ∈ C

}
(4.5)

C =
{
ℓ ∈ L′

λ⋄
; Tℓ := 〈θ, ℓ〉 ∈ C

}

the constraint sets T−1C ∩ Lλ∗
⋄
R and T−1C on which I and Ī are minimized. We have:

C = C ∩ Lλ∗
⋄
R and I = Ī + ιLλ∗

⋄
R. Hence, inf(PC) ≤ inf(PC). Clearly, C ∩ dom I 6= ∅ ⇔

inf(PC) <∞ implies C ∩ dom Ī 6= ∅ ⇔ inf(PC) <∞ ⇔ C ∩ domΓ∗ 6= ∅.
Of course, if C ∩ dom I 6= ∅, (PC) admits nontrivial minimizing sequences. Theorem 4.7
below gives some details about them.

The present paper is concerned with sets C of the form (4.5), but this is not a restriction
as explained in the following remarks.

Remarks 4.6.

(1) Taking T ∗ to be the identity on Yo = Eλ⋄
or Lλ⋄

(being careless with a.e. equality,
this corresponds to θ(z) to be the Dirac measure δz), one sees that (A∀

θ) or (A∃
θ)

is satisfied respectively. Hence, with C = C, (PC) is (PC).
Consequently, the specific form with θ and C adds details to the description of C
without loss of generality.

(2) With θ, Yo and C as in (1), the assumption (AC) is:
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(a) Under (A∀
θ): C is σ(Lλ∗

⋄
R,Eλ⋄

)-closed.
Note that if λ⋄ and λ∗⋄ both satisfy the ∆2-condition, as C is convex, this is
equivalent to C is ‖ · ‖λ∗

⋄
-closed.

(b) Under (A∃
θ): C is σ(Lλ∗

⋄
R,Lλ⋄

)-closed.
Note that if λ∗⋄ satisfies the ∆2-condition, as C is convex, this is equivalent to
C is ‖ · ‖λ∗

⋄
-closed.

We denote ‖ · ‖λ∗
⋄
-int (C) the interior of C in Lλ∗

⋄
R with respect to the strong topology

of Lλ∗
⋄
.

Theorem 4.7 (Minimizing sequences of (PC)). Suppose that the assumptions of Theorem
2.17 are satisfied and C ∩ dom I 6= ∅.
Let us consider the following additional conditions.

(1) a- There are finitely many moment constraints, i.e. Xo = R
K (see Section 3.2.1)

b- C ∩ icordom I 6= ∅.
(2) C is a σ(Lλ∗

⋄
R,Lλ⋄

)-closed convex set with a nonempty ‖ · ‖λ∗
⋄
-interior.

Under one of these additional conditions (1) or (2), any minimizing sequence of (PC)
converges to Q⋄ with respect to σ(Lλ∗

⋄
R,Eλ⋄

) and I(Q⋄) ≤ inf(PC) = inf(PC).

Proof. This proof relies on results which are stated and proved in the remainder of the
present section. It is shown at Lemma 4.9 that any minimizing sequence of (PC) converges
in the sense of the σ(Lλ∗

⋄
R,Eλ⋄

)-topology to Q⋄, whenever inf(PC) = inf(PC). But this
equality holds thanks to Lemma 4.19 and

• under condition (1): Lemma 4.21-a;
• under condition (2): Corollary 4.23-b.

Let us have a look at the last inequality. For any ℓ̄ = ℓ̄a + ℓ̄s = Q⋄ + ℓ̄s minimizer of (PC)
and any (Qn)n≥1 minimizing sequence of (PC), one obtains

inf
n
I(Qn) = inf(PC) = inf(PC) = Ī(ℓ̄)

= I(Q⋄) + Is(ℓ̄s)

≥ I(Q⋄)

with a strict inequality if Is(ℓ̄s) > 0. �

Remarks 4.8.

(1) As regards condition (1), it is not assumed that C has a nonempty interior.
(2) As regards condition (2):

(i) Any σ(Lλ∗
⋄
R,Lλ⋄

)-closed convex set has the form

C =
⋂

u∈U

{ℓ ∈ Lλ∗
⋄
R; 〈u, ℓ〉 ≥ ay}

for some U ⊂ Lλ⋄
;

(ii) For C to have a nonempty ‖ · ‖λ∗
⋄
-interior, it is enough that C ∩ XL has a

nonempty interior in XL endowed with the uniform dual norm | · |∗L. This is
a consequence of [14, Lemma 4.13-e].

(3) The last quantity Is(ℓ̄s) = inf(PC)−I(Q⋄) is precisely the gap of lower σ(Lλ∗
⋄
R,Eλ⋄

)-
semicontinuity of I : limnQn = Q⋄ and inf(PC) = lim infn I(Qn) ≥ I(limnQn) =
I(Q⋄).
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4.2. A preliminary lemma. Preliminary results for the proof of Theorem 4.7 are stated
below at Lemma 4.9. The assumption (A∃

θ) about the bad constraint is T ∗Yo ⊂ Lλ⋄
.

Lemma 4.9. Suppose that the assumptions of Theorem 2.17 are satisfied, inf(PC) < ∞
and

inf(PC) = inf(PC) (4.10)

Then, any minimizing sequence of (PC) converges to Q⋄ with respect to σ(Lλ∗
⋄
R,Eλ⋄

).

Proof. Let (Qn)n≥1 be a minimizing sequence of (PC). Since it is assumed that inf(PC) =
inf(PC), (Qn)n≥1 is also a minimizing sequence of (PC). With the representation of Ī at
(4.11) below, one can apply ([17], Corollary 2.2) which states that Ī is σ(L′

λ⋄
, Lλ⋄

)-inf-
compact. Hence, one can extract a σ(L′

λ⋄
, Lλ⋄

)-convergent subnet (Qα)α from (Qn)n≥1.

Let ℓ∗ ∈ C denote its limit: we have limα

∫
Z
u dQα = 〈ℓ∗, u〉 for all u ∈ Lλ⋄

. As 〈ℓs∗, u〉 = 0,
for all u ∈ Eλ⋄

(see Theorem 2.2-a), we obtain: limα

∫
Z
u dQα =

∫
Z
u dℓa∗ for all u ∈ Eλ⋄

.
This proves that (Qα)α σ(E ′

λ⋄
, Eλ⋄

)-converges to ℓa∗. As Eλ⋄
is a separable Banach space

(Lλ⋄
is not separable in general), the topology σ(E ′

λ⋄
, Eλ⋄

) = σ(Lλ∗
⋄
R,Eλ⋄

) is metrizable

and one can extract a convergent subsequence (Q̃k)k≥1 from the convergent net (Qα)α.

Hence, (Q̃k)k≥1 is a subsequence of (Qn)n≥1 which σ(Lλ∗
⋄
R,Eλ⋄

)-converges to ℓa∗.
Since Ī is inf-compact, ℓ∗ is a minimizer of (PC) and by Theorem 4.1-a, there is a unique
Q⋄ such for any minimizing sequence (Qn)n≥1, ℓ

a
∗ = Q⋄. Therefore, any convergent subse-

quence of (Qn)n≥1 converges to Q⋄ for σ(Lλ∗
⋄
R,Eλ⋄

). As any subsequence of a minimizing
sequence is still a minimizing sequence, we have proved that from any subsequence of
(Qn)n≥1, one can extract a sub-subsequence which converges to Q⋄. This proves that
(Qn)n≥1 converges to Q⋄ with respect to σ(Lλ∗

⋄
R,Eλ⋄

). �

4.3. Sufficient conditions for inf(PC) = inf(PC). Our aim now is to obtain sufficient
conditions for the identity inf(PC) = inf(PC) to hold. Let us rewrite the problems (PC)
and (PC) in order to emphasize their differences and analogies. Denote

ΦL(u) = Iλ(u) =

∫

Z

λ(u) dR, u ∈ Lλ⋄

ΦE(u) = ΦL(u) + ιE(u), u ∈ Lλ⋄

Their convex conjugates are

Φ∗
E(ℓ) = sup

u∈Eλ⋄

{〈ℓ, u〉 − Iλ(u)}, ℓ ∈ Lλ∗
⋄
R

Φ∗
L(ℓ) = sup

u∈Lλ⋄

{〈ℓ, u〉 − Iλ(u)}, ℓ ∈ L′
λ⋄

It is shown in [17] that
{
I(ℓ) = Φ∗

E(ℓ−mR), ℓ ∈ E ′
λ⋄

= Lλ∗
⋄
R

Ī(ℓ) = Φ∗
L(ℓ−mR), ℓ ∈ L′

λ⋄
= Lλ∗

⋄
R⊕ Ls

λ⋄

(4.11)

Hence, considering the minimization problems

minimize Φ∗
E(ℓ) subject to 〈θ, ℓ〉 ∈ Co, ℓ ∈ Lλ∗

⋄
R (PE)

and
minimize Φ∗

L(ℓ) subject to 〈θ, ℓ〉 ∈ Co, ℓ ∈ L′
λ⋄

(PL)

with Co = C − 〈θ,mR〉, we see that ℓ∗ is a solution of (PC) [resp. (PC)] if and only if
ℓ∗ −mR is a solution of (PE) [resp. (PL)]. It is enough to prove

inf(PE) = inf(PL) (4.12)
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to get inf(PC) = inf(PC).

Basic facts about convex duality. The proof of (4.12) will rely on standard convex
duality considerations. Let us recall some related facts, as developed in [26].
Let A and X be two vector spaces, h : A → [−∞,+∞] a convex function, T : A → X a
linear operator and C a convex subset of X. The primal problem to be considered is the
following convex minimization problem

minimize h(a) subject to Ta ∈ C, a ∈ A (P)

The primal value-function corresponding to the Fenchel perturbation F (a, x) = h(a) +
ιC(Ta+ x), a ∈ A, x ∈ X is ϕ(x) = infa∈A F (a, x), i.e.

ϕ(x) = inf{h(a); a ∈ A, Ta ∈ C − x} x ∈ X.

Denote A∗ the algebraic dual space of A. The convex conjugate of h with respect to the
dual pairing 〈A,A∗〉 is

h∗(ν) = sup
a∈A

{〈ν, a〉 − h(a)}, ν ∈ A∗.

Let Y be a vector space in dual pairing with X. The adjoint operator T ∗ : Y → A∗ of T
is defined for all y ∈ Y by

〈T ∗y, a〉A∗,A = 〈y, Ta〉Y,X, ∀a ∈ A

The dual problem associated with (P) is

maximize inf
x∈C

〈y, x〉 − h∗(T ∗y), y ∈ Y (D)

Let U be some subspace of A∗. The dual value-function is

ψ(u) = sup
y∈Y

{
inf
x∈C

〈y, x〉 − h∗(T ∗y + u)

}
, u ∈ U

One says that 〈X, Y 〉 is a topological dual pairing if X and Y are topological vector
spaces and their topological dual spaces X ′ and Y ′ satisfy X ′ = Y and Y ′ = X up to
some isomorphisms.

Theorem 4.13 (Criteria for the dual equality). We assume that A,U,X and Y are locally
convex Hausdorff topological vector spaces such that 〈A,U〉 and 〈X, Y 〉 are topological dual
pairings. For the dual equality

inf(P) = sup(D)

to hold, it is enough that

(1) (a) h is a convex function and C is a convex subset of X,
(b) ϕ is lower semicontinuous at 0 ∈ X and
(c) sup(D) > −∞

or

(2) (a) h is a convex function and C is a closed convex subset of X,
(b) ψ is upper semicontinuous at 0 ∈ U and
(c) inf(P) < +∞.

Remarks 4.14. About the space U.

(a) As regards Criterion (1), the space U is unnecessary.
(b) As regards Criterion (2), it is not assumed that T ∗Y ⊂ U.
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Back to our problem. Let us particularize this framework for the problems (PE) and
(PL). Assuming that m ≡ 0, one sees that (PC)=(PE), (PC)=(PL), I = Iλ∗ = Φ∗

E ,
Ī = Īλ∗ = Φ∗

L, γ = λ, C = Co and so on. This simplifying requirement will be assumed
during the proof without loss of generality, see the proof of [15, Theorem 4.6].

Let us first apply the criterion (1) of Theorem 4.13.
Problem (PE) is obtained with A = Lλ∗

⋄
R, X = XL, Y = YL equipped with the weak

topologies σ(XL,YL) and σ(YL,XL), and h = Φ∗
E = I. The corresponding primal value-

function is

ϕE(x) = inf

{
I(Q);

∫

Z

θ dQ ∈ C − x,Q ∈ Lλ∗
⋄
R

}
, x ∈ XL

Under the underlying assumption (A∃
θ), with [14, Lemma 4.13-g] we have:

T ∗YL ⊂ Lλ⋄
. (4.15)

Hence, one only needs to compute h∗ on Lλ⋄
⊂ [Lλ∗

⋄
R]∗ = A∗. For each u ∈ Lλ⋄

, h∗(u) =
supf∈Lλ∗

⋄

{
∫
Z
uf dR−

∫
Z
λ∗(f) dR} and it is proved in [25] that

h∗(u) =

∫

Z

λ(u) dR, u ∈ Lλ⋄
(4.16)

Therefore, the dual problem associated to (PE) is

maximize inf
x∈C

〈y, x〉 −

∫

Z

λ(T ∗y) dR, y ∈ YL (DE)

Let us go on with (PL). Take A = L′
λ⋄
, X = XL, Y = YL equipped with the weak

topologies σ(XL,YL) and σ(YL,XL), and h = Φ∗
L = Ī. The function h∗ in restriction to

Lλ⋄
is still given by (4.16) since u ∈ Lλ⋄

7→
∫
Z
λ(u) dR is closed convex (Fatou’s lemma).

The primal value-function is

ϕL(x) = inf{Ī(ℓ); 〈θ, ℓ〉 ∈ C − x, ℓ ∈ L′
λ⋄
}, x ∈ XL

and the dual problem associated to (PL) is

(DL) = (DE).

Lemma 4.17. Suppose that T ∗YL ⊂ Lλ⋄
and C ∩ XL is σ(XL,YL)-closed, then ϕL is

σ(XL,YL)-lower semicontinuous.

Proof. Defining ϕ̃(x) := ϕL(−x) and J̄(x) := inf{Ī(ℓ); ℓ ∈ L′
λ⋄

: 〈θ, ℓ〉 = x}, x ∈ XL, we
obtain that ϕ̃ is the inf-convolution of J̄ and the convex indicator of −C : ι−C . That is
ϕ̃(x) = (J̄2ι−C)(x) = inf{J̄(y) + ι−C(z); y, z, y + z = x}.
As already seen, Ī is σ(L′

λ⋄
, Lλ⋄

)-inf-compact and T is σ(L′
λ⋄
, Lλ⋄

)-σ(XL,YL)-continuous,
see [14, Lemma 4.13-h]. It follows that J̄ is σ(XL,YL)-inf-compact. As C ∩XL is assumed
to be σ(XL,YL)-closed, ι−C is lower semicontinuous. Finally, being the inf-convolution of
an inf-compact function and a lower semicontinuous function, ϕ̃ is lower semicontinuous,
and so is ϕL. �

As Ī and C are assumed to be convex and sup(DL) ≥ infx∈C〈0, x〉 −
∫
Z
λ(T ∗0) dR =

0 > −∞, this lemma allows us to apply Criterion (1) of Theorem 4.13 to obtain

inf(PL) = sup(DL) (4.18)

Since Ī and I match on Lλ∗
⋄
R, we have inf(PL) ≤ inf(PE). Putting together these consid-

erations gives us
sup(DE) = sup(DL) = inf(PL) ≤ inf(PE).
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Since the desired equality (4.10) is equivalent to inf(PL) = inf(PE), we have proved

Lemma 4.19. The equality (4.10) holds if and only if we have the dual equality

inf(PE) = sup(DE). (4.20)

This happens if and only if ϕE is σ(XL,YL)-lower semicontinuous at x = 0.

Let us now give a couple of simple criteria for this property to be realized.

Lemma 4.21.

(a) Suppose that there are finitely many constraints (i.e. Xo is finite dimensional) and
C ∩ icordom I 6= ∅, then ϕE is continuous at 0.

(b) Suppose that (A∀
θ) is satisfied and C is σ(XE ,YE)-closed, then ϕE is σ(XL,YL)-lower

semicontinuous.

Proof. • Proof of (a). To get (a), remark that a convex function on a finite dimensional
space is lower semicontinuous on the intrinsic core of its effective domain. By [14, Lemma
4.13], T is σ(Lλ∗

⋄
R,Lλ⋄

)-continuous and the assumption C ∩ icordom I 6= ∅ implies that 0
belongs to icordomϕE .

• Proof of (b). It is similar to the proof of Lemma 4.17. The assumption (A∀
θ) insures

that XE = XL and T is σ(Lλ∗
⋄
R,Eλ⋄

)-σ(XE,YE)-continuous. �

It follows from Lemma 4.21-b, Lemma 4.19, the remark at (4.12) and Lemma 4.9 that
under the good constraint assumptions (A∀), if C ∩ dom Γ∗ 6= ∅, then any minimizing
sequence of (PC) converges with respect to the topology σ(Lλ∗

⋄
R,Eλ⋄

) to the unique

solution Q̂ of (PC). This is Theorem 2.14-b.

Using Criterion (2). Up to now, we only used Criterion (1) of Theorem 4.13. In
the following lines, we are going to use Criterion (2) to prove (4.20) under additional
assumptions.

Let us go back to Problem (PE). It is still assumed without loss of generality that
m = 0 and γ = λ. One introduces a space U and a dual value-function ψ on U. The
framework of Theorem 4.13 is preserved when taking X = XL, Y = YL with the weak
topologies σ(XL,YL) and σ(YL,XL), h = I on A = Lλ∗

⋄
R as before and adding the

following topological pairing 〈A,U〉. We endow A = Lλ∗
⋄
R with the topology σ(Lλ∗

⋄
R,Lλ⋄

)
and take

U = A′ = (Lλ∗
⋄
R)′ ≃ Lλ⋄

with the topology σ(Lλ⋄
, Lλ∗

⋄
). By (4.16): h∗ = Iλ, this leads to the dual value-function

ψ(u) = sup
y∈YL

{
inf
x∈C

〈y, x〉 − Iλ(T
∗y + u)

}
, u ∈ Lλ⋄

To apply Criterion (2), let us establish the following

Lemma 4.22. For ψ to be σ(Lλ⋄
, Lλ∗

⋄
)-upper semicontinuous, it is enough that

(a) T ∗YL is a σ(Lλ⋄
, Lλ∗

⋄
)-closed subspace of Lλ⋄

and
(b) the interior of C in Lλ∗

⋄
R with respect to ‖ · ‖λ∗

⋄
is nonempty.
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Proof. During this proof, unless specified the topology on Lλ⋄
is σ(Lλ⋄

, Lλ∗
⋄
). For all u ∈

Lλ⋄
,

−ψ(u) = inf
y∈YL

{
sup{〈−T ∗y, ℓ〉; ℓ ∈ Lλ∗

⋄
R : Tℓ ∈ C} + Iλ(T

∗y + u)
}

= inf
v∈V

{
sup{〈−v, ℓ〉; ℓ ∈ C} + Iλ(v + u)

}

= Iλ2G(u)

where V = T ∗YL and Iλ2G(u) = infv∈Lλ⋄
{G(v) + Iλ(u− v)} is the inf-convolution of Iλ

and G(u) = ι∗C(u) + ιV (u), u ∈ Lλ⋄
. Let us show that under the assumption (a),

G = ι∗C

As V is assumed to be closed, we have ιV = ι∗
V ⊥ with V ⊥ = {k ∈ Lλ∗

⋄
R; 〈v, k〉 = 0, ∀v ∈

V }. This gives for each u ∈ L′
λ∗
⋄
, G(u) = ι∗C(u) + ι∗

V ⊥(u) = supℓ∈C〈u, ℓ〉 + supk∈V ⊥〈u, k〉 =

sup{〈u, ℓ + k〉; ℓ ∈ C, k ∈ V ⊥} = ι∗
C+V ⊥(u) = ι∗C(u), where the last equality holds since

C + V ⊥ = C, note that ker T = V ⊥.
As convex conjugates, ι∗C and Iλ = h∗ are closed convex functions.
Since for all u, v ∈ Lλ⋄

,

ι∗C(v) + Iλ(u− v) = ι∗C−k(v) − 〈v, k〉 + Iλ(u− v)

= ι∗C−k(v) + 〈u− v, k〉 + Iλ(u− v) − 〈u, k〉,

we have

−ψ + 〈·, k〉 = ι∗C−k2(Iλ − 〈·, k〉)

But, by the assumption (b) there exists some k in Lλ∗
⋄
R such that 0 ∈ int (C − k). It

follows that ι∗C−k is inf-compact. Finally, −ψ + 〈·, k〉 is lower semicontinuous, being the
inf-convolution of a lower semicontinuous and an inf-compact functions. �

Corollary 4.23.

(a) Assume that C is σ(XL,YL)-closed convex, T ∗YL is a σ(Lλ⋄
, Lλ∗

⋄
)-closed subspace of

Lλ⋄
, C has a nonempty ‖ · ‖λ∗

⋄
-interior and inf(PE) <∞. Then, (4.20) is satisfied.

(b) In particular, if C is σ(Lλ∗
⋄
R,Lλ⋄

)-closed convex set with a nonempty ‖ · ‖λ∗
⋄
-interior

and inf(PE) <∞, then (4.20) is satisfied.

Proof. • Proof of (a). Apply the criterion (2) of Theorem 4.13 with Lemma 4.22.

• Proof of (b). This is (a) with YL = Lλ⋄
and T ∗ = Id, taking advantage of Remarks

4.6. �

5. Entropic projections

The results of the preceding sections are translated in terms of entropic projections.

5.1. Generalized entropic projections. We consider the convex problem

minimize I(Q) subject to Q ∈ C (PC)

where C is a convex subset of MZ .
Let (fn)n≥1 be a sequence of measurable functions. Following [4], one says that it

converges R-loosely in measure to f if for each measurable set A ∈ Z such that R(A) <∞
and all ǫ > 0, limn→∞R(A ∩ {|fn − f | > ǫ} = 0.
It converges σ(Lλ∗

⋄
R,Eλ⋄

)-loosely if for each measurable set A ∈ Z such that R(A) <∞,
1Afn converges to 1Af with respect to σ(Lλ∗

⋄
R,Eλ⋄

).
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It converges L1-loosely if for each measurable set A ∈ Z such that R(A) < ∞, 1Afn

converges to 1Af strongly in L1(R).

Definitions 5.1. Let Q and (Qn)n≥1 in MZ be absolutely continuous with respect to R.

(1) One says that (Qn)n≥1 converges R-loosely in measure to Q if dQn

dR
converges R-

loosely in measure to dQ

dR
.

(2) One says that (Qn)n≥1 converges σ(Lλ∗
⋄
R,Eλ⋄

)-loosely to Q in Lλ∗
⋄
R if dQn

dR
con-

verges σ(Lλ∗
⋄
R,Eλ⋄

)-loosely to dQ

dR
.

(3) One says that (Qn)n≥1 converges R-loosely in variation to Q if dQn

dR
converges L1-

loosely to dQ

dR
.

Definition 5.2 (Generalized entropic projection). [4, Csiszár]. Suppose that C∩dom I 6= ∅
and that any minimizing sequence of the problem (PC) converges R-loosely in measure to
some Q∗ ∈ MZ .
This Q∗ is called the generalized entropic projection of mR on C with respect to I. It may
not belong to C. In case Q∗ is in C, it is called the entropic projection of mR on C.

Theorem 5.3 (Csiszár, [4]). Suppose that (AR) and (Aγ∗) are satisfied. Then, mR has
a generalized projection on any convex subset C of MZ such that C ∩ dom I 6= ∅.

In [4] γ∗ doesn’t depend on the variable z, but the proof remains unchanged with a
z-dependence.

Proposition 5.4. Let Q and (Qn)n≥1 in MZ be absolutely continuous with respect to R
such that (Qn)n≥1 is a minimizing sequence which converges loosely in R-measure to Q.
Then,

(a) (Qn)n≥1 converges R-loosely in variation to Q;
(b) (Qn)n≥1 converges σ(Lλ∗

⋄
R,Eλ⋄

)-loosely to Q.

Proof. • Proof of (a). Because of de la Vallée Poussin’s theorem (using assumption (A4
γ∗)),

any minimizing sequence (Qn)n≥1 is such that {1A
dQn

dR
, n ≥ 1} is uniformly integrable for

each A such that R(A) < ∞. Therefore, if (Qn)n≥1 converges loosely in R-measure, it
converges R-loosely in variation.

• Proof of (b). It is enough to consider a bounded measure R. If λ∗⋄ is a finite function,
this follows from [24, Proposition 4.5.6]. If domλ∗⋄ is bounded, we have to show the
σ(L∞, L1)-convergence of fn = dQn

dR
to f = dQ

dR
. But (fn)n≥1 is bounded in L∞ and the

result follows. �

As a direct consequence of Theorem 2.14, if the constraints are good, the generalized
entropic projection is the entropic projection.

Proposition 5.5. Suppose that (AR) and (Aγ∗) hold, C is convex and σ(Lλ∗
⋄
R,Eλ⋄

)-closed
and C ∩ dom I 6= ∅. Then, the entropic projection Q∗ exists and is equal to

Q∗ = Q̂ ∈ C

where Q̂ is the minimizer of (PC) which is described at Theorem 2.14.

Proof. This is an easy corollary of Theorem 2.14. �

A consequence of Proposition 5.5 is that for any σ(Lλ∗
⋄
R,Eλ⋄

)-closed convex set C, the
generalized entropic projection is the entropic projection. This is essentially [4, Thm
3-(iii)].
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Csiszár’s proof of Theorem 5.3 is based on a parallelogram identity which allows to
show that any minimizing sequence is a Cauchy sequence. This result is general but it
doesn’t tell much about the nature of Q∗. Let us give some details on the generalized
entropic projections in specific situations.

Theorem 5.6. Suppose that the assumptions of Theorem 2.17 are satisfied and C given
by (4.5) satisfies C ∩ dom I 6= ∅. Let us consider the additional conditions:

(1) a- There are finitely many moment constraints, i.e. Xo = R
K (see Section 3.2.1)

b- C ∩ icordom I 6= ∅;
(2) C is a σ(Lλ∗

⋄
R,Lλ⋄

)-closed convex set with a nonempty ‖ · ‖λ∗
⋄
-interior.

Then, under one of the conditions (1) or (2), the generalized entropic projection Q∗ of
mR on C is

Q∗ = Q⋄

the absolutely continuous component described at (4.2) and I(Q∗) ≤ infC I.

Proof. This is a direct consequence of Theorems 5.3 and 4.7. �

5.2. The special case of relative entropy. The relative entropy I(P |R) and its ex-
tension Ī(ℓ|R) are described at Section 3. The minimization problem is

minimize I(P |R) subject to

∫

Z

θ dP ∈ C, P ∈ PZ (5.7)

and its extension is

minimize Ī(ℓ|R) subject to 〈θ, ℓ〉 ∈ C, ℓ ∈ E(Z) (5.8)

We introduce the Cramér transform of the image law of R by θ on Xo :

Ξ(x) = sup
y∈Yo

{
〈y, x〉 − log

∫

Z

e〈y,θ〉 dR

}
∈ [0,∞], x ∈ Xo (5.9)

Proposition 5.10 (Relative entropy subject to good constraints). Let us assume that θ
satisfies the“good constraint” assumption

∀y ∈ Yo,

∫

Z

e〈y,θ(z)〉R(dz) <∞ (5.11)

and that C ∩ XE is a σ(XE ,YE)-closed convex subset of XE.

(a) The following dual equality holds:

inf{I(P |R); 〈θ, P 〉 ∈ C, P ∈ PZ} = sup
y∈Yo

{
inf
x∈C

〈y, x〉 − log

∫

Z

e〈y,θ〉 dR

}
∈ [0,∞]

(b) Suppose that in addition C ∩ dom Ξ 6= ∅. Then, the minimization problem (5.7) has a

unique solution P̂ in PZ , P̂ is the entropic projection of R on C = {P ∈ PZ ,
∫
Z
θ dP ∈

C}.
(c) Suppose that in addition, C ∩ icordom Ξ 6= ∅, then there exists some linear form ω̃ on

Xo such that 〈ω̃, θ〉 is measurable and




x̂
△

=
∫
Z
θ dP̂ ∈ C ∩ dom Ξ

〈ω̃, x̂〉 ≤ 〈ω̃, x〉, ∀x ∈ C ∩ dom Ξ

P̂ (dz) = exp
(
〈ω̃, θ(z)〉 − log

∫
Z
e〈ω̃,θ〉 dR

)
R(dz).
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In this situation, x̂ minimizes Ξ on C, I(P̂ | R) = Ξ(x̂) and

x̂ =

∫

Z

θ(z) exp

(
〈ω̃, θ(z)〉 − log

∫

Z

e〈ω̃,θ〉 dR

)
R(dz) (5.12)

in the weak sense.

Proposition 5.13 (Relative entropy subject to bad constraints). Let us assume that θ
satisfies the “bad constraint” assumption

∀y ∈ Yo, ∃α > 0,

∫

Z

eα|〈y,θ(z)〉| R(dz) <∞ (5.14)

and that C ∩ XL is a σ(XL,YL)-closed convex subset of XL.

(a) The following dual equality holds:

inf{Ī(ℓ | R); 〈θ, ℓ〉 ∈ C, ℓ ∈ E(Z)} = sup
y∈Yo

{
inf
x∈C

〈y, x〉 − log

∫

Z

e〈y,θ〉 dR

}
∈ [0,∞]

(b) Suppose that in addition C ∩ dom Ξ 6= ∅. Then, the minimization problem (5.8) is
attained in E(Z) : the set of minimizers is nonempty, convex and σ(L′

τ , Lτ )-compact.
Moreover, all the minimizers share the same unique absolutely continuous part P⋄ ∈
PZ ∩ Lτ∗R which is the generalized entropic projection of R on C.

(c) Suppose that in addition, one of the following conditions
(1) Xo = R

K and C ∩ icordom I 6= ∅ or
(2) ‖ · ‖τ∗-int (C) 6= ∅.
is satisfied. Then, there exists a linear form ω̃ on Xo such that 〈ω̃, θ〉 is measurable,∫
Z
e〈ω̃,θ〉 dR <∞ and

P⋄(dz) = exp

(
〈ω̃, θ(z)〉 − log

∫

Z

e〈ω̃,θ〉 dR

)
R(dz).

In Proposition 5.10, x̂ is the dominating point in the sense of Ney (see Definition 6.3)
of C with respect to Ξ. The representation of x̂ has already been obtained for C with
a nonempty topological interior in R

d by Ney in [23] and in a Banach space setting by
Einmahl and Kuelbs in [8]. The representation of the generalized projection P⋄ is obtained
with a very different proof by Csiszár [2] and ([3], Thm 3). Proposition 5.13 also extends
corresponding results of Kuelbs [13] which are obtained in a Banach space setting.
For more details about the minimizers of (5.8), one can look at ([19], Theorem 3.4) where
a characterization is obtained under the weakest assumption: C ∩ dom Ξ 6= ∅.

Proof of Propositions 5.10 and 5.13. They are direct consequences of Theorems 2.14, 2.17,
Proposition 5.5, Theorem 5.6 and Lemma 5.15 below. Note that λ which is given at (3.1)
satisfies the condition (ii) of Proposition 2.20. �

The following lemma allows to apply the results of the present paper with γ(s) = es−1
and the extended constraint 〈(1, θ), ℓ〉 ∈ {1} × C : the first component of the constraint
insures the unit mass 〈1, ℓ〉 = 1, to obtain results in terms of log-Laplace transform.

Lemma 5.15. For all x ∈ Xo,

sup
y∈Yo

{
〈y, x〉 − log

∫

Z

e〈y,θ〉 dR

}
= sup

ỹ∈R×Yo

{
〈ỹ, (1, x)〉 −

∫

Z

(e〈ỹ,(1,θ)〉 − 1) dR

}
∈ (−∞,+∞].
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Proof. Using the identity: − log b = supa{a+ 1 − bea}, one gets:

sup
y∈Yo

{
〈y, x〉 − log

∫

Z

e〈y,θ〉 dR

}
= sup

a∈R,y∈Yo

{
〈y, x〉 + a+ 1 − ea

∫

Z

e〈y,θ〉 dR

}

= sup
a∈R,y∈Yo

{
〈(a, y), (1, x)〉 −

∫

Z

e〈y,θ〉+a dR+ 1

}

= sup
ỹ∈R×Yo

{
〈ỹ, (1, x)〉 −

∫

Z

(e〈ỹ,(1,θ)〉 − 1) dR

}

which is the desired result. �

Example 5.16. Csiszár’s example. Comparing Proposition 5.5 with Theorem 5.6, one may
wonder if the σ(Lλ∗

⋄
R,Eλ⋄

)-closedness of the convex set C is critical for the existence of
an entropic projection. The answer is affirmative. In [3, Example 3.2], Csiszár gives an
interesting example where the generalized entropic projection can be explicitly computed
in a situation where (PC) is not attained, see also [7, Exercise 7.3.11]. This example is
the following one.
Take the probability measure on Z = [0,∞) defined by R(dz) = a0

e−z

1+z3 dz where a0 is
the normalizing constant, I the relative entropy with respect to R, θ : z ∈ [0,∞) 7→ z ∈
X = R and C = [c,∞). This gives C = {Q ∈ Lτ∗R;

∫
[0,∞)

z Q(dz) ≥ c, Q([0,∞)) = 1}.

The point is that θ is in Lτ (R) but not in Eτ (R).
By Theorem 5.13, the generalized projection of R on C exists and is equal to Py =

ay
e(y−1)z

1+z3 dz for some real y ≤ 1, where ay is the normalizing constant. If it belongs to C,

then
∫
Z
z Py(dz) ≥ c. But supy≤1

∫
Z
z Py(dz) =

∫
Z
z P1(dz) = a1

∫
Z

z
1+z3 dz := x∗ < ∞.

Therefore, for any c > x∗, there are no entropic projection but only a generalized one.
A detailed analysis of this example in terms of singular component is done by Léonard and
Najim [20, Proposition 3.9]. This example corresponds to a σ(Lλ∗

⋄
R,Lλ⋄

)-closed convex
set C such that no entropic projection exists but only a generalized one.
More details about this example are given below at Example 6.10.

6. Dominating points

The underlying assumptions are Theorem 2.17’s ones. We are going to investigate
some relations between dominating points and entropic projections. In the case where the
constraint is good, Theorem 2.14 and Proposition 5.5 state that the generalized entropic

projection is the entropic projection Q∗ = Q̂, the minimizer x̄ is the dominating point of
C, it is related to Q∗ by the identity:

x̄ = 〈θ,Q∗〉. (6.1)

We now look at the situation where the constraint is bad. As remarked at Example 5.16,
the above equality may fail. A necessary and sufficient condition (in terms of the function
Γ∗) for x̄ to satisfy (6.1) is obtained at Theorem 6.8.

Following Ney [22, 23], let us introduce the following definition. A point x̂ ∈ Xo sharing
the properties (a), (b) and (2.16) of Theorem 2.14 is called a dominating point.

Definition 6.2 (Dominating point). Let C ⊂ Xo be a convex set such that C ∩ XL is
σ(XL,YL)-closed. The point x̂ ∈ Xo is called a Γ∗-dominating point if

(a) x̂ ∈ C ∩ dom Γ∗

(b) there exists some linear form ω̃ on Xo such that 〈ω̃, x̂〉 ≤ 〈ω̃, x〉 for all x ∈ C ∩
domΓ∗,
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(c) 〈ω̃, θ(·)〉 is measurable and x̂ =
∫
Z
θ(z)γ′(z, 〈ω̃, θ(z)〉)R(dz).

In the special case where Γ∗ is replaced by the Cramér transform Ξ defined at (5.9),
taking Lemma 5.15 into account, this definition becomes the following one.

Definition 6.3. Let C ⊂ Xo be a convex set such that C ∩ XL is σ(XL,YL)-closed. The
point x̂ ∈ Xo is called a Ξ-dominating point if

(a) x̂ ∈ C ∩ dom Ξ
(b) there exists some linear form ω̃ on Xo such that 〈ω̃, x̂〉 ≤ 〈ω̃, x〉, for all x ∈

C ∩ dom Ξ and

(c) 〈ω̃, θ(·)〉 is measurable and x̂ =

∫

Z

θ(z)
exp(〈ω̃, θ(z)〉)

Z(ω̃)
R(dz) where Z(ω̃) is the unit

mass normalizing constant.

Note that this definition is slightly different from the ones proposed by Ney [23] and
Einmahl and Kuelbs [8] since C is neither supposed to be an open set nor to have a
non-empty interior and x̂ is not assumed to be a boundary point of C. The above integral
representation (c) is (5.12).

Recall that the extended entropy Ī is given by (2.7): Ī(ℓ) = I(ℓa)+ Is(ℓs), ℓ = ℓa + ℓs ∈
L′

λ⋄
and define for all x ∈ Xo,

J̄(x)
△

= inf{Ī(ℓ); ℓ ∈ L′
λ⋄
, 〈θ, ℓ〉 = x}

J(x)
△

= inf{I(ℓ); ℓ ∈ Lλ∗
⋄
R, 〈θ, ℓ〉 = x}

Js(x)
△

= inf{Is(ℓ); ℓ ∈ Ls
λ⋄
, 〈θ, ℓ〉 = x}

Because of the decomposition L′
λ⋄

≃ Lλ∗
⋄
R⊕ Ls

λ⋄
, one obtains for all x ∈ Xo,

J̄(x) = inf{I(ℓ1) + Is(ℓ2); ℓ1 ∈ Lλ∗
⋄
R, ℓ2 ∈ Ls

λ⋄
, 〈θ, ℓ1 + ℓ2〉 = x}

= inf{J(x1) + Js(x2); x1, x2 ∈ Xo, x1 + x2 = x}

= J2Js(x)

where J2Js is the inf-convolution of J and Js. By Theorem 2.17-a, J̄ = Γ∗ and if
J̄(x) <∞, there exists ℓx ∈ L′

λ⋄
such that 〈θ, ℓx〉 = x and J̄(x) = Ī(ℓx). Let us define

xa := 〈θ, ℓax〉 and xs := 〈θ, ℓsx〉.

These definitions make sense since ℓax is the unique (common) absolutely continuous part
of the minimizers of Ī on the closed convex set {ℓ ∈ L′

λ⋄
; 〈θ, ℓ〉 = x}, see Theorem 4.1-a.

Of course, we have
x = xa + xs

and as J̄(x) = Ī(ℓx) = I(ℓax) + Is(ℓsx) ≥ J(xa) + Js(xs) ≥ J2Js(x) = J̄(x), one gets the
following result.

Proposition 6.4. For all x ∈ dom J̄ , we have:

J̄(x) = J(xa) + Js(xs), J(xa) = I(ℓax) and Js(xs) = Is(ℓsx).

Now, let us have a look at the dual equalities. The recession function of Γ∗ is defined
for all x by

Γ̃∗(x)
△

= lim
t→+∞

Γ∗(tx)/t ∈ (−∞,+∞].

Definition 6.5 (Recessive x). Let us say that x is recessive for Γ∗ if for some δ > 0 and

ξ ∈ Xo, Γ∗(x + tξ) − Γ∗(x) = tΓ̃∗(ξ) for all t ∈ (−δ,+∞). It is said to be non-recessive
otherwise.
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Proposition 6.6. We have J̄ = Γ∗ and Js = Γ̃∗. Moreover, J(x) = Γ∗(x) for all non-
recessive x ∈ Xo.

Proof. We have already noted that J̄ = Γ∗ and by [14, Theorem 2.6-a], we get: Js =
ι∗dom Γ : the support function of dom Γ. Therefore, it is also the recession function of Γ∗.

Hence, we have Γ∗ = J̄ = J2Js = J2Γ̃∗.

Comparing Γ∗ = J2Γ̃∗ with the general identity Γ∗ = Γ∗
2Γ̃∗, one obtains that J(x) =

Γ∗(x), for all non-recessive x ∈ Xo. �

Proposition 6.7. For all x ∈ dom Γ∗, we have:

Γ∗(x) = Γ∗(xa) + Γ̃∗(xs).

Moreover, x is non-recessive if and only if xs = 0. In particular, xa is non-recessive.

Proof. By (2.7), we have Ī(ℓx) = I(ℓax) + Ĩ(ℓsx) where Ĩ is the recession function of I. It
follows that J̄(x) = J(xa)+J

s(xs), since J(xa) = I(ℓax) (Proposition 6.4) and the recession
function of J̄ is Js. To show this, note that (see [27])

- Is is the recession function of Ī,
- the epigraph of x 7→ inf{f(ℓ); ℓ, T ℓ = x} (with T a linear operator) is “essentially”

a linear projection of the epigraph of f, (let us call it an inf-projection)
- the epigraph of the recession function is the recession cone of the epigraph and
- the inf-projection of a recession cone is the recession cone of the inf-projection.

The first result now follows from J̄ = Γ∗. The same set of arguments also yields the second
statement. �

Theorem 6.8. Let us assume that the hypotheses of Theorem 2.17 hold and that C ∩
icordom Γ∗ 6= ∅.

(a) Then, a minimizer x̄ of Γ∗ on the set C is a Γ∗-dominating point of C if and only
if x̄ is non-recessive. This is also equivalent to the following statement: “all the
solutions of the minimization problem (PC) are absolutely continuous with respect
to R.” In such a case the solution of (PC) is unique and it matches the solution
of (PC).

(b) In particular when Γ∗ admits a degenerate recession function, i.e. Γ̃∗(x) = +∞
for all x 6= 0, then the minimizer x̄ is a Γ∗-dominating point of C.

(c) The same statements hold with Γ∗ replaced by Ξ.

Proof. This is a direct consequence of Theorem 2.17, Proposition 6.7 and Lemma 5.15. �

Remark 6.9. A remark about the steepness of the log-Laplace transform. In [13, Thm 1],
with the setting of Section 5.2 where Xo is a Banach space, Kuelbs proves a result that is
slightly different from statement (b) of the above theorem. It is proved that the existence
of a Ξ-dominating point for all convex sets C with a nonempty topological interior is
equivalent to some property of the Gâteaux derivative of the log-Laplace transform y ∈
X ′

o 7→ log
∫
Xo

exp(〈y, x〉)R ◦ θ−1(dx) on the boundary of its domain. This property is
an infinite dimensional analogue of the steepness of the log-Laplace transform. It turns
out that it is equivalent to the following assumption: the Cramér transform Ξ admits a
degenerate recession function.

Example 6.10. Csiszár’s example continued. We go on with Example 5.16. By Lemma
5.15, Γ∗ is the Cramér transform of R (identifying (1, x) with x). This means that Γ∗

is the convex conjugate of the log-Laplace transform Γ(y) = log
∫
[0,∞)

ae(y−1)z

1+z3 dz, y ∈ R.
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Clearly, dom Γ = (−∞, 1] and Γ′(1−) =
∫
[0,∞)

z P1(dz) := x∗ < ∞. It follows that for

all x ≥ x∗, Γ∗(x) − Γ∗(x∗) = x − x∗. One deduces from this that (x∗,∞) is a set of
recessive points. By Theorem 6.8, they cannot be dominating points. Note also that the
log-Laplace transform Γ is not steep.
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[15] C. Léonard. Minimization of entropy functionals. Preprint.
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[19] C. Léonard. Minimizers of energy functionals under not very integrable constraints. Journal of Con-

vex Analysis, 10(1):63–88, 2003.
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