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Abstract

We consider quantum Hamiltonians of the fot{t) = H + V (¢) where the spectrum
of H is semibounded and discrete, and the eigenvalues behafg as n®, with

0 < o < 1. In particular, the gaps between successive eigenvalusssy desn® .

V (t) is supposed to be periodic, bounded, continuously difteable in the strong
sense and such that the matrix entries with respect to tletrapdecomposition off
obey the estimat@V’ (), || < |m — n| P max{m,n} =27 for m # n wheree > 0,

p > landy = (1—a«)/2. We show that the energy diffusion exponent can be arbitrari
small providedp is sufficiently large and is small enough. More precisely, for any
initial condition ¥ € Dom(H'/?), the diffusion of energy is bounded from above as
(H)y(t) = O(t) whereo = «/(2[p — 1]7 — 3). As an application we consider the
HamiltonianH (t) = |p|® + ev(6,t) on L?(S', df) which was discussed earlier in the
literature by Howland.

1 Introduction

One of the basic questions one can ask about time-depengmntion systems is the growth
of energy on a long time scale for a given initial conditiomfbrtunately the quantum dy-
namics in the time-dependent case proved itself to be ratiffezult to analyze in its full
generality and complexity. The systems which allow for asstepartially analytical treat-
ment and whose dynamics has been perhaps best studied frmasvpoints of view are
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either driven harmonic oscillators| [4,117,/10] 15] or peitadly kicked quantum Hamilto-
nians [11/ 12, 5,17,18, 25]. On a more general level, it is widelieved that there exist
close links between long time behavior of a quantum systemtarspectral properties. For
time-independent quantum systems such a relation is ns@ifdy the famous RAGE the-
orem, see [30] for a summary and references to the originmdnsaln a modified form this
theorem has been extended to periodic and quasi-periodictgpn systems [15, 21, 28].
In this case the relevant operator whose spectral propedtie of interest is the Floquet
(monodromy) operator. Naturally, much attention has besd  the spectral analysis of
Floguet operators in some of the papers cited above, se¢Z}lgmr more recent results.
Let us mention that a refined analysis of how the spectralgtigs determine the quantum
dynamics is now available, see for examplel [16, 9] and otheers, but here we are not
directly concerned with this question.

Thus for periodically time-dependent systems one canngjgish as a related prob-
lem the spectral analysis of the Floquet operator undeaicesissumptions on the quantum
Hamiltonian. Frequently one writes the time-dependent #Haman in the formH (t) =
H + V (t) while imposing assumptions on the spectral propertiesetitiperturbed par!
and requiring some sort of regularity from the perturbatfitim). For our purposes an ap-
proach is rather important which is based on the adiabattbeds and which was initiated
by Howland [18] 19] and further extended In [26, 22]. An es$is¢property imposed on
the unperturbed Hamiltonian in this case is the discreteokthe spectrum with increasing
gaps between successive eigenvalues.

Under this hypothesis Nenciu in [27] was not only able torgiteen the results due to
Howland but he derived in addition an upper bound on the siigrowth of the energy
having the formconst t*/™ wherea > 0 is given by the spectral properties 8f andn is
the order of differentiability ot/ (¢). Inspired by this result on the energy growth, Joye in
[23] considered another class of time-dependent quantumiltdaians with rather mild as-
sumptions on the spectral propertiestobut, on the other hand, assuming that the strength
of the perturbatiori/(¢) is in some sense small with respecti{fo Moreover, as far as the
energy diffusion is discussed, the periodicityloft) is required neither i [27] nor in [23].

It is worthwhile to mention that Howland in [20] succeededreat also the case when
the spectrum off is discrete but the gaps between successive eigenvalugsaeasing. To
achieve this goal he restricted himself to certain clasépsrurbationd/(¢) characterized
by the behavior of matrix entries with respect to the eigasibof H. In particular, he
discussed as an example the following modgélit) = |p|* + v(0,t) in L*(S*, dd) where
0 < a < landwv(f,t)isin C>=(S! x S1). It seems to be natural to look in this case, too,
for a result parallel to that due to Nenciu [27] and to attemnplerivation of a nontrivial
bound on the diffusive growth of energy. But we are aware &f one contribution in this
direction made by Barbaroux and Joyeé [3]; it is based on tmeigd scheme proposed in
[23].

In this paper we wish to complete or to strengthen the re$wdta [3] while making
use of some ideas from [23]. Thus we aim to consider othesetasf time-dependent
Hamiltonians whose unperturbed pafthas a discrete spectrum with decreasing gaps. In
particular, the derived results are applicable to the Hodlamodel introduced in [20]. In
more detail, we deal with a quantum system described by thalktamian H (¢) := H+V (t)



acting on a separable Hilbert spa#é and such that/ is semibounded and has a pure point
spectrum with the spectral decomposition

H = Z E,P,.

Assume that the eigen-valués < F5 < ... obey the shrinking gap condition

|m — n| |m — n|

(1)

Cy

max{m,n}> max{m,n}>

for somey €10, %[ and strictly positive constants;, C'y. Notice that condition (1) implies
E, ~ n*wherea = 1 — 2v €]0, 1] (more precisely[(1) implies that the sequerig
is bounded both from below and from above by strictly positenstants for all sufficiently
largen). To simplify the discussion let us assume, without loss erfiggality, thatH is
strictly positive, i.e.,F;; > 0.

The time-dependent perturbatidi(t) € £(s#) is supposed to b&-periodic andC"*
in the strong sense. From the strong differentiability ltdes that the propagatdr (¢, )
associated to the Hamiltonidh+ 1/ (¢) exists and preserves the dom&iom (H ) (see, e.g.,
[24]).

Let us suppose thaf is small with respect to the norm

|Vlp~ := sup sup (m — n)? max{m, n}z'y V(&) mnll, (2)
t€[0,T] m,neN

wherep > 2,
(m —n) = max{1, |m — nl|},

and||V (t),,.»|| denotes the norm of the operator
V(t)mm := PnV (t)P, : Ran P, — Ran P,,.

We claim that if, in addition[p — 1] > 1/(2(1 — «)) then the propagatdr (¢, s) preserves
the form domairQ; = Dom(H'/?) and for any¥ from Q one can estimate the long-time
behavior of the energy expectation value by

2c0
2[p—1]1—a)—1

(more details are given in Theorém 5 below). Here is standing for the ceiling of a real
numberz, i.e., the smallest integer greater than or equal. to

Provided that[V'(¢), V(s)] = 0 for everyt,s and fOT V(t)dt = 0, the assumption
|V]lp~ < € can be replaced by || ,110 < ¢, i.e.,

(U(t,0)0, HU(,0)T) = O(t7), with o = (3)

£
(m — n)pt1’

[PV () P <

The condition[V (t), V(s)] = 0 is satisfied for example wheVi(¢) is a potential (i.e., a
multiplication operator by a function on a certdid space) or when the time dependence
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of V(t) is factorized, i.e.}V (t) = f(t)v where f(t) is a real-valuedT-periodic andC")
function andv is a time-independent operator off.

Let us stress that even though the energy diffusion expanémt(3) can be made ar-
bitrarily small providedp is sufficiently large our result is still far away from theustion
when one can prove the dynamical stability in the sense hlesghergy remains bounded in
time for any initial condition[[5]. The point is that the tirteependent perturbatidn(t) is
supposed to be sufficiently regular and small by requirirag {th'||,, , < € where not only
the norm but also the positive boundiepends op (see Theorernl 5 below for a precise for-
mulation). This plays a role also in the analysis of the Hmdlamodel in Subsectidn 2.3.1.
In this case H = |p|* + v(6,t) and the exponent in (12) tends td) as the order of dif-
ferentiability ofv(#, ¢) in 0, calledk, tends to infinity. However the coupling constaris
supposed to be sufficiently small in dependencé and so one cannot claim thatquals
0 even ifv(6,t) is smooth ird.

On the other hand, to our knowledge, non-trivial examplesnoé-dependent quantum
models for which one can verify this strong type of dynamgtability are rather rare. A
periodically time-dependent quadratic Hamiltonian représ such a model. It is explic-
itly solvable and this is how one can verify the boundednésnergy in the non-resonant
casel[15]. A broader class of periodically time-dependendets is shown to be dynami-
cally stable for non-resonant values of frequencies wighdid of the KAM (Kolmogorov-
Arnold-Moser) type method ir_[1], see also [14] for some &ddal discussion. In this
connection let us point out a recent examplée [29] showingttierelationship between the
spectral properties of the Floquet operator and the dyredrsiability is not so transparent,
and it may require a considerable amount of efforts to undedsit properly.

Let us compare the result of the current paper, as brieflyribest above, to the re-
sults derived in[[23] and [3]. Paper [23] focuses on the garerheme and is not so much
concerned with particular cases as that one we are goingalondin here. Nevertheless a
possible application to the Howland’s classes of pertuwhbatis shortly discussed in Propo-
sition 5.1 and Lemma 5.1. The Howland’s classes are detedriyg a norm which some-
what differs from [(2), as explained in more detail in SubsedP.1. But the difference is
not so essential to prevent a comparison. To simplify theusision let us assume that the
eigenvalues off are simple and behave asymptoticallylas~ const n®, with0 < o < 1.

In the particular case whefi/||,, < oo for somep > 1 andy = (1 — a)/2 the bound on
the energy diffusion exponent derived n[23] equaf$2y — 1) providedy > (1 + «) /4,
i.e.,a < 1/3. Ourboundx/(2[p — 1]y — 1), valid for0 < a < 1 and provided > 2 and
[p — 1] > 1/(4), is achieved by making use of the rapid decay of matrix eswid/ in
the direction perpendicular to the diagonal. It followstth& can make the growth of the
energy(H )y arbitrarily slow by imposing more restrictive assumptionsthe perturbation
V, i.e., by letting the parametgrbe sufficiently large.

In paper|[3] one treats in fact a larger class of perturbatiban we do since one requires
only the finiteness of the norf{i/ ||, o < oo for p sufficiently large. In other words, no decay
of matrix entries ofl” along the diagonal is supposed. On the other hand, one asshate
the initial quantum state belongs to the domaiam(H”) for 3 sufficiently large;3 is
never assumed therein to be smaller thaad Furthermore, there is no assumption on the
periodicity of H (¢) both in [3] and[[23]. On the other hand, our assertion corgaliinitial



states from the domaibom (H'/2) but we need a decay of matrix entriesiéfalong the
diagonal at least of ord@ry = 1 —«. For the sake of comparison let us also recall the bound
on the energy diffusion exponent which has been derived]inl{3s roughly of the form
a/(1— f(p))* wherea has the same meaning as aboffe,) is positive andf (p) = O(p™')

asp — oo. Hence this bound is never smaller tharand approaches this value as the
parametep tends to infinity.

2 Upper bound on the energy growth

2.1 The gap condition and the modified Howland’s classes

On the contrary to Howland who introduced in [20] the clas¥és, §) equipped with the
norm
1All;55 = sup {(mn)’(m — n)? || Ay ull; m,n > 1},

we prefer to work with somewhat modified classes, calég, 6), whose definition is ad-
justed to the gap conditiofl(1). Our choice is dictated byxpeeted asymptotic behavior
of eigenvalues off in a typical situation. Let us briefly explain where conditid) comes
from.

We expect the eigenvalues to behave asymptotically,as const n®(1 + o(1)) where
the error ternv(1) is supposed to tend to zero sufficiently fast. The spectad g, — F,
tend to zero as — oo if a €10, 1[. Keeping the notation := (1—«)/2 we wish to estimate
the difference £, — F,,|. To this end we replacg,, simply by the power sequeneé. Then
one gets

« e}

m® —n _ sinh(ay)

(mn)Y = Z———L = e~ (1=a)ly

| 1 J— e_QOC‘yI
m-—n sinh(y) 1 — e—2lyl

wheree? := m/n. Since the fractioril —e~2*%!) /(1 — e~2¥!) can be estimated by positive
constants both from above and from below we finally find that

|m — n| |m — n|

1 7§|ma—na|<02

max{m,n}? — " max{m,n}>

for someC;, Cy, > 0 and allm,n € N.

Definition 1. Letp > 1,6 > 0 andp + 25 > 1. We say that an operatot € Z#()
belongs to the clas¥(p, 0) if and only if

[Allpg == sup {m — n)? max{m, n} [ Ayl < oo, @)
m,neN

Let A(t) be aT'-periodic function with values in the spag&p, §). With some abuse of
notation we shall also write

|All,5 := sup sup (m — n)? max{m, n}% At mnl|-
t€[0,7] m,neN



Remarks. (i) It is straightforward to check that- ||, s is indeed a norm. Let us note that
an equivalent norm is obtained if one replages<{m, n} by (m + n) in (4).

(if) Obviously,Y(p,d) C X(p,d). Notice that)(p, 0) is a Banach space equipped with
the norm|| - ||, 5.

(iii) For the sake of convenience we have chosen the norm i¢h)the restrictiong >
1,6 > 0andp+2) > 1sothatifitisfinite foramatriX A,.,.}, A € B(Ran P,, Ran P,,),
then the matrix corresponds to a bounded operater (.7). Indeed, it is so since one
can estimate the operator nofid|| by the Shur-Holmgren norm

[Al[sh = max{sup Z [ Ayl sUp Z ||Am,n||} :
meN N neN N

It clearly holds

1

m — n)? max{m,n}?

1Alsm < [[Allpssup >
meN ne—1 <

The sum on the RHS equals

m—1 o) o)
1
mz ; —n) pm25 T n;ﬂ (n — m)Pn? < 2 + m20 . Z kp+25
1—m —p+1
= 24— 20).
T D TP+ 2)
Setting temporarily: = In(m) ande = p — 1 one can make use of the inequality
1 —26x —(e+20) 1
- _ € xT <
€ (e ¢ ) T e+ 20

which is true for allz > 0 providede > 0, 0 > 0 ande + 26 > 0. Thus one arrives at the
estimate

< _ .
Al < (24— ¢l 20) ) 4l

Here((u) := > ;- | k~* denotes the Riemann’s zeta function.
(iv) Finally let us note that the valye= oo is admissible. We shall use the nofini| . s
exclusively in the case of diagonal matrices when it simpfjuces to

[Alloo5 = sup 2 || Ay |-
neN

From Definitior’1 one immediately deduces the following leaam

Lemma 2. Suppose thall is an operator onz with pure point spectrum whose eigen-
valuesF; < E; < ... obey the upper bound ifl(1). Let> 2. If A € Y(p,0) then the
commutatoffA, H| liesinY(p — 1,0 + ) and

1A Hlllp-1,54+ < Crrl|Allps-
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A basic technical tool we need is a lemma concerned with potscaf two classe¥®. For
its proof as well as for the remainder of the paper the foltmtivo elementary inequalities
will be useful. According to the first one, for eveny, £ > 1 it holds

%§2<m—k). (5)

In fact, this is a direct consequence of the implicatioh> 1 — a + b < 2ab.
The second inequality claims thatifb > 0 then

(a + b) 2
@) = (min{a,0})

This can be reduced to the inequaliB:) < 2(a) which is quite obvious.

Lemma 3. Consider two classe¥(p1, 1), V(p2, 62), wWith py, po > 1, 61,02 > 0. Suppose
that numberg, § satisfy the inequalities

1 < p <min{py,p2}, max{dy,do} < I < + 0, p+ 20 < min{p; + 261, p2 + 292 }.
If Ae Y(p1,d1)andB € Y(ps,ds) then
||AB||1375 < C(p,5 - 50) ||A||p1,51||B||p2,52 (6)

where
C(p, A) = 27224 (1 4+ 2¢(p))

anddy = min{dy, 42 }. Consequently)y(py, 61)V(p2, d2) C V(p,9).
Proof. Under the assumptions we have
(m = n)? max{m, n}*||(AB)l| < (m — n)? max{m,n}** > || Aml|| Benl|
(=1

which is less than or equal to

> (m — n)? max{m, n}*
L T e e e = T
=1 ' ’

The summand i (7) can be estimated from above by

(fm — €| + |n — €])? max{m,n}?* 2p
(m — £)Pr max{m, €}?1(n — £)P2 max{n, £}?% — (min{|m — |, |n — {|})

> h(m,n, ()

where
max{m, n}%*

max{m, £}2% max{n, £}20>

h(m,n, ) = (m — 0)P7P1(n — ()PP




One can further estimatie(m, n, (). For definiteness let us suppose that> n. Then,
sincep — ps < 0anddy > 0 — 4y,

26

m mA2(6—61)
< _ pP—p1 < _ pP—p1 _
hmn,6) < {m =) max{m, £}? max{n, (}2(0-0) — m = £) (€>

< 22(5—51)<m_ g)p—p1+2(6—61) < 92(6-b0)

It follows easily that the sum ifi{7) is bounded from abovebt?®—%) (2 4-4¢(p)) and this
estimate implied (6). O

Corollary 4. Letp > 2,7 > 1 and~ €]0, %[. Then the following product formulas hold
true:

V(p,iv) V(p,iv) CY(p—1,G+1)y)
V(. (i —1)7) Y —1,iy) C V(p—1,i)
Yeo+1L3Ei-1DyYp-1,0G+1)y) CYp—-1,0G+1)7)

The formulas are also true for the opposite order of factordlee LHS. Moreover, if oper-
ators A and B belong to the corresponding classes on the LHS then

||AB||p—1,(i+1)v < Cp HAHp,ivHBHp,iv
HABprLi“/ < Cp ”AHp,(i—l)vHB”pfl,i’y
IAB||p-1,i+1)7 < 26 [|Allp+1,6-17 | Bllp—1,4 1)

where
Cp =271 (1 +2¢(p — 1)), (8)

The norm estimates hold true also for the opposite orderaibfa A and B in the product.

2.2 The main theorem

Theorem 5. Let a quantum system be described by a Hamiltonian of the form
H(t)=H+V(t) onsZ
whereH is a self-adjoint operator with a pure point spectrum and $pectral decomposi-

tion
H= Z E,P,.

neN

Suppose that the eigen-valuestbfare ordered increasingly and obey the gap conditldn (1)
with~ €10, 3[. Seta = 1 — 2v. Forp > 2 assume that

1

2(1 —a) ©

[p—1]>

Then there exists > 0 such that ifV/(¢) is T-periodic, symmetric, continuously differen-
tiable in the strong sense and ob€ysg]||,, < ¢ then the propagatot/(t, s) associated
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to the HamiltonianH + V' (t) maps@y, the form domain of/, onto itself and for every
U € Qg it holds
(H)y(t) = (U(t,0)¥, HU(t,0)¥) = O(t7) (20)

where
2

CTap—1i—a) -1

Remark 6. (i) There is no assumption on the dimensioiRefi P,,. The multiplicities of
eigenvalues may grow arbitrarily, they can even be infinite.

(i) Supposethat(t) € Y(p+ 1,0), withp > 2, is T-periodic, symmetric, continuously
differentiable in the strong sense and such thétt), V(s)] = 0 for everyt, s, and
V=T fOT V(t)dt = 0. Then one arrives at the same estimaté (10). Let us outline
the proof.

First, as explained in Remafkl2 below in which one has to-setp + 1, Y = 0,
Z(t) = V(t)andZ = 0, one can transform anti-adiabatically +V (¢) into H+V; (t)
so thatVi(t) € Y(p,~) and

Villpy <

C
T (exp(AC, 1 TV [[pr10) — 1)
2Cp+1
Afterwards one can apply Theoréin 5 to the Hamiltoni&sn V3 (¢). Arguing similarly
as in the proof of Theorel 5 in Subsectfion 3.2, one finds teatniergy diffusion for
the HamiltonianH + V;(¢) is related to that for the Hamiltonia®/ + V' (¢) by a

guantity which is bounded in time. This is to say that estn{@0) holds true for the
time evolution governed by the Hamiltoniaéh+ V' (¢) as well.

(iii) Provided thatH (t) = H + V(t), with V in C'(R, #(#)) in the strong sense there
exists a trivial bound which does not depend on the spect@gaties of H (see
[27]), namely

(U, 00, HOU (L, 0)0)] < (¥, H(0))[ + [¢] sup V)l @)

For its derivation it suffices to notice that

where V() denotes the time derivative in the strong sense. The estigiaén by
Theoreni b is better than this trivial bound if

20+ 1
2(1 —a)’

I_p - l-l > Pmin ‘=

For example, in the case of = 2/3 (the quantum ball) we get,.;, = 7/2. The
condition [p — 1] > pu, is fulfilled if p > 4 and then Theoreml 5 tells us that
(H)o(t) = O(t*").



(iv) Apart of the energy itself it is also of interest to catesi expectation values of func-
tions of the Hamiltonianf(H) for a suitable choice of the functiofi(\), see for
examplel[22, Section 3]. In particular this concerns the mata H™, m € N. Un-
fortunately only several steps of our procedure allow forimmediate extension of
this type and so we are not able at the moment to deal with tbie general case. Let
us discuss shortly this point. By inspection of the proofBhaforeni P and Lemmall0
one finds that in both of them one can safely repléicey f(H) as long as the se-
quence{f(E,)} satisfies, instead dfE,, }, all assumptions. The propagatbi(t, s)
in the formulation of Theorem 9 is still associated to therapw H + W(t). The
main obstacle is encountered in the proof of Thedrem 5 in&uios(3.2. In analogy
to estimate[(1I5) one can derive that

(U(t,0)W, fF(H)U(t,0)W) = (U(t,0)¥, J(t) f(H)J()*U(t,0)¥) = O(t%)

whereo is the same as il (15). Her&t) is, as detailed in the remainder of the paper,
a suitable unitary operator constructed with the aid of tmi-adiabatic transform.
As a next step in the proof of Theoreim 5 one argues that treetitfer/ —.J (t) H J (t)*

is bounded. However it does not seem to be possible to clagmnaral the same for
the operatorf(H)—J(t) f(H)J(t)*. And this is exactly the point where the discussed
extension fails.

2.3 Applications
2.3.1 The Howland’s model

Let us apply the results of Theordm 5 to the model introdugedibwland in [20] and
described by the Hamiltonidp|* + v (0, t), with a €10, 1], which is supposed to act on
L?(S',df) and to be2r-periodic in time. Sefl := |p|®. The spectral decomposition &f
reads )

H =" n"P, where P,¥(0) = ~ / cos (n(0 — )W (s) ds.

n>0 T Jo

Except of the first one the multiplicities of the eigen-vaue equal. Using integration
by parts one derives that any multiplication operatdry a functiona(f) € C* obeys the

estimate
21/27 ||a®|

PhaP,| <
I1Pna Pl < S

Hencea € Y(k,0). Applying Theoremi b and Remalrk 6 ad (ii) we get

Proposition 7. Leta €0, 1] andv(6, t) be a real-valued function which #&sr-periodic both
in the space and in the time variable. Suppose tiétt) is C* in # andC' in t and such
thathQ’T v(0,t)dt = 0. If k > 3andk > (5 —4a)/(2(1 — «)) then there exists, > 0 such
that for every reak, |¢| < ,, the propagato’ (¢, s) associated to

H(t) == |p|* +ev(0,t) onL*(S,d6)

10



preserves the domaibom(|p|*/?) and for everyl from this domain it holds true that
(U, 00, H(#)U(t,0)¥) = O(t7)

where 9
(6%
T ok—2)(1-a)—1" (12)

Let us summarize that the energy diffusion exponent in the/leied’s model can be
made arbitrarily small provided the potential on the cingesufficiently smooth and the
coupling constant is sufficiently small.

2.3.2 Discrete Hamiltonian on the half-line with a slowly gowing potential

Discrete models on a lattice are frequently and intensistlgied. Here we are inspired by
Example 5.1 in[[B]. In contrast to it we restrict ourselvesite usual discrete Laplacian on
the half-line rather than considering a long-range Lapla@n the line. To fit the assump-
tions on which the current paper is based, in particular @ gpndition[(ll), we further
restrict ourselves to slowly growing discrete potentid(s) = n® for somea, 0 < a < 1.
Thus we do not cover the most interesting linear dase) = n.

Set# = [*(N). Let A be the discrete Laplacian on the half-line,

(AE)(1) = $(2), (AY)(n) = (n— 1) +(n+1) forn > 2.

Further fix a parameter, 0 < o < 1, and define

(Vi) (n) = n®P(n), Vn.

Let us consider the Hamiltoniat (1) = —A + Aa(t)V wherea(t) is aT-periodic function,
a € C'anda(t) > ag > 0,Vt € R, A > 0 is a coupling constant. Set

b(0) = A [ als)ds, 010) = 5o
and
Hi(t) =V — ¢(1)A.

HenceH (t) = Aa(t)H,(b(t)). Observe thak(t) = O(t) and
b(t +T) = b(t) + \x wherex = /T a(s) ds.

Henceh~!(t+Ax) = b=1(t)+T. The functionp(t) is readily seen to b€ and\x-periodic.
Denote byl (¢, s) the propagator associatedq(¢). ThenU(t,s) = U;(b(t),b(s)) is the
propagator associated t(t).

Now one can apply Theorem 5 to the Hamiltoniélin(¢). The unperturbed pait is
diagonal in the standard basig/fiN), and the eigen-values obey the gap condition (1). On
the other hand, the perturbatiens(¢)A is strongly differentiable and belongs 3(p, 0)
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for all p > 1. Theorenib jointly with Remarkl 6 ad](ii) implies that for any> 0 and all
initial conditionsV¥,
(Uy(t,0)W, VU (t,0)¥) = O(t7)

as long as\ > \y(o) where)y(o) is a lower bound depending en Replacingt by b(t)
one finds that
(U(t,0)¥, VU(t,0)¥) = O(t7).

3 Derivation of the main result

3.1 Two additional theorems

The proof of Theoreml5 is based on the following two theorerhgoreni 8 and Theorem 9.
In what follows we use the notatioP := —i0, on the intervall0, 7] with the periodic
boundary condition.

Theorem 8. Let K = D + H + V(t) be a Floquet Hamiltonian oi?([0, T'], #), with H
andV(t) satisfying the assumptions of Theofem 5. het 2 andg < p — 1 be a natural
number. Then there exists> 0 such that|V'||, , < ¢ implies the existence of &-periodic
family of unitary operators/(¢) on s which is continuously differentiable in the strong
sense and such that

K=Jt)(D+H+ A+ B(t))J(t)"

whereB(t) € Y(p — q,(q + 1)7) is T-periodic, Hermitian and strongly continuously dif-
ferentiable, and4 is bounded, symmetric and commutes wiith

The remainder of the current paper is concerned with thefpfokkheoren 8. Theoreid 9
to follow is a mere modification of Proposition 5.1 in [23] inrabination with some ideas
from [3, Section 2]. This is why we present its proof in a ratbleetchy form. Let us also
note that the basic idea standing behind the estimates go&ddNenciu([2]7].

Theorem 9. Let H be a positive operator with a pure point spectrum and the tspkc
decomposition = > FE, P,. Assume that the eigen-values< E; < E, < ... satisfy
E, = O(n%), witha > 0. Set@,, = 1 — P,. Let an operator-valued functioW(¢) €
AB(A) be Hermitian,C'! in the strong sense and such that

const
ntts

Vn €N, |[P,W(1H)Q,H | <

uniformly in time for somg > 1/2. Then the propagatdy (¢, s) associated with + 11 ()
preserves), the form domain off, and for everyl from @y,

(U(t,0)W, HU(t,0)¥) = O(t2*/ =),

Remark. The bound on the energy expectation value is nontrivialif 1 + .

12



Proof. Let
Wa(t) :=>_ PW(t)P,
n=1

be the diagonal part ¥/ (¢). Itis straightforward to see thalt;(¢) is againC* in the strong
sense. Let/,(t, s) be the propagator associateddo+ W,(t). SincelV,(t) commutes with
H the same if true folU,(t, s). Equivalently this means thaf;(¢, s) commutes with all
projectorsP,. From the Duhamel’s formula we have

R(t) :==U(t,0) — Uy(t,0) = —i /Ot Ua(t, s) (W (s) — Wy(s))U(s,0) ds.

Fix ¢ > 0 and choos& € Dom(H) C Dom(H'/?). Notice thatP, (W (s) — Wy(s)) =
P,W(s)Q,. Foranyt’, 0 <t <t,itholds

[HPUE, 000> = EPUE,00¥|* < Ev|U[* + Y Ea||PU,0)¥|.
n=1 n=N+1
Furthermore,
|P,U,0)0]? < 2(| P> + || P.R(t)¥|]?)
and

t
|PR(E)Y] < / | PV (5)QuH 2| ds sup [[HY2U(s,0)¥]
0 0<s<t

t
e sup [|H2U(s,0)¥]].

= a
nfte <<t

From these estimates one concludes that fortany0, all ¥ € Dom(H), N € N and
some positive constants, ¢, independent of, ¥ and NV it holds

t2
(1 il ) sup ||HY2U (s, 0)¥|? < caNO||¥||2 + 2||HY?W||2.

N2=1 <oy

SettingN = [Ct*/(?»~D] whereC' > 0 is a sufficiently large constant one deduces that there
existscz > 0 such that it holds

|H U (1, 0)W|1* < e (/DY@ * + || H201?) (13)

forallt > 1 andV¥ € Dom(H).

One can extend the validity of (13) %6 € Dom(H'/?). To this end it suffices to
use the fact thaDom(H'/?) is a Banach space with respect to the norm||¥||, =
(|[w])? + ||[HY?¥|?)Y/2, andDom(H) C Dom(H'/?) is a dense subspace. Choosihg:
Dom(H'/?) one can find a sequenéd,.} in Dom(H) such that¥;, — ¥ in Dom(H/?).
Then [I3) implies thafU (¢, 0)¥,} is a Cauchy sequence bom(H'/?) whose limit nec-
essarily equalg/(¢,0)¥. HenceDom(H'/?) is U(t, 0)—invariant and[{13) is valid also for
all U € Dom(H'/?). This concludes the proof. O

13



3.2 Proof of Theorem®

Here we show how Theorelh 5 follows from Theorlem 8 and Theb&tem 9

Lemma 10. Assume that{ is a positive operator with a pure point spectrum and the spec
tral decompositiod = >~ | E, P,, and such that the eigen-values satisfly~,,n~* > 0,
with @ > 0. SetQ,, = 1 — P,. Then for any > 1 there exist a constanip, o) > 0 such
that for all § > 0,

I B]lp.
n26+% -’

VB € Y(p,d),¥n €N, |P,BQ.H?|| <c(p,a)

Proof. Suppose thaB € )(p, §). By the assumptiondy,, > c¢n® for all n and some: > 0.
We have

- [Boml® _ 1
IPBQE < 30 Il <L

m,m#n m,m#n

I1Bll;s

|m — n|?? max{m, n}*¥m>

Now one splits the range of summationsininto three segments: < m < n/2, n/2 <

m < n andn < m. For each case one can apply elementary and rather obviousitss to
show that the expression decaysiat least as—*°~“. In the first case one has to use the
fact thata < 1. We omit the details. O

Proof of Theorerh]5Theoren 8, withy := [p—2], implies the existence of a transformation
K=Jt)(D+H+A+B(t)J(t)" (14)

whereA is bounded and diagonal aft{t) € Y(p—q, (¢g+1)7). Sincep > 2andq = [p—2]
we havey > 1 andp — ¢ > 1. SetW (t) := A+ B(t). ThenP, W (t)Q,, = P,B(t)Q,. The
gap condition[(ll) guarantees that the assumptions of Lelnfhzael satisfied and thus one
finds that

|PaW ()QuH 2| = | PuB(1)QuH 2| < const -+ %,

with = 2(q + 1)y = [p — 1](1 — «). Notice that assumptionl(9) means that- 1/2. In
virtue of Theoreni 9, the propagatt(¢, s) associated té7 + 1V (¢) maps the form domain
Q@ onto itself and fulfills

2a

(U(t,0)¥, HU(t,0)¥) = O(t%), with 0 = 2T —a) =1 (15)
for every¥ € Q.
Equality (14) implies that
HA+V(t) = JE)HJ) +1J(t)J@) 4+ J&)W (t)J(t)*. (16)

Since the familyJ(t) is known to be continuously differentiable in the strongszeit fol-
lows from the uniform boundedness principle that the dékiea/(t) is a bounded op-
erator. Moreover, using the periodicity and applying th&arm boundedness principle
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once more one finds th4t/(t)| is bounded uniformly irt. Hence all operators occur-
ring in equality [16), except off, are bounded. One deduces frdm](16) thiat) maps
Dom H onto itself for everyt and that the same is also true for the form domain. Set
Ult,s) == J(t)U(t,s)J(s)*. ThenU(t,s) is the propagator corresponding b+ V' (t).

For any¥ € Qy we have

(Hyg(t) = (U(t,0)¥,HU(t,0)V) = (U(t,0)¥, J(t)HJ(t)"U(t,0)¥) + O(1)
= (U(t,0)%, HU(t,0)¥) + O(1) = O(t°)
whereV := .J(0)*¥. This proves the theorem. O

3.3 The idea of the proof of Theoreni B

It remains to prove Theoref 8. The proof is somewhat lengtitythe remainder of the
paper is devoted to it. Let us explain the main idea. The proaibines the anti-adiabatic
transformation due to Howland (see Secfidon 4) with a (prigpaodified) diagonalization
method, as presented in [13] (see Seclibn 5). This procaduapplied repeatedly until
achieving the required properties of the perturbation. usstlescribe one step in this ap-
proach when starting from the Floquet Hamiltonian

Kn:=D+H+Y + Z(1)

whereY € Y(o0,7) is Hermitian and diagonal (i.e., commuting wifth) and Z(t) €
Y(r,iv) is symmetric,I-periodic and strongly’*. The parameters are supposed to satisfy
1>1,r> 2.

Firstly, using the anti-adiabatic transform we try to imyeahe decay of entries &f(¢)
along the main diagonal when paying for it by a worse decaylehents in the direction
perpendicular to the diagonal. In more detail, we would tik¢ransformZ(¢) € Y (r,iv)
into Zo(t) € Y(r — 1, (i + 1)7). Unfortunately, we are not able to get rid of the extra term
7 € Y(r,iv), the time average of (t). The anti-adiabatic transform can be schematically
described as

Kn=D+H+Y +2Z(t) = Ky =D+ H+Y + 7+ Zy(t).

To cope with the unwanted extra term we apply afterwards gashialization procedure
which in fact means the transform

Koe=D+H+Y +Z+ Zy(t)— Ko :=D+ H+ A+ B(t)

where A and B(t) already have the desired properties, i({) € Y(r — 1,(i + 1)y) is
symmetric,T-periodic and strongly”!, and A € Y(oo,~) is Hermitian and commuting
with H.

4 The anti-adiabatic transform
In this section we adapt the strategy of Howland [20] and npaikeise the mapping, —

K, as announced in Subsection|3.3. Using the anti-adiabatisform, i.e., roughly speak-
ing, by applying the commutator witH one can improve the decay of matrix entries of the
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perturbation along the main diagonal at the expense of aesldecay in the direction per-
pendicular to the diagonal. Using the language of cla3gesd), the anti-adiabatic trans-
form may be viewed as passing from a perturbatiin) € Y(p, d) to a new perturbation
Zy(t) € Y(p — 1,6 + v) wherey comes from the gap condition] (1) (see Lenima 2).

Let us introduce the transform in detail. L&t, be a Floquet Hamiltonian of the form

Kan=D+H+Y +Z(t),

with H satisfying the assumptions of Theoreh5¢ ) (oo, v) being Hermitian and com-
muting with #, and Z(t) € )(r,ivy) being Hermitian,I-periodic and continuous in the
strong sense. By the uniform boundedness principl&¢)|| is bounded uniformly irr.
The parameters are supposed to satisty2,i > 1. Set

Define

so thatF'(¢) is Hermitian,T-periodic, stronglyC' and lying in) (r, 7). Let us definek,
by the gauge-type transformation Bix,

Ko ="K e PO =D H+Y + 7+ Z(t),
with . . B
Zo(t) =D+ H+Y +Z(t)e ™0 - (D+H+Y + 2). (17)
The main result related to the anti-adiabatic transforns ifolows.

Proposition 11. Letr > 2,i > 1,y €]0, %[, and H be a self-adjoint operator with a pure
point spectrum and the spectral decompositién= ) E,P,. Assume that the eigen-
values{ F,, }2° , are ordered increasingly and satisfy the inequality
[m —n|
E,—FE,| <(Cg—————.
| = T max{m, n}>
Furthermore,Y and Z(t) obey the assumptions formulated above.

ThenZ, (t) defined in[(1l7) i9"-periodic, continuous in the strong sense, Hermitian, and
liesin) (r — 1, (i + 1)y). The norm oZ;, obeys the bound

exp(4C, T || Z||y,iy) — 1
1 Z¢ lr—1, (1) < 50 . (Cr + 4V looq + 2C | Z]]14y) , (18)

with the constan€, defined in[(8). The operator-valued functiefi®V) is C'* in the strong
sense. Moreover, i (¢) is C'! in the strong sense then the same is truefgft).

16



Proof. The periodicity and the differentiability are clear fronmetabove discussion. The
RHS of (17) can be expanded according to the formula

Here we use the notationl s(B) := [A, B] = AB — BA. Sinceadry) D = iF(t) = iZ(t)
we get

Zo(t) = Z;—]‘ ad]. ) (iZ(t) +[F(t),H+Y + Z(t)]) + Z(t)

j=1
=17
where
1. j 1
X(t) :=ad H+Y+Z(t)— ——Z(t) ) =ad H+Y+ —Zt)+—Z2).
(1) 1= adeo (0 - 1 20)) = adrg (H+Y 4 2200+ 17

By Lemmd2adr) H € Y(r — 1, (i + 1)), and according to Corollaty 4, the same holds
true foradp() Z(t) andadgy) Z. Notice also that|Z||, s < ||Z]|,s. Furthermore, since
Y € Y(o0,7) is diagonal we have

(m —n)" " max{m, n}*N(FOY )l

1 max{m,n}\*" , 9
< i NE il Yol < 2271 F i 1Y [l oon
< ot () Yol < 2N

Hence|| F'(1)Y ||;-1,641)y < 2||F|riy||Y || o0,y The same estimate is true oy F'(¢)|[,—1,¢+1)4
and thereford| adp Y|,—1,i11)y < 4/ F|lri]|Y [|oor- We conclude thaiX () belongs to
Y(r—1,(i+1)y)and

HXHrfl,(iJrl)“/ < ||F||7“7i’Y (CH + 4||Y||O<w + 2Cr||Z||m'v) . (20)
Recalling Corollary 4 once more we have

and soadj, ) X (t) liesinY(r — 1, (i + 1)7) as well and

. .
ladi™ Xlr—1,+1y < QO i)™ X o1,y - (21)

Consequently, the serids {19) converges in the Banach 3pace 1, (i + 1)v). To derive

inequality [18) from [(20) and_(21) one applies the estimgtd,.;, < 27'||Z||,;, which
immediately follows from the definition of’(¢) andZ(t). This completes the proof. [

Remark 12. The proposition holds also true for= 0 provided|Z(t), Z(s)] = 0 for every
t,s. In this caseF'(t) commutes withZ(¢) and Z, and the formula[{19) holds true with
X(t) = adpy)(H + Y). Repeating the steps from the proof of the proposition onges
at the inequality

exp(4C,. T || Z]| i) — 1
1Zolr-1,11y < 5C : (Cr +2[[Y [loory)-
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5 The diagonalization procedure

5.1 Formulation of the result

The main result of this section is formulated in the follog/proposition.

Proposition 13. Leti > 1 be a natural numbery € ]0, %[, andH be a self-adjoint operator
with a pure point spectrum and the spectral decompositios- )= E, FP,. Assume that
the eigen-value$E, }>° | are ordered increasingly and satisfy the inequality

[m — n|

|Ey — En| > ey (22)

max{m,n}?v’

LetY € Y(oo,v) be Hermitian and commuting witH. Suppose tha¥ is Hermitian and
belongs to the clas¥(r, i) for somer > 2. Finally, assume that

— CH
Yoo Zping < ———, 23
¥ lloor + 1Z1in < = F— (23)
with the constant”, . ; given by[(8).
Then there exist§, a unitary operator onsZ’, such that

UH+Y +2) U =H+ A (24)
whereA € Y(o0,y) commutes witt{ and obeys
1 Alloer < 2 (1Y loor + 1Z11rir) (25)
Moreover, for every operatak € Y(r — 1, (i + 1)) it holds
* CT
XU 1o, < e (2 50 ) X s (26)
r+1

SinceU does not depend on time this result can be interpreted irotlesving way.
Corollary 14. Let us consider a Floquet Hamiltonian of the form
Ko=D4+H+Y +Z+ Zy(t)

whereH, Y and Z obey the same assumptions as in Proposiiidn 13, with2 and: > 1,
and Zs(t) € Y (r—1,(i+ 1)y) is T-periodic, continuously differentiable in the strong
sense and Hermitian.

Then there exists a unitary operator on 7 such that for the transformed Floquet
Hamiltonian

Ko :=UK,U"=D+ H+ A+ B(t)
it holds: A € Y(c0,~) commutes with/ and fulfills (25),
B(t) :=UZs(t) U € Y(r —1,(i + 1)y)

is T-periodic, continuously differentiable in the strong sendermitian and satisfies

C,
1Bl -s < exp(2 5 ) 2ol -siinnn
r+1

The proof of Proposition 13 is a modification (to the case oingting gaps) of a diago-
nalization procedure introduced in [13] and conventignedllled the progressive diagonal-
ization method.
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5.2 The algorithm

The diagonalization procedure is constructed iterativetyus first describe the algorithm.
Starting fromH + Y + Z we construct the first 4-tuple of operators

Uy:=1, G, :=Y +diag Z, V; := offdiag Z, H, := H + G; + 11,

where
diag X := Y P, XP,, offdiagX := Y P,XP,
neN m#n
denote the diagonal and the off diagonal part of the matrexodperatorX with respect to
the eigen-basis aff. We define recursively a sequence of operatdysG,, V,, W, andU,
by the following rules: provided:, andV; have been already defined 1&% be the solution
of

[H + G5, W] =V, and diag W, = 0. (27)
We define
Hypi=eVHe Vs, (28)
Finally, we set
Uy, = eV U, 1, Gopy :=diag Hyy1 — H, V,yq = offdiag H,, ;. (29)

SinceH, = H + G, + V, for all s and with the aid ofl(27) one derives from {28) that

=1 1
Hs+1 = Hs + Z E adilf[/zl[W37Hs] = H"— Gs + V:s + Z E adi]/gl/zl(_‘/s + [Wm‘/s])

k=1 k=1
= H+ G5+ P(ady,)V; (30)
where

Observe also that in the course of the algoritimijs always diagonal (commuting with
H) and symmetricy, is symmetric and off diagonall/, is antisymmetric and off diagonal.
Thereforee's andU, are unitary. It is straightforward to prove by inductionttfar every
s=1,2,...,
H4+ G+ Vi =U(H+Y + Z)U;. (32)

5.3 Auxiliary facts

To solve the commutator equation {27) we need the followasyit taken from a paper by
Bhatia and Rosenthal.

Lemma 15([6]). Let £ and F' be two Hilbert spaces. Let and B be Hermitian operators
(i.e., bounded and self-adjoint) dii and ', respectively, such thalist(c(A),o(B)) > 0.
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Then for every bounded operatdt : FF — FE there exists a unique bounded operator
X : FF— FE such that

AX - XB=Y.
Moreover, the inequality

™

X1 < S e @B

Y1,

holds true.

Remark. The solutionX is given by
X = / e Y B £ (1) dt
R

for any f € L!(R) such that its Fourier image obey¥s) = 1/v/2ws on the set
o(A) — o(B). This implies| X < | f]1||Y]], and optimizing over suclf one gets the
constantr/2.

In the algorithm plays a certain role the functidéf) introduced in[(3L). It is supposed
to be defined on the intervdl, oo[. Let us point out here some of its elementary properties.
This is a strictly increasing function mapping the interidabo[ onto itself. It holdsb(0) =
0, (1) = 1, and so the function maps also the interall | onto itself. Moreoverd(z) is
a convex function and so

Vo €]0,1], (z) < z. (33)

Further, let us consider a sequerdee}2 , formed by nonnegative numbers obeying the

inequalities
Vs €N, x50y < O(xg)zs. (34)
If z; < 1 then the sequence is non-increasing (33), (34) implyatha < z2. It

follows that
s—1
Vs €N, o, <af

and

1—1‘1

stg LN (35)
s=1

5.4 Convergence of the algorithm

Proof of Proposition 13.We have to prove thdt, — 0, G, — A andU, — U. The key
ingredient of the algorithm is the control of the sizéBf given as the off diagonal solution
to the commutator equation (27). For every# n we seekl(m,n) such that

(Em + (Gs)m,m) (Ws)m,n - (Ws)m,n (En + (Gs)n,n) = (Vs)mn

Suppose for the moment th@at lies in Y (oo, v) for everys € N with

C
1Gilloes < - (36)
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The norm|| - ||, makes sense in this case sin€g is diagonal for everyy € N. The
spectrum ofE,, + (G5).. IS @ subset of the interval

|G sllooy

n2y

B +

A

n2y

£

Owing to (22) the distance between the spectrunbof+ (G5)mm andE,, + (Gs)n.» can
be estimated from below by
Bl S _m=nl om0y
= B = Gl (7)ot = B )
clm —n|

(37)

2max{m,n}*’’

The last inequality in[(37) is a consequence of the follonesgimate where we assume for
definiteness that, > n (recall that2y < 1):

3(m —n)

_ mo _ _
5 >m ™+ —m P >m P 4
m=7 n

Applying Lemmd 15 we conclude that

7 max{m, n}*

WS m,n S ‘/TS m,ni||- 38
IOl < PR (V) (39)
> |
(6324 i
M = s = S 39
o " U (39)
If V; lies in the clas$/(r, i) then one derives froni (88) thét, € Y (r + 1, (i — 1)) and
™ X

i— < — || Vsllriy = — 4

IWellr 67 € Vel = 3 (40)
From Corollary% it follows thatd;. Vi € Y(r,iv) and
k k k

H adWS VSHT,W < (20r+1||W8||r+1,(i—1)7) HVSHT,W < x4 ||V9||7"7i77 (41)

SinceV,,, is defined as the off diagonal part &t ; we get from[[(3D) and(41) that
Vi1 = offdiag(®(adw, )V5) -

and so
||‘/;+1||r,i7 < q)(x8)||V9||7"7i7'

Hence the sequende;, } defined in[(3D) fulfills inequalities (34).

Since||Villviy < || 2]l assumption(23) implies; < 1/2. We know from the discus-
sion at the end of Subsectibn b.3 that in that case the sgrliesis convergent. It follows
that||V||,.;» — 0 and, using the estimate

Wl < IWellsm < (1 +2¢(0r + 1) [Wellrt1,6-1)4
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and [40), also thal/; converges to a unitary operatgrin (7). Furthermore, fromi (30)
and [29) one deduces that

Gor — G, = diag(®(adw,)V3) .
SinceG, is diagonal and > 1 we have
1Gsi1 — Gsllooy = |Gst1 — Gsllry < |Gs1 — Gsllriy < || P(adw, ) Vs]|riy-
Using once mord (40) and (41) one finds that
|G = Gull = 11 = Gillooo < |Gt = Calloory < MB(x)e. (42)

From here one concludes thgt,} is a Cauchy sequence both Ji(co,v) and B(.77).
HenceG, converges to a diagonal operatbmvhich lies in) (oo, 7).

We must verify that conditio (36) is actually fulfilled. Glyse from [8) that”, > 23-3
if p > 2. By the assumptions,

CH

||G1||oo,v < ||Y||oo,v + ||Z||m'v < E

Furthermore, from (42) it follows that

S CH o0
|Gestlloon < NGlscr + D 1Gast = Gilloon < 5 + M Y a;@(y).  (43)
j=1

j=1
Recalling that:; < 1/2 one gets

Mzx

e 2
= C
MY wy0(a;) < = < Moy < || 2]y < 5
7j=1

E.

(44)

The last inequality is again a consequence of assumpiign@8 concludes that condition
(38) is fulfilled for all s.

Since all operators occurring in_(32) exceptidfare bounded one deduces from this
equality thatl/, preserves the domain &f for all s. SinceH is a closed operator the limit
in equality [32), as — oo, can be carried out and results in equalityl (24).

From the computations in_(43), (44) it also follows that
1Gst1lloony < NGillocyy + M2y = [|Gillooyy + Villnin < Y lloory + 21 Z ]

Sendings to infinity one verifies the estimate (25). Furthermore,meate [(40) implies

S c Ly o1
slir+1,(i— >~ Ts > < .
s=1 e 2011 < 2C, 1 (1 —21) = 204

From Corollary[4 we deduce that the operaidyy, is well defined on the Banach space
Y(r —1,(i + 1)), with a norm bounded from above by, ||W,||,11,i-1),- Thus for
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X € Y(r—1,(i+ 1)) one can estimate

||UXU* ||7-717(i+1)r\/ — SILT& ||€Ws€stl - erXe—Wl - e_Ws—le_Ws ||T‘71,(i+1)’y
< exp (407» > ||Ws||r+1,(i—1)v> [ X[— 1,641y
s=1
C,
< o2 ) Xl
r+1
This shows[(Z6). The proof is complete. O

6 Proof of Theorem(8

As already announced, the proof of Theorem 8 is based on aioatiin of the anti-
adiabatic transform (Proposition]11) and the progressiaganhalization method (Corol-
lary[14). Let us formulate it as a corollary.

Corollary 16. Letr > 2,7 > 1, v €]0, %[, and H be a self-adjoint operator with a pure
point spectrum and the spectral decompositién= ) E,P,. Assume that the eigen-
values{ E,, }>° , are ordered increasingly and satisfy (1). Further assuna¢Yhe ) (oo, )

is Hermitian and commutes witH, and Z(t) € ) (r, i) is Hermitian,T-periodic andC"

in the strong sense. If

CH
Yoo Zlrig < —F7—
¥ lloor + 120in < -5

then there exists a family(¢) of unitary operators on# which isT-periodic andC" in
the strong sense and such that

UL (D+H+Y +Z(t)Ut) =D+ H+ A+ B(t)
whereA € Y(o0, ) is Hermitian, commutes with and fulfills
[Alloor < 2 (1Y ooy + 1Z117.i5) »

andB(t) € Y(r — 1, (i + 1)) is T-periodic, Hermitian, continuously differentiable in the
strong sense and satisfies

1 C,
Bl < 9
1Bll-srs = 2@“"( cm)
x (exp(AC. T (| Z]lr) = 1) (Cu + 4Y ooy + 2G| Z]]5i5) -

To prove Corollary 16 it suffices to séf(t) = U exp(iF'(t)) whereF'(t) comes from
Propositior 1l and/ comes from Corollary_14. Apart of this one applies the follogy
elementary estimate: if the nor{iX ||, s of a 7-periodic family X (¢) formed by bounded
operators is finite for somg > 1 and§ > 0 then the time averag& of X (¢) over the
periodT fulfills || X||,s < [|X]||,.s-

Equipped with Corollary 16 we are ready to approach the pobédheoreni 8.
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Proof of Theorerhl8One starts from the Floquet Hamiltonidh = D + H + V (¢) and
applies to itq times Corollany_16, with the steps being enumerated by 1,2,...,q. In

theith step one assumes that a strongly continuous fundtiorit) with values in unitary
operators onZ’ has been already constructed so that

K=Ji1(t)(D+H+Ai_1 + Bi_1(t)) Ji—a(t)",

with 4, € Y(oo,7) being Hermitian and commuting witlh{, and B, ,(t) €
Y(p — i+ 1,iv) being symmetric]-periodic andC"! in the strong sense. In the first step
one setsA, := 0, By(t) := V(t) andJy(t) := 1.

Corollary[16 can be applied to the Floquet Hamiltonign, := D+H+A; 1+ B;_1(t),
with » = p — i + 1, provided there is satisfied the assumption

CH
A B i|lpmirrin < ————. 45
|| ( 1||oo,v + || i 1||p i+1lay = 47TCp7i+2 ( )
Recall that the constardt, is given by [8). Under this assumption, there exists a styong
differentiable family of unitary operatotg(¢) such that

where A; € Y(oco,v) is symmetric and diagonal, and;(t) € Y(p — 4, (i + 1)) is T-
periodic, symmetric and strongly'. Moreover,

[ Ailloory <2 ([Ai—illoony + [ Bictllp—it1,iy) (46)

and

1 Cp—it1
1 Billp-iii+1)y < T (2 7013 - ) (exp(4Cy— i1 T | Biallp—it1v) — 1)
p—i+1 p—i+2

X (Ch + 4[| Aiilloory + 2Cp—ital| Bicallp-it1y) - (47)

Finally, J;(t) := J;—1(t)U;(t)* is a family of unitary operators which is continuously diffe
entiable in the strong sense and such that

K =J(t)(D+ H+ A; + Bi(t)) Ji(t)".

To finish the proof we have to choose> 0 sufficiently small so that ifjV||,,, < ¢ then
condition [45) is satisfied in each step- 1,2, ..., 4.
From [46) one derives by induction

i—1

[Ailloc,y < Z 2i_j||Bj||p—j,(j+1)7'

J=0

From here we deduce that inequalities| (45) are satisfied ferl, 2, ..., k, provided the

inequalities
i—1

i—1—j CH
;)2 NBjllp-j. 1)y < 0, i (48)
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are satisfied for the same range of indices. Furthermomgjaoak [45) and(47) imply that

1 Billp—i,(i+1)y < il Bizillp—it1,i7) (49)
where
o <2 gﬁ:i;) 4C, i Ty)—1) (C o 2C 1
di(y) == w(exp( i1 Ty) —1) ( H+ Coins + (2Cp—i41 — )y) :
Set

i—1
F(y) =27+ ) 27 000,00 0i1(y), i=12....q
j=1
It follows from (49) that inequalitie$ (48) are satisfied for 1,2, ..., k, if it holds

CH
Fi(|| B < —
(1Bollna) < 15—

for the same range of indices.
Recall thatB, () = V(). From this discussion it is clear that conditionl(45) is Sfad
inall stepsi =1,2,...,¢q, provided||V||,, < e ande > 0 is chosen so that

Cy

e {1,2,... F(y) < ——
VZ 6{ , 2, ,q},‘v’ye [075]7 Z(y) — 47Tcp—i+2

But all functions¢;(y) are continuous, strictly increasing and satigfy0) = 0. Conse-
quently, the same is true for all functioh¥(y). Hence the following choice af will do:

. - Co .
= Fl1l———):1<i< .
€ mln{ i (47Tsz'+2)7 _Z_Q}

This completes the proof of Theorér 8. O
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