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Abstract

We consider quantum Hamiltonians of the formH(t) = H +V (t) where the spectrum
of H is semibounded and discrete, and the eigenvalues behave asEn ∼ nα, with
0 < α < 1. In particular, the gaps between successive eigenvalues decay asnα−1.
V (t) is supposed to be periodic, bounded, continuously differentiable in the strong
sense and such that the matrix entries with respect to the spectral decomposition ofH
obey the estimate‖V (t)m,n‖ ≤ ε |m − n|−pmax{m,n}−2γ for m 6= n whereε > 0,
p ≥ 1 andγ = (1−α)/2. We show that the energy diffusion exponent can be arbitrarily
small providedp is sufficiently large andε is small enough. More precisely, for any
initial conditionΨ ∈ Dom(H1/2), the diffusion of energy is bounded from above as
〈H〉Ψ(t) = O(tσ) whereσ = α/(2⌈p − 1⌉γ − 1

2). As an application we consider the
HamiltonianH(t) = |p|α + εv(θ, t) onL2(S1,dθ) which was discussed earlier in the
literature by Howland.

1 Introduction

One of the basic questions one can ask about time-dependent quantum systems is the growth
of energy on a long time scale for a given initial condition. Unfortunately the quantum dy-
namics in the time-dependent case proved itself to be ratherdifficult to analyze in its full
generality and complexity. The systems which allow for at least partially analytical treat-
ment and whose dynamics has been perhaps best studied from various points of view are
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either driven harmonic oscillators [4, 17, 10, 15] or periodically kicked quantum Hamilto-
nians [11, 12, 5, 7, 8, 25]. On a more general level, it is widely believed that there exist
close links between long time behavior of a quantum system and its spectral properties. For
time-independent quantum systems such a relation is manifested by the famous RAGE the-
orem, see [30] for a summary and references to the original papers. In a modified form this
theorem has been extended to periodic and quasi-periodic quantum systems [15, 21, 28].
In this case the relevant operator whose spectral properties are of interest is the Floquet
(monodromy) operator. Naturally, much attention has been paid to the spectral analysis of
Floquet operators in some of the papers cited above, see also[2] for more recent results.
Let us mention that a refined analysis of how the spectral properties determine the quantum
dynamics is now available, see for example [16, 9] and other papers, but here we are not
directly concerned with this question.

Thus for periodically time-dependent systems one can distinguish as a related prob-
lem the spectral analysis of the Floquet operator under certain assumptions on the quantum
Hamiltonian. Frequently one writes the time-dependent Hamiltonian in the formH(t) =
H + V (t) while imposing assumptions on the spectral properties of the unperturbed partH
and requiring some sort of regularity from the perturbationV (t). For our purposes an ap-
proach is rather important which is based on the adiabatic methods and which was initiated
by Howland [18, 19] and further extended in [26, 22]. An essential property imposed on
the unperturbed Hamiltonian in this case is the discreteness of the spectrum with increasing
gaps between successive eigenvalues.

Under this hypothesis Nenciu in [27] was not only able to strengthen the results due to
Howland but he derived in addition an upper bound on the diffusive growth of the energy
having the formconst ta/n wherea > 0 is given by the spectral properties ofH andn is
the order of differentiability ofV (t). Inspired by this result on the energy growth, Joye in
[23] considered another class of time-dependent quantum Hamiltonians with rather mild as-
sumptions on the spectral properties ofH but, on the other hand, assuming that the strength
of the perturbationV (t) is in some sense small with respect toH. Moreover, as far as the
energy diffusion is discussed, the periodicity ofV (t) is required neither in [27] nor in [23].

It is worthwhile to mention that Howland in [20] succeeded totreat also the case when
the spectrum ofH is discrete but the gaps between successive eigenvalues aredecreasing. To
achieve this goal he restricted himself to certain classes of perturbationsV (t) characterized
by the behavior of matrix entries with respect to the eigen-basis ofH. In particular, he
discussed as an example the following model:H(t) = |p|α + v(θ, t) in L2(S1, dθ) where
0 < α < 1 andv(θ, t) is in C∞(S1 × S1). It seems to be natural to look in this case, too,
for a result parallel to that due to Nenciu [27] and to attempta derivation of a nontrivial
bound on the diffusive growth of energy. But we are aware of only one contribution in this
direction made by Barbaroux and Joye [3]; it is based on the general scheme proposed in
[23].

In this paper we wish to complete or to strengthen the resultsfrom [3] while making
use of some ideas from [23]. Thus we aim to consider other classes of time-dependent
Hamiltonians whose unperturbed partH has a discrete spectrum with decreasing gaps. In
particular, the derived results are applicable to the Howland’s model introduced in [20]. In
more detail, we deal with a quantum system described by the HamiltonianH(t) := H+V (t)
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acting on a separable Hilbert spaceH and such thatH is semibounded and has a pure point
spectrum with the spectral decomposition

H =
∑

n∈N

EnPn.

Assume that the eigen-valuesE1 < E2 < . . . obey the shrinking gap condition

cH
|m− n|

max{m,n}2γ ≤ |Em − En| ≤ CH
|m− n|

max{m,n}2γ (1)

for someγ ∈ ]0, 1
2
[ and strictly positive constantscH , CH . Notice that condition (1) implies

En ∼ nα whereα = 1 − 2γ ∈ ]0, 1[ (more precisely, (1) implies that the sequenceEnn
−α

is bounded both from below and from above by strictly positive constants for all sufficiently
largen). To simplify the discussion let us assume, without loss of generality, thatH is
strictly positive, i.e.,E1 > 0.

The time-dependent perturbationV (t) ∈ B(H ) is supposed to beT -periodic andC1

in the strong sense. From the strong differentiability it follows that the propagatorU(t, s)
associated to the HamiltonianH+V (t) exists and preserves the domainDom(H) (see, e.g.,
[24]).

Let us suppose thatV is small with respect to the norm

‖V ‖p,γ := sup
t∈[0,T ]

sup
m,n∈N

〈m− n〉pmax{m,n}2γ ‖V (t)m,n‖, (2)

wherep > 2,
〈m− n〉 := max{1, |m− n|},

and‖V (t)m,n‖ denotes the norm of the operator

V (t)m,n := PmV (t)Pn : RanPn → RanPm.

We claim that if, in addition,⌈p− 1⌉ > 1/(2(1− α)) then the propagatorU(t, s) preserves
the form domainQH = Dom(H1/2) and for anyΨ fromQH one can estimate the long-time
behavior of the energy expectation value by

〈U(t, 0)Ψ, HU(t, 0)Ψ〉 = O(tσ), with σ =
2α

2⌈p− 1⌉(1− α)− 1
(3)

(more details are given in Theorem 5 below). Here⌈x⌉ is standing for the ceiling of a real
numberx, i.e., the smallest integer greater than or equal tox.

Provided that[V (t), V (s)] = 0 for every t, s and
∫ T

0
V (t) dt = 0, the assumption

‖V ‖p,γ ≤ ε can be replaced by‖V ‖p+1,0 ≤ ε, i.e.,

‖PmV (t)Pn‖ ≤ ε

〈m− n〉p+1
.

The condition[V (t), V (s)] = 0 is satisfied for example whenV (t) is a potential (i.e., a
multiplication operator by a function on a certainL2 space) or when the time dependence
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of V (t) is factorized, i.e.,V (t) = f(t)v wheref(t) is a real-valued (T -periodic andC1)
function andv is a time-independent operator onH .

Let us stress that even though the energy diffusion exponentσ in (3) can be made ar-
bitrarily small providedp is sufficiently large our result is still far away from the situation
when one can prove the dynamical stability in the sense that the energy remains bounded in
time for any initial condition [5]. The point is that the time-dependent perturbationV (t) is
supposed to be sufficiently regular and small by requiring that ‖V ‖p,γ < ε where not only
the norm but also the positive boundε depends onp (see Theorem 5 below for a precise for-
mulation). This plays a role also in the analysis of the Howland’s model in Subsection 2.3.1.
In this case,H = |p|α + εv(θ, t) and the exponentσ in (12) tends to0 as the order of dif-
ferentiability ofv(θ, t) in θ, calledk, tends to infinity. However the coupling constantε is
supposed to be sufficiently small in dependence onk and so one cannot claim thatσ equals
0 even ifv(θ, t) is smooth inθ.

On the other hand, to our knowledge, non-trivial examples oftime-dependent quantum
models for which one can verify this strong type of dynamicalstability are rather rare. A
periodically time-dependent quadratic Hamiltonian represents such a model. It is explic-
itly solvable and this is how one can verify the boundedness of energy in the non-resonant
case [15]. A broader class of periodically time-dependent models is shown to be dynami-
cally stable for non-resonant values of frequencies with the aid of the KAM (Kolmogorov-
Arnold-Moser) type method in [1], see also [14] for some additional discussion. In this
connection let us point out a recent example [29] showing that the relationship between the
spectral properties of the Floquet operator and the dynamical stability is not so transparent,
and it may require a considerable amount of efforts to understand it properly.

Let us compare the result of the current paper, as briefly described above, to the re-
sults derived in [23] and [3]. Paper [23] focuses on the general scheme and is not so much
concerned with particular cases as that one we are going to deal with here. Nevertheless a
possible application to the Howland’s classes of perturbations is shortly discussed in Propo-
sition 5.1 and Lemma 5.1. The Howland’s classes are determined by a norm which some-
what differs from (2), as explained in more detail in Subsection 2.1. But the difference is
not so essential to prevent a comparison. To simplify the discussion let us assume that the
eigenvalues ofH are simple and behave asymptotically asEn ∼ const nα, with 0 < α < 1.
In the particular case when‖V ‖p,γ < ∞ for somep > 1 andγ = (1 − α)/2 the bound on
the energy diffusion exponent derived in [23] equalsα/(2γ − 1

2
) providedγ > (1 + α)/4,

i.e.,α < 1/3. Our boundα/(2⌈p− 1⌉γ − 1
2
), valid for 0 < α < 1 and providedp > 2 and

⌈p − 1⌉ > 1/(4γ), is achieved by making use of the rapid decay of matrix entries of V in
the direction perpendicular to the diagonal. It follows that we can make the growth of the
energy〈H〉Ψ arbitrarily slow by imposing more restrictive assumptionson the perturbation
V , i.e., by letting the parameterp be sufficiently large.

In paper [3] one treats in fact a larger class of perturbations than we do since one requires
only the finiteness of the norm‖V ‖p,0 <∞ for p sufficiently large. In other words, no decay
of matrix entries ofV along the diagonal is supposed. On the other hand, one assumes that
the initial quantum state belongs to the domainDom(Hβ) for β sufficiently large;β is
never assumed therein to be smaller than3/2. Furthermore, there is no assumption on the
periodicity ofH(t) both in [3] and [23]. On the other hand, our assertion concerns all initial
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states from the domainDom(H1/2) but we need a decay of matrix entries ofV along the
diagonal at least of order2γ = 1−α. For the sake of comparison let us also recall the bound
on the energy diffusion exponent which has been derived in [3]. It is roughly of the form
α/(1−f(p))2 whereα has the same meaning as above,f(p) is positive andf(p) = O(p−1)
asp → ∞. Hence this bound is never smaller thanα and approaches this value as the
parameterp tends to infinity.

2 Upper bound on the energy growth

2.1 The gap condition and the modified Howland’s classes

On the contrary to Howland who introduced in [20] the classesX (p, δ) equipped with the
norm

‖A‖Hp,δ = sup
m,n

{(mn)δ〈m− n〉p ‖Am,n‖; m,n ≥ 1},

we prefer to work with somewhat modified classes, calledY(p, δ), whose definition is ad-
justed to the gap condition (1). Our choice is dictated by an expected asymptotic behavior
of eigenvalues ofH in a typical situation. Let us briefly explain where condition (1) comes
from.

We expect the eigenvalues to behave asymptotically asEn = constnα(1 + o(1)) where
the error termo(1) is supposed to tend to zero sufficiently fast. The spectral gapsEn+1−En

tend to zero asn→ ∞ if α ∈ ]0, 1[. Keeping the notationγ := (1−α)/2we wish to estimate
the difference|Em−En|. To this end we replaceEn simply by the power sequencenα. Then
one gets

mα − nα

m− n
(mn)γ =

sinh(αy)

sinh(y)
= e−(1−α)|y| 1− e−2α|y|

1− e−2|y|

wheree2y := m/n. Since the fraction(1−e−2α|y|)/(1−e−2|y|) can be estimated by positive
constants both from above and from below we finally find that

C1
|m− n|

max{m,n}2γ ≤ |mα − nα| ≤ C2
|m− n|

max{m,n}2γ

for someC1, C2 > 0 and allm,n ∈ N.

Definition 1. Let p ≥ 1, δ ≥ 0 andp + 2δ > 1. We say that an operatorA ∈ B(H )
belongs to the classY(p, δ) if and only if

‖A‖p,δ := sup
m,n∈N

〈m− n〉pmax{m,n}2δ ‖Am,n‖ <∞. (4)

LetA(t) be aT -periodic function with values in the spaceY(p, δ). With some abuse of
notation we shall also write

‖A‖p,δ := sup
t∈[0,T ]

sup
m,n∈N

〈m− n〉pmax{m,n}2δ ‖A(t)m,n‖.
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Remarks. (i) It is straightforward to check that‖ · ‖p,δ is indeed a norm. Let us note that
an equivalent norm is obtained if one replacesmax{m,n} by (m+ n) in (4).

(ii) Obviously,Y(p, δ) ⊂ X (p, δ). Notice thatY(p, δ) is a Banach space equipped with
the norm‖ · ‖p,δ.

(iii) For the sake of convenience we have chosen the norm (4) with the restrictionsp ≥
1, δ ≥ 0 andp+2δ > 1 so that if it is finite for a matrix{Amn},Amn ∈ B(RanPn,RanPm),
then the matrix corresponds to a bounded operatorA ∈ B(H ). Indeed, it is so since one
can estimate the operator norm‖A‖ by the Shur-Holmgren norm

‖A‖SH := max

{

sup
m∈N

∑

n∈N

‖Am,n‖, sup
n∈N

∑

m∈N

‖Am,n‖
}

.

It clearly holds

‖A‖SH ≤ ‖A‖p,δ sup
m∈N

∞
∑

n=1

1

〈m− n〉p max{m,n}2δ .

The sum on the RHS equals

1

m2δ
+

m−1
∑

n=1

1

(m− n)pm2δ
+

∞
∑

n=m+1

1

(n−m)pn2δ
≤ 2 +

1

m2δ

∫ m

1

dx

xp
+

∞
∑

k=1

1

kp+2δ

= 2 +
1−m−p+1

(p− 1)m2δ
+ ζ(p+ 2δ).

Setting temporarilyx = ln(m) andǫ = p− 1 one can make use of the inequality

1

ǫ

(

e−2δx − e−(ǫ+2δ)x
)

≤ 1

ǫ+ 2δ

which is true for allx ≥ 0 providedǫ ≥ 0, δ ≥ 0 andǫ + 2δ > 0. Thus one arrives at the
estimate

‖A‖SH ≤
(

2 +
1

p+ 2δ − 1
+ ζ(p+ 2δ)

)

‖A‖p,δ.

Hereζ(u) :=
∑∞

k=1 k
−u denotes the Riemann’s zeta function.

(iv) Finally let us note that the valuep = ∞ is admissible. We shall use the norm‖·‖∞,δ

exclusively in the case of diagonal matrices when it simply reduces to

‖A‖∞,δ := sup
n∈N

n2δ ‖An,n‖.

From Definition 1 one immediately deduces the following lemma.

Lemma 2. Suppose thatH is an operator onH with pure point spectrum whose eigen-
valuesE1 < E2 < . . . obey the upper bound in (1). Letp > 2. If A ∈ Y(p, δ) then the
commutator[A,H ] lies inY(p− 1, δ + γ) and

‖[A,H ]‖p−1,δ+γ ≤ CH‖A‖p,δ.
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A basic technical tool we need is a lemma concerned with products of two classesY . For
its proof as well as for the remainder of the paper the following two elementary inequalities
will be useful. According to the first one, for everym, k ≥ 1 it holds

m

k
≤ 2〈m− k〉. (5)

In fact, this is a direct consequence of the implicationa, b ≥ 1 =⇒ a + b ≤ 2ab.
The second inequality claims that ifa, b ≥ 0 then

〈a+ b〉
〈a〉〈b〉 ≤ 2

〈min{a, b}〉 .

This can be reduced to the inequality〈2a〉 ≤ 2〈a〉 which is quite obvious.

Lemma 3. Consider two classesY(p1, δ1), Y(p2, δ2), with p1, p2 > 1, δ1, δ2 ≥ 0. Suppose
that numbersp, δ satisfy the inequalities

1 < p ≤ min{p1, p2}, max{δ1, δ2} ≤ δ ≤ δ1 + δ2, p+ 2δ ≤ min{p1 + 2δ1, p2 + 2δ2}.

If A ∈ Y(p1, δ1) andB ∈ Y(p2, δ2) then

‖AB‖p,δ ≤ C(p, δ − δ0) ‖A‖p1,δ1‖B‖p2,δ2 (6)

where
C(p,∆) = 2p+2∆+1(1 + 2ζ(p))

andδ0 = min{δ1, δ2}. Consequently,Y(p1, δ1)Y(p2, δ2) ⊂ Y(p, δ).

Proof. Under the assumptions we have

〈m− n〉pmax{m,n}2δ‖(AB)mn‖ ≤ 〈m− n〉pmax{m,n}2δ
∞
∑

ℓ=1

‖Amℓ‖‖Bℓn‖

which is less than or equal to

‖A‖p1,δ1‖B‖p2,δ2
∞
∑

ℓ=1

〈m− n〉pmax{m,n}2δ
〈m− ℓ〉p1 max{m, ℓ}2δ1〈n− ℓ〉p2 max{n, ℓ}2δ2 . (7)

The summand in (7) can be estimated from above by

〈|m− ℓ|+ |n− ℓ|〉pmax{m,n}2δ
〈m− ℓ〉p1 max{m, ℓ}2δ1〈n− ℓ〉p2 max{n, ℓ}2δ2 ≤ 2p

〈min{|m− ℓ|, |n− ℓ|}〉p h(m,n, ℓ)

where

h(m,n, ℓ) = 〈m− ℓ〉p−p1〈n− ℓ〉p−p2
max{m,n}2δ

max{m, ℓ}2δ1 max{n, ℓ}2δ2 .
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One can further estimateh(m,n, ℓ). For definiteness let us suppose thatm ≥ n. Then,
sincep− p2 ≤ 0 andδ2 ≥ δ − δ1,

h(m,n, ℓ) ≤ 〈m− ℓ〉p−p1
m2δ

max{m, ℓ}2δ1 max{n, ℓ}2(δ−δ1)
≤ 〈m− ℓ〉p−p1

(m

ℓ

)2(δ−δ1)

≤ 22(δ−δ1)〈m− ℓ〉p−p1+2(δ−δ1) ≤ 22(δ−δ0).

It follows easily that the sum in (7) is bounded from above by2p+2(δ−δ0)(2+4ζ(p)) and this
estimate implies (6).

Corollary 4. Let p > 2, i ≥ 1 andγ ∈ ]0, 1
2
[. Then the following product formulas hold

true:

Y(p, iγ)Y(p, iγ) ⊂ Y(p− 1, (i+ 1)γ)

Y(p, (i− 1)γ)Y(p− 1, iγ) ⊂ Y(p− 1, iγ)

Y(p+ 1, (i− 1)γ)Y(p− 1, (i+ 1)γ) ⊂ Y(p− 1, (i+ 1)γ)

The formulas are also true for the opposite order of factors on the LHS. Moreover, if oper-
atorsA andB belong to the corresponding classes on the LHS then

‖AB‖p−1,(i+1)γ ≤ Cp ‖A‖p,iγ‖B‖p,iγ
‖AB‖p−1,iγ ≤ Cp ‖A‖p,(i−1)γ‖B‖p−1,iγ

‖AB‖p−1,(i+1)γ ≤ 2Cp ‖A‖p+1,(i−1)γ‖B‖p−1,(i+1)γ ,

where
Cp := 2p+1(1 + 2 ζ(p− 1)). (8)

The norm estimates hold true also for the opposite order of factorsA andB in the product.

2.2 The main theorem

Theorem 5. Let a quantum system be described by a Hamiltonian of the form

H(t) = H + V (t) onH

whereH is a self-adjoint operator with a pure point spectrum and thespectral decomposi-
tion

H =
∑

n∈N

EnPn.

Suppose that the eigen-values ofH are ordered increasingly and obey the gap condition (1)
with γ ∈ ]0, 1

2
[ . Setα = 1− 2γ. For p > 2 assume that

⌈p− 1⌉ > 1

2(1− α)
. (9)

Then there existsε > 0 such that ifV (t) is T -periodic, symmetric, continuously differen-
tiable in the strong sense and obeys‖V ‖p,γ ≤ ε then the propagatorU(t, s) associated
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to the HamiltonianH + V (t) mapsQH , the form domain ofH, onto itself and for every
Ψ ∈ QH it holds

〈H〉Ψ(t) := 〈U(t, 0)Ψ, HU(t, 0)Ψ〉 = O(tσ) (10)

where

σ =
2α

2⌈p− 1⌉(1− α)− 1
.

Remark 6. (i) There is no assumption on the dimension ofRanPn. The multiplicities of
eigenvalues may grow arbitrarily, they can even be infinite.

(ii) Suppose thatV (t) ∈ Y(p+ 1, 0), with p > 2, isT -periodic, symmetric, continuously
differentiable in the strong sense and such that[V (t), V (s)] = 0 for everyt, s, and
V̄ := T−1

∫ T

0
V (t) dt = 0. Then one arrives at the same estimate (10). Let us outline

the proof.

First, as explained in Remark 12 below in which one has to setr = p + 1, Y = 0,
Z(t) = V (t) andZ̄ = 0, one can transform anti-adiabaticallyH+V (t) intoH+V1(t)
so thatV1(t) ∈ Y(p, γ) and

‖V1‖p,γ ≤ CH

2Cp+1
(exp(4Cp+1T‖V ‖p+1,0)− 1) .

Afterwards one can apply Theorem 5 to the HamiltonianH+V1(t). Arguing similarly
as in the proof of Theorem 5 in Subsection 3.2, one finds that the energy diffusion for
the HamiltonianH + V1(t) is related to that for the HamiltonianH + V (t) by a
quantity which is bounded in time. This is to say that estimate (10) holds true for the
time evolution governed by the HamiltonianH + V (t) as well.

(iii) Provided thatH(t) = H + V (t), with V in C1(R,B(H )) in the strong sense there
exists a trivial bound which does not depend on the spectral properties ofH (see
[27]), namely

|〈U(t, 0)Ψ, H(t)U(t, 0)Ψ〉| ≤ |〈Ψ, H(0)Ψ〉|+ |t| sup
s∈R

‖V̇ (s)‖‖Ψ‖2. (11)

For its derivation it suffices to notice that

∂t〈U(t, 0)Ψ, H(t)U(t, 0)Ψ〉 = 〈U(t, 0)Ψ, V̇ (t)U(t, 0)Ψ〉

whereV̇ (t) denotes the time derivative in the strong sense. The estimate given by
Theorem 5 is better than this trivial bound if

⌈p− 1⌉ > pmin :=
2α + 1

2(1− α)
.

For example, in the case ofα = 2/3 (the quantum ball) we getpmin = 7/2. The
condition ⌈p − 1⌉ > pmin is fulfilled if p > 4 and then Theorem 5 tells us that
〈H〉Ψ(t) = O(t4/5).
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(iv) Apart of the energy itself it is also of interest to consider expectation values of func-
tions of the Hamiltonianf(H) for a suitable choice of the functionf(λ), see for
example [22, Section 3]. In particular this concerns the momentaHm, m ∈ N. Un-
fortunately only several steps of our procedure allow for animmediate extension of
this type and so we are not able at the moment to deal with this more general case. Let
us discuss shortly this point. By inspection of the proofs ofTheorem 9 and Lemma 10
one finds that in both of them one can safely replaceH by f(H) as long as the se-
quence{f(En)} satisfies, instead of{En}, all assumptions. The propagatorU(t, s)
in the formulation of Theorem 9 is still associated to the operator H + W (t). The
main obstacle is encountered in the proof of Theorem 5 in Subsection 3.2. In analogy
to estimate (15) one can derive that

〈Ũ(t, 0)Ψ̃, f(H)Ũ(t, 0)Ψ̃〉 = 〈U(t, 0)Ψ, J(t)f(H)J(t)∗U(t, 0)Ψ〉 = O(tσ)

whereσ is the same as in (15). HereJ(t) is, as detailed in the remainder of the paper,
a suitable unitary operator constructed with the aid of the anti-adiabatic transform.
As a next step in the proof of Theorem 5 one argues that the differenceH−J(t)HJ(t)∗
is bounded. However it does not seem to be possible to claim ingeneral the same for
the operatorf(H)−J(t)f(H)J(t)∗. And this is exactly the point where the discussed
extension fails.

2.3 Applications

2.3.1 The Howland’s model

Let us apply the results of Theorem 5 to the model introduced by Howland in [20] and
described by the Hamiltonian|p|α + εv(θ, t), with α ∈ ]0, 1[ , which is supposed to act on
L2(S1, dθ) and to be2π-periodic in time. SetH := |p|α. The spectral decomposition ofH
reads

H =
∑

n≥0

nαPn where PnΨ(θ) =
1

π

∫ 2π

0

cos (n(θ − s))Ψ(s) ds.

Except of the first one the multiplicities of the eigen-values are equal2. Using integration
by parts one derives that any multiplication operatora by a functiona(θ) ∈ Ck obeys the
estimate

‖Pm aPn‖ ≤ 2
√
2π ‖a(k)‖

〈m− n〉k .

Hencea ∈ Y(k, 0). Applying Theorem 5 and Remark 6 ad (ii) we get

Proposition 7. Letα ∈ ]0, 1[ andv(θ, t) be a real-valued function which is2π-periodic both
in the space and in the time variable. Suppose thatv(θ, t) is Ck in θ andC1 in t and such
that

∫ 2π

0
v(θ, t) dt = 0. If k > 3 andk > (5− 4α)/(2(1−α)) then there existsε0 > 0 such

that for every realε, |ε| < ε0, the propagatorU(t, s) associated to

H(t) := |p|α + εv(θ, t) onL2(S1, dθ)

10



preserves the domainDom(|p|α/2) and for everyΨ from this domain it holds true that

〈U(t, 0)Ψ, H(t)U(t, 0)Ψ〉 = O(tσ)

where

σ =
2α

2(k − 2)(1− α)− 1
. (12)

Let us summarize that the energy diffusion exponent in the Howland’s model can be
made arbitrarily small provided the potential on the circleis sufficiently smooth and the
coupling constant is sufficiently small.

2.3.2 Discrete Hamiltonian on the half-line with a slowly growing potential

Discrete models on a lattice are frequently and intensivelystudied. Here we are inspired by
Example 5.1 in [3]. In contrast to it we restrict ourselves tothe usual discrete Laplacian on
the half-line rather than considering a long-range Laplacian on the line. To fit the assump-
tions on which the current paper is based, in particular the gap condition (1), we further
restrict ourselves to slowly growing discrete potentialsV (n) = nα for someα, 0 < α < 1.
Thus we do not cover the most interesting linear caseV (n) = n.

SetH = l2(N). Let∆ be the discrete Laplacian on the half-line,

(∆ψ)(1) = ψ(2), (∆ψ)(n) = ψ(n− 1) + ψ(n+ 1) for n ≥ 2.

Further fix a parameterα, 0 < α < 1, and define

(V ψ)(n) = nαψ(n), ∀n.

Let us consider the HamiltonianH(t) = −∆+λa(t)V wherea(t) is aT -periodic function,
a ∈ C1 anda(t) ≥ a0 > 0, ∀t ∈ R, λ > 0 is a coupling constant. Set

b(t) = λ

∫ t

0

a(s) ds, φ(t) =
1

λ a(b−1(t))
,

and
H1(t) = V − φ(t)∆.

HenceH(t) = λa(t)H1(b(t)). Observe thatb(t) = O(t) and

b(t + T ) = b(t) + λκ whereκ =

∫ T

0

a(s) ds.

Henceb−1(t+λκ) = b−1(t)+T . The functionφ(t) is readily seen to beC1 andλκ-periodic.
Denote byU1(t, s) the propagator associated toH1(t). ThenU(t, s) = U1(b(t), b(s)) is the
propagator associated toH(t).

Now one can apply Theorem 5 to the HamiltonianH1(t). The unperturbed partV is
diagonal in the standard basis inl2(N), and the eigen-values obey the gap condition (1). On
the other hand, the perturbation−φ(t)∆ is strongly differentiable and belongs toY(p, 0)

11



for all p ≥ 1. Theorem 5 jointly with Remark 6 ad (ii) implies that for anyσ > 0 and all
initial conditionsΨ,

〈U1(t, 0)Ψ, V U1(t, 0)Ψ〉 = O(tσ)

as long asλ ≥ λ0(σ) whereλ0(σ) is a lower bound depending onσ. Replacingt by b(t)
one finds that

〈U(t, 0)Ψ, V U(t, 0)Ψ〉 = O(tσ).

3 Derivation of the main result

3.1 Two additional theorems

The proof of Theorem 5 is based on the following two theorems,Theorem 8 and Theorem 9.
In what follows we use the notationD := −i∂t on the interval[0, T ] with the periodic
boundary condition.

Theorem 8. LetK = D +H + V (t) be a Floquet Hamiltonian onL2([0, T ],H ), withH
andV (t) satisfying the assumptions of Theorem 5. Letp > 2 andq < p − 1 be a natural
number. Then there existsε > 0 such that‖V ‖p,γ ≤ ε implies the existence of aT -periodic
family of unitary operatorsJ(t) on H which is continuously differentiable in the strong
sense and such that

K = J(t)(D +H + A+B(t))J(t)∗

whereB(t) ∈ Y(p − q, (q + 1)γ) is T -periodic, Hermitian and strongly continuously dif-
ferentiable, andA is bounded, symmetric and commutes withH.

The remainder of the current paper is concerned with the proof of Theorem 8. Theorem 9
to follow is a mere modification of Proposition 5.1 in [23] in combination with some ideas
from [3, Section 2]. This is why we present its proof in a rather sketchy form. Let us also
note that the basic idea standing behind the estimates goes back to Nenciu [27].

Theorem 9. Let H be a positive operator with a pure point spectrum and the spectral
decompositionH =

∑

nEnPn. Assume that the eigen-values0 < E1 < E2 < . . . satisfy
En = O(nα), with α > 0. SetQn = 1 − Pn. Let an operator-valued functionW (t) ∈
B(H ) be Hermitian,C1 in the strong sense and such that

∀n ∈ N, ‖PnW (t)QnH
−1/2‖ ≤ const

nµ+α
2

uniformly in time for someµ > 1/2. Then the propagatorU(t, s) associated withH+W (t)
preservesQH , the form domain ofH, and for everyΨ fromQH ,

〈U(t, 0)Ψ, HU(t, 0)Ψ〉 = O(t2α/(2µ−1)).

Remark. The bound on the energy expectation value is nontrivial ifµ > 1
2
+ α.

12



Proof. Let

Wd(t) :=
∞
∑

n=1

PnW (t)Pn

be the diagonal part ofW (t). It is straightforward to see thatWd(t) is againC1 in the strong
sense. LetUd(t, s) be the propagator associated toH +Wd(t). SinceWd(t) commutes with
H the same if true forUd(t, s). Equivalently this means thatUd(t, s) commutes with all
projectorsPn. From the Duhamel’s formula we have

R(t) := U(t, 0)− Ud(t, 0) = −i

∫ t

0

Ud(t, s)
(

W (s)−Wd(s)
)

U(s, 0) ds.

Fix t > 0 and chooseΨ ∈ Dom(H) ⊂ Dom(H1/2). Notice thatPn

(

W (s)−Wd(s)
)

=
PnW (s)Qn. For anyt′, 0 ≤ t′ ≤ t, it holds

‖H1/2U(t′, 0)Ψ‖2 =
∞
∑

n=1

En‖PnU(t
′, 0)Ψ‖2 ≤ EN‖Ψ‖2 +

∞
∑

n=N+1

En‖PnU(t
′, 0)Ψ‖2.

Furthermore,
‖PnU(t

′, 0)Ψ‖2 ≤ 2(‖PnΨ‖2 + ‖PnR(t
′)Ψ‖2)

and

‖PnR(t
′)Ψ‖ ≤

∫ t

0

‖PnW (s)QnH
−1/2‖ ds sup

0≤s≤t
‖H1/2U(s, 0)Ψ‖

≤ c t

nµ+α
2

sup
0≤s≤t

‖H1/2U(s, 0)Ψ‖.

From these estimates one concludes that for anyt > 0, all Ψ ∈ Dom(H), N ∈ N and
some positive constantsc1, c2 independent oft, Ψ andN it holds

(

1− c1t
2

N2µ−1

)

sup
0≤s≤t

‖H1/2U(s, 0)Ψ‖2 ≤ c2N
α‖Ψ‖2 + 2‖H1/2Ψ‖2.

SettingN = [Ct2/(2µ−1)] whereC > 0 is a sufficiently large constant one deduces that there
existsc3 > 0 such that it holds

‖H1/2U(t, 0)Ψ‖2 ≤ c3
(

t2α/(2µ−1)‖Ψ‖2 + ‖H1/2Ψ‖2
)

(13)

for all t ≥ 1 andΨ ∈ Dom(H).
One can extend the validity of (13) toΨ ∈ Dom(H1/2). To this end it suffices to

use the fact thatDom(H1/2) is a Banach space with respect to the norm‖Ψ‖∗ =
(‖Ψ‖2 + ‖H1/2Ψ‖2)1/2, andDom(H) ⊂ Dom(H1/2) is a dense subspace. ChoosingΨ ∈
Dom(H1/2) one can find a sequence{Ψk} in Dom(H) such thatΨk → Ψ in Dom(H1/2).
Then (13) implies that{U(t, 0)Ψk} is a Cauchy sequence inDom(H1/2) whose limit nec-
essarily equalsU(t, 0)Ψ. HenceDom(H1/2) is U(t, 0)–invariant and (13) is valid also for
all Ψ ∈ Dom(H1/2). This concludes the proof.
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3.2 Proof of Theorem 5

Here we show how Theorem 5 follows from Theorem 8 and Theorem 9.

Lemma 10. Assume thatH is a positive operator with a pure point spectrum and the spec-
tral decompositionH =

∑∞
n=1EnPn, and such that the eigen-values satisfyinf Enn

−α > 0,
with α > 0. SetQn = 1 − Pn. Then for anyp ≥ 1 there exist a constantc(p, α) > 0 such
that for all δ > 0,

∀B ∈ Y(p, δ), ∀n ∈ N, ‖PnBQnH
−1/2‖ ≤ c(p, α)

‖B‖p,δ
n2δ+α

2

.

Proof. Suppose thatB ∈ Y(p, δ). By the assumptions,En ≥ c nα for all n and somec > 0.
We have

‖PnBQnH
−1/2‖2 ≤

∑

m,m6=n

‖Bn,m‖2
Em

≤ 1

c

∑

m,m6=n

‖B‖ 2
p,δ

|m− n|2pmax{m,n}4δmα
.

Now one splits the range of summation inm into three segments:1 ≤ m < n/2, n/2 ≤
m < n andn < m. For each case one can apply elementary and rather obvious estimates to
show that the expression decays inn at least asn−4δ−α. In the first case one has to use the
fact thatα < 1. We omit the details.

Proof of Theorem 5.Theorem 8, withq := ⌈p−2⌉, implies the existence of a transformation

K = J(t)(D +H + A+B(t))J(t)∗ (14)

whereA is bounded and diagonal andB(t) ∈ Y(p−q, (q+1)γ). Sincep > 2 andq = ⌈p−2⌉
we haveq ≥ 1 andp− q > 1. SetW (t) := A+B(t). ThenPnW (t)Qn = PnB(t)Qn. The
gap condition (1) guarantees that the assumptions of Lemma 10 are satisfied and thus one
finds that

‖PnW (t)QnH
−1/2‖ = ‖PnB(t)QnH

−1/2‖ ≤ const · n−µ−α
2 ,

with µ = 2(q + 1)γ = ⌈p− 1⌉(1− α). Notice that assumption (9) means thatµ > 1/2. In
virtue of Theorem 9, the propagatorŨ(t, s) associated toH +W (t) maps the form domain
QH onto itself and fulfills

〈Ũ(t, 0)Ψ̃, HŨ(t, 0)Ψ̃〉 = O(tσ), with σ =
2α

2⌈p− 1⌉(1− α)− 1
, (15)

for everyΨ̃ ∈ QH .
Equality (14) implies that

H + V (t) = J(t)HJ(t)∗ + iJ̇(t)J(t)∗ + J(t)W (t)J(t)∗. (16)

Since the familyJ(t) is known to be continuously differentiable in the strong sense it fol-
lows from the uniform boundedness principle that the derivative J̇(t) is a bounded op-
erator. Moreover, using the periodicity and applying the uniform boundedness principle
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once more one finds that‖J̇(t)‖ is bounded uniformly int. Hence all operators occur-
ring in equality (16), except ofH, are bounded. One deduces from (16) thatJ(t) maps
DomH onto itself for everyt and that the same is also true for the form domain. Set
U(t, s) := J(t)Ũ(t, s)J(s)∗. ThenU(t, s) is the propagator corresponding toH + V (t).
For anyΨ ∈ QH we have

〈H〉Ψ(t) = 〈U(t, 0)Ψ, H U(t, 0)Ψ〉 = 〈U(t, 0)Ψ, J(t)HJ(t)∗U(t, 0)Ψ〉+O(1)

= 〈Ũ(t, 0)Ψ̃, HŨ(t, 0)Ψ̃〉+O(1) = O(tσ)

whereΨ̃ := J(0)∗Ψ. This proves the theorem.

3.3 The idea of the proof of Theorem 8

It remains to prove Theorem 8. The proof is somewhat lengthy and the remainder of the
paper is devoted to it. Let us explain the main idea. The proofcombines the anti-adiabatic
transformation due to Howland (see Section 4) with a (properly modified) diagonalization
method, as presented in [13] (see Section 5). This procedureis applied repeatedly until
achieving the required properties of the perturbation. Letus describe one step in this ap-
proach when starting from the Floquet Hamiltonian

K△ := D +H + Y + Z(t)

whereY ∈ Y(∞, γ) is Hermitian and diagonal (i.e., commuting withH) andZ(t) ∈
Y(r, iγ) is symmetric,T -periodic and stronglyC1. The parameters are supposed to satisfy
i ≥ 1, r > 2.

Firstly, using the anti-adiabatic transform we try to improve the decay of entries ofZ(t)
along the main diagonal when paying for it by a worse decay of elements in the direction
perpendicular to the diagonal. In more detail, we would liketo transformZ(t) ∈ Y(r, iγ)
intoZ♦(t) ∈ Y(r − 1, (i+ 1)γ). Unfortunately, we are not able to get rid of the extra term
Z̄ ∈ Y(r, iγ), the time average ofZ(t). The anti-adiabatic transform can be schematically
described as

K△ = D +H + Y + Z(t) → K♦ = D +H + Y + Z̄ + Z♦(t).

To cope with the unwanted extra term we apply afterwards a diagonalization procedure
which in fact means the transform

K♦ = D +H + Y + Z̄ + Z♦(t) → K♥ := D +H + A+B(t)

whereA andB(t) already have the desired properties, i.e.,B(t) ∈ Y(r − 1, (i + 1)γ) is
symmetric,T -periodic and stronglyC1, andA ∈ Y(∞, γ) is Hermitian and commuting
with H.

4 The anti-adiabatic transform

In this section we adapt the strategy of Howland [20] and makeprecise the mappingK△ →
K♦, as announced in Subsection 3.3. Using the anti-adiabatic transform, i.e., roughly speak-
ing, by applying the commutator withH one can improve the decay of matrix entries of the
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perturbation along the main diagonal at the expense of a slower decay in the direction per-
pendicular to the diagonal. Using the language of classesY(p, δ), the anti-adiabatic trans-
form may be viewed as passing from a perturbationZ(t) ∈ Y(p, δ) to a new perturbation
Z1(t) ∈ Y(p− 1, δ + γ) whereγ comes from the gap condition (1) (see Lemma 2).

Let us introduce the transform in detail. LetK△ be a Floquet Hamiltonian of the form

K△ = D +H + Y + Z(t),

with H satisfying the assumptions of Theorem 5,Y ∈ Y(∞, γ) being Hermitian and com-
muting withH, andZ(t) ∈ Y(r, iγ) being Hermitian,T -periodic and continuous in the
strong sense. By the uniform boundedness principle,‖Z(t)‖ is bounded uniformly int.
The parameters are supposed to satisfyr > 2, i ≥ 1. Set

Z̄ :=
1

T

∫ T

0

Z(t) dt, Z̃(t) = Z(t)− Z̄.

Define

F (t) :=

∫ t

0

Z̃(s) ds,

so thatF (t) is Hermitian,T -periodic, stronglyC1 and lying inY (r, iγ). Let us defineK♦

by the gauge-type transformation ofK△,

K♦ := eiF (t)K△e
−iF (t) = D +H + Y + Z̄ + Z♦(t),

with
Z♦(t) = eiF (t) (D +H + Y + Z(t)) e−iF (t) −

(

D +H + Y + Z̄
)

. (17)

The main result related to the anti-adiabatic transform is as follows.

Proposition 11. Let r > 2, i ≥ 1, γ ∈ ]0, 1
2
[, andH be a self-adjoint operator with a pure

point spectrum and the spectral decompositionH =
∑

nEnPn. Assume that the eigen-
values{En}∞n=1 are ordered increasingly and satisfy the inequality

|Em −En| ≤ CH
|m− n|

max{m,n}2γ .

Furthermore,Y andZ(t) obey the assumptions formulated above.
ThenZ♦(t) defined in (17) isT -periodic, continuous in the strong sense, Hermitian, and

lies inY (r − 1, (i+ 1)γ). The norm ofZ♦ obeys the bound

‖Z♦‖r−1,(i+1)γ ≤ exp(4CrT ‖Z‖r,iγ)− 1

2Cr
(CH + 4‖Y ‖∞,γ + 2Cr‖Z‖r,iγ) , (18)

with the constantCr defined in (8). The operator-valued functioneiF (t) is C1 in the strong
sense. Moreover, ifZ(t) isC1 in the strong sense then the same is true forZ♦(t).
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Proof. The periodicity and the differentiability are clear from the above discussion. The
RHS of (17) can be expanded according to the formula

eABe−A = B +

∞
∑

j=1

1

j!
adj

A(B).

Here we use the notationadA(B) := [A,B] = AB −BA. SinceadF (t)D = iḞ (t) = iZ̃(t)
we get

Z♦(t) =
∞
∑

j=1

ij

j!
ad j−1

F (t)

(

iZ̃(t) + [F (t), H + Y + Z(t)]
)

+ Z̃(t)

=

∞
∑

j=1

ij

j!
ad j−1

F (t)X(t) (19)

where

X(t) := adF (t)

(

H + Y + Z(t)− 1

j + 1
Z̃(t)

)

= adF (t)

(

H + Y +
j

j + 1
Z(t) +

1

j + 1
Z̄

)

.

By Lemma 2,adF (t)H ∈ Y(r − 1, (i+ 1)γ), and according to Corollary 4, the same holds
true for adF (t) Z(t) andadF (t) Z̄. Notice also that‖Z̄‖p,δ ≤ ‖Z‖p,δ. Furthermore, since
Y ∈ Y(∞, γ) is diagonal we have

〈m− n〉r−1max{m,n}2(i+1)γ‖(F (t)Y )m,n‖

≤ 1

〈m− n〉

(

max{m,n}
n

)2γ

n2γ‖F‖r,iγ‖Yn,n‖ ≤ 22γ‖F‖r,iγ‖Y ‖∞,γ.

Hence‖F (t)Y ‖r−1,(i+1)γ ≤ 2‖F‖r,iγ‖Y ‖∞,γ. The same estimate is true for‖Y F (t)‖r−1,(i+1)γ

and therefore‖ adF Y ‖r−1,(i+1)γ ≤ 4‖F‖r,iγ‖Y ‖∞,γ. We conclude thatX(t) belongs to
Y(r − 1, (i+ 1)γ) and

‖X‖r−1,(i+1)γ ≤ ‖F‖r,iγ (CH + 4‖Y ‖∞,γ + 2Cr‖Z‖r,iγ) . (20)

Recalling Corollary 4 once more we have

Y(r − 1, (i+ 1)γ)Y(r, iγ), Y(r, iγ)Y(r − 1, (i+ 1)γ) ⊂ Y(r − 1, (i+ 1)γ)

and soad j−1
F (t)X(t) lies inY(r − 1, (i+ 1)γ) as well and

‖ ad j−1
F X‖r−1,(i+1)γ ≤ (2Cr‖F‖r,iγ)j−1 ‖X‖r−1,(i+1)γ . (21)

Consequently, the series (19) converges in the Banach spaceY (r − 1, (i+ 1)γ). To derive
inequality (18) from (20) and (21) one applies the estimate‖F‖r,iγ ≤ 2T‖Z‖r,iγ which
immediately follows from the definition ofF (t) andZ̃(t). This completes the proof.

Remark 12. The proposition holds also true fori = 0 provided[Z(t), Z(s)] = 0 for every
t, s. In this caseF (t) commutes withZ(t) and Z̄, and the formula (19) holds true with
X(t) = adF (t)(H + Y ). Repeating the steps from the proof of the proposition one arrives
at the inequality

‖Z♦‖r−1,(i+1)γ ≤ exp(4CrT ‖Z‖r,iγ)− 1

2Cr

(CH + 2‖Y ‖∞,γ).
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5 The diagonalization procedure

5.1 Formulation of the result

The main result of this section is formulated in the following proposition.

Proposition 13. Let i ≥ 1 be a natural number,γ ∈ ]0, 1
2
[ , andH be a self-adjoint operator

with a pure point spectrum and the spectral decompositionH =
∑

nEnPn. Assume that
the eigen-values{En}∞n=1 are ordered increasingly and satisfy the inequality

|Em −En| ≥ cH
|m− n|

max{m,n}2γ . (22)

Let Y ∈ Y(∞, γ) be Hermitian and commuting withH. Suppose that̄Z is Hermitian and
belongs to the classY(r, iγ) for somer > 2. Finally, assume that

‖Y ‖∞,γ + ‖Z̄‖r,iγ ≤ cH
4π Cr+1

, (23)

with the constantCr+1 given by (8).
Then there existsU , a unitary operator onH , such that

U(H + Y + Z̄)U∗ = H + A (24)

whereA ∈ Y(∞, γ) commutes withH and obeys

‖A‖∞,γ ≤ 2
(

‖Y ‖∞,γ + ‖Z̄‖r,iγ
)

. (25)

Moreover, for every operatorX ∈ Y(r − 1, (i+ 1)γ) it holds

‖UXU∗‖r−1,(i+1)γ ≤ exp

(

2
Cr

Cr+1

)

‖X‖r−1,(i+1)γ . (26)

SinceU does not depend on time this result can be interpreted in the following way.

Corollary 14. Let us consider a Floquet Hamiltonian of the form

K♦ = D +H + Y + Z̄ + Z♦(t)

whereH, Y andZ̄ obey the same assumptions as in Proposition 13, withr > 2 andi ≥ 1,
andZ♦(t) ∈ Y (r − 1, (i+ 1)γ) is T -periodic, continuously differentiable in the strong
sense and Hermitian.

Then there exists a unitary operatorU on H such that for the transformed Floquet
Hamiltonian

K♥ := UK♦U
∗ = D +H + A+B(t)

it holds:A ∈ Y(∞, γ) commutes withH and fulfills (25),

B(t) := UZ♦(t)U
∗ ∈ Y(r − 1, (i+ 1)γ)

is T -periodic, continuously differentiable in the strong sense, Hermitian and satisfies

‖B‖r−1,(i+1)γ ≤ exp

(

2
Cr

Cr+1

)

‖Z♦‖r−1,(i+1)γ .

The proof of Proposition 13 is a modification (to the case of shrinking gaps) of a diago-
nalization procedure introduced in [13] and conventionally called the progressive diagonal-
ization method.
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5.2 The algorithm

The diagonalization procedure is constructed iteratively, let us first describe the algorithm.
Starting fromH + Y + Z̄ we construct the first 4-tuple of operators

U0 := 1, G1 := Y + diag Z̄, V1 := offdiag Z̄, H1 := H +G1 + V1,

where
diagX :=

∑

n∈N

PnXPn, offdiagX :=
∑

m6=n

PmXPn

denote the diagonal and the off diagonal part of the matrix ofan operatorX with respect to
the eigen-basis ofH. We define recursively a sequence of operatorsHs,Gs, Vs,Ws andUs

by the following rules: providedGs andVs have been already defined letWs be the solution
of

[H +Gs,Ws] = Vs and diagWs = 0. (27)

We define
Hs+1 := eWsHse

−Ws. (28)

Finally, we set

Us := eWsUs−1, Gs+1 := diagHs+1 −H, Vs+1 := offdiagHs+1. (29)

SinceHs = H +Gs + Vs for all s and with the aid of (27) one derives from (28) that

Hs+1 = Hs +

∞
∑

k=1

1

k!
ad k−1

Ws
[Ws, Hs] = H +Gs + Vs +

∞
∑

k=1

1

k!
adk−1

Ws
(−Vs + [Ws, Vs])

= H +Gs + Φ(adWs
)Vs (30)

where

Φ(x) :=
∞
∑

k=1

k

(k + 1)!
xk = ex − 1

x
(ex − 1) (31)

Observe also that in the course of the algorithm,Gs is always diagonal (commuting with
H) and symmetric,Vs is symmetric and off diagonal,Ws is antisymmetric and off diagonal.
ThereforeeWs andUs are unitary. It is straightforward to prove by induction that for every
s = 1, 2, . . .,

H +Gs+1 + Vs+1 = Us(H + Y + Z̄)U∗
s . (32)

5.3 Auxiliary facts

To solve the commutator equation (27) we need the following result taken from a paper by
Bhatia and Rosenthal.

Lemma 15([6]). LetE andF be two Hilbert spaces. LetA andB be Hermitian operators
(i.e., bounded and self-adjoint) onE andF , respectively, such thatdist(σ(A), σ(B)) > 0.
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Then for every bounded operatorY : F → E there exists a unique bounded operator
X : F → E such that

AX −XB = Y.

Moreover, the inequality

‖X‖ ≤ π

2 dist(σ(A), σ(B))
‖Y ‖,

holds true.

Remark. The solutionX is given by

X =

∫

R

e−itAY eitBf(t) dt

for any f ∈ L1(R) such that its Fourier image obeyŝf(s) = 1/
√
2πs on the set

σ(A) − σ(B). This implies‖X‖ ≤ ‖f‖1‖Y ‖, and optimizing over suchf one gets the
constantπ/2.

In the algorithm plays a certain role the functionΦ(x) introduced in (31). It is supposed
to be defined on the interval[0,∞[. Let us point out here some of its elementary properties.
This is a strictly increasing function mapping the interval[0,∞[ onto itself. It holdsΦ(0) =
0, Φ(1) = 1, and so the function maps also the interval]0, 1[ onto itself. Moreover,Φ(x) is
a convex function and so

∀x ∈ ]0, 1[, Φ(x) < x. (33)

Further, let us consider a sequence{xs}∞s=1 formed by nonnegative numbers obeying the
inequalities

∀s ∈ N, xs+1 ≤ Φ(xs)xs. (34)

If x1 < 1 then the sequence is non-increasing and (33), (34) imply that xs+1 ≤ x 2
s . It

follows that
∀s ∈ N, xs ≤ x 2s−1

1 ,

and
∞
∑

s=1

xs ≤
x1

1− x1
<∞. (35)

5.4 Convergence of the algorithm

Proof of Proposition 13.We have to prove thatVs → 0, Gs → A andUs → U . The key
ingredient of the algorithm is the control of the size ofWs given as the off diagonal solution
to the commutator equation (27). For everym 6= n we seekWs(m,n) such that

(Em + (Gs)m,m) (Ws)m,n − (Ws)m,n (En + (Gs)n,n) = (Vs)m,n.

Suppose for the moment thatGs lies inY(∞, γ) for everys ∈ N with

‖Gs‖∞,γ ≤ cH
6
. (36)
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The norm‖ · ‖∞,γ makes sense in this case sinceGs is diagonal for everys ∈ N. The
spectrum ofEn + (Gs)n,n is a subset of the interval

[

En −
‖Gs‖∞,γ

n2γ
, En +

‖Gs‖∞,γ

n2γ

]

.

Owing to (22) the distance between the spectrum ofEm + (Gs)m,m andEn + (Gs)n,n can
be estimated from below by

|Em −En| − ‖Gs‖∞,γ

(

m−2γ + n−2γ
)

≥ cH
|m− n|

max{m,n}2γ − cH
6
(m−2γ + n−2γ)

≥ cH |m− n|
2max{m,n}2γ . (37)

The last inequality in (37) is a consequence of the followingestimate where we assume for
definiteness thatm > n (recall that2γ < 1):

3(m− n)

m2γ
≥ m−2γ +

m

n
m−2γ ≥ m−2γ + n−2γ .

Applying Lemma 15 we conclude that

‖(Ws)m,n‖ ≤ πmax{m,n}2γ
cH |m− n| ‖(Vs)m,n‖. (38)

Set

M :=
cH

2πCr+1

, xs :=
‖Vs‖r,iγ
M

, (39)

If Vs lies in the classY(r, iγ) then one derives from (38) thatWs ∈ Y(r + 1, (i− 1)γ) and

‖Ws‖r+1,(i−1)γ ≤ π

cH
‖Vs‖r,iγ =

xs
2Cr+1

. (40)

From Corollary 4 it follows thatad k
Ws
Vs ∈ Y(r, iγ) and

‖ adk
Ws
Vs‖r,iγ ≤

(

2Cr+1‖Ws‖r+1,(i−1)γ

)k ‖Vs‖r,iγ ≤ x k
s ‖Vs‖r,iγ, (41)

SinceVs+1 is defined as the off diagonal part ofHs+1 we get from (30) and (41) that

Vs+1 = offdiag(Φ(adWs
)Vs) .

and so
‖Vs+1‖r,iγ ≤ Φ(xs)‖Vs‖r,iγ.

Hence the sequence{xs} defined in (39) fulfills inequalities (34).
Since‖V1‖r,iγ ≤ ‖Z̄‖r,iγ assumption (23) impliesx1 ≤ 1/2. We know from the discus-

sion at the end of Subsection 5.3 that in that case the series
∑

xs is convergent. It follows
that‖Vs‖r,iγ → 0 and, using the estimate

‖Ws‖ ≤ ‖Ws‖SH ≤ (1 + 2ζ(r + 1)) ‖Ws‖r+1,(i−1)γ
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and (40), also thatUs converges to a unitary operatorU in B(H ). Furthermore, from (30)
and (29) one deduces that

Gs+1 −Gs = diag(Φ(adWs
)Vs) .

SinceGs is diagonal andi ≥ 1 we have

‖Gs+1 −Gs‖∞,γ = ‖Gs+1 −Gs‖r,γ ≤ ‖Gs+1 −Gs‖r,iγ ≤ ‖Φ(adWs
)Vs‖r,iγ.

Using once more (40) and (41) one finds that

‖Gs+1 −Gs‖ = ‖Gs+1 −Gs‖∞,0 ≤ ‖Gs+1 −Gs‖∞,γ ≤MΦ(xs)xs. (42)

From here one concludes that{Gs} is a Cauchy sequence both inY(∞, γ) andB(H ).
HenceGs converges to a diagonal operatorA which lies inY(∞, γ).

We must verify that condition (36) is actually fulfilled. Observe from (8) thatCp > 23 ·3
if p > 2. By the assumptions,

‖G1‖∞,γ ≤ ‖Y ‖∞,γ + ‖Z̄‖r,iγ <
cH
12
.

Furthermore, from (42) it follows that

‖Gs+1‖∞,γ ≤ ‖G1‖∞,γ +

s
∑

j=1

‖Gs+1 −Gs‖∞,γ ≤ cH
12

+M

∞
∑

j=1

xjΦ(xj). (43)

Recalling thatx1 ≤ 1/2 one gets

M

∞
∑

j=1

xjΦ(xj) ≤
Mx 2

1

1− x1
≤Mx1 ≤ ‖Z̄‖r,iγ <

cH
12
. (44)

The last inequality is again a consequence of assumption (23). One concludes that condition
(36) is fulfilled for all s.

Since all operators occurring in (32) except ofH are bounded one deduces from this
equality thatUs preserves the domain ofH for all s. SinceH is a closed operator the limit
in equality (32), ass→ ∞, can be carried out and results in equality (24).

From the computations in (43), (44) it also follows that

‖Gs+1‖∞,γ ≤ ‖G1‖∞,γ +Mx1 = ‖G1‖∞,γ + ‖V1‖r,iγ ≤ ‖Y ‖∞,γ + 2‖Z̄‖r,iγ.

Sendings to infinity one verifies the estimate (25). Furthermore, estimate (40) implies

∞
∑

s=1

‖Ws‖r+1,(i−1)γ ≤ 1

2Cr+1

∞
∑

s=1

xs ≤
x1

2Cr+1(1− x1)
≤ 1

2Cr+1
.

From Corollary 4 we deduce that the operatoradWs
is well defined on the Banach space

Y(r − 1, (i + 1)γ), with a norm bounded from above by4Cr‖Ws‖r+1,(i−1)γ . Thus for
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X ∈ Y(r − 1, (i+ 1)γ) one can estimate

‖UXU∗‖r−1,(i+1)γ = lim
s→∞

‖eWseWs−1 · · · eW1Xe−W1 · · · e−Ws−1e−Ws‖r−1,(i+1)γ

≤ exp

(

4Cr

∞
∑

s=1

‖Ws‖r+1,(i−1)γ

)

‖X‖r−1,(i+1)γ

≤ exp

(

2
Cr

Cr+1

)

‖X‖r−1,(i+1)γ.

This shows (26). The proof is complete.

6 Proof of Theorem 8

As already announced, the proof of Theorem 8 is based on a combination of the anti-
adiabatic transform (Proposition 11) and the progressive diagonalization method (Corol-
lary 14). Let us formulate it as a corollary.

Corollary 16. Let r > 2, i ≥ 1, γ ∈ ]0, 1
2
[ , andH be a self-adjoint operator with a pure

point spectrum and the spectral decompositionH =
∑

nEnPn. Assume that the eigen-
values{En}∞n=1 are ordered increasingly and satisfy (1). Further assume thatY ∈ Y(∞, γ)
is Hermitian and commutes withH, andZ(t) ∈ Y(r, iγ) is Hermitian,T -periodic andC1

in the strong sense. If

‖Y ‖∞,γ + ‖Z‖r,iγ ≤ cH
4π Cr+1

then there exists a familyU(t) of unitary operators onH which isT -periodic andC1 in
the strong sense and such that

U(t) (D +H + Y + Z(t))U(t)∗ = D +H + A+B(t)

whereA ∈ Y(∞, γ) is Hermitian, commutes withH and fulfills

‖A‖∞,γ ≤ 2 (‖Y ‖∞,γ + ‖Z‖r,iγ) ,

andB(t) ∈ Y(r − 1, (i+ 1)γ) is T -periodic, Hermitian, continuously differentiable in the
strong sense and satisfies

‖B‖r−1,(i+1)γ ≤ 1

2Cr

exp

(

2
Cr

Cr+1

)

×
(

exp(4CrT ‖Z‖r,iγ)− 1
)

(CH + 4‖Y ‖∞,γ + 2Cr‖Z‖r,iγ) .

To prove Corollary 16 it suffices to setU(t) = U exp(iF (t)) whereF (t) comes from
Proposition 11 andU comes from Corollary 14. Apart of this one applies the following
elementary estimate: if the norm‖X‖p,δ of a T -periodic familyX(t) formed by bounded
operators is finite for somep > 1 andδ ≥ 0 then the time averagēX of X(t) over the
periodT fulfills ‖X̄‖p,δ ≤ ‖X‖p,δ.

Equipped with Corollary 16 we are ready to approach the proofof Theorem 8.
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Proof of Theorem 8.One starts from the Floquet HamiltonianK = D + H + V (t) and
applies to itq times Corollary 16, with the steps being enumerated byi = 1, 2, . . . , q. In
the ith step one assumes that a strongly continuous functionJi−1(t) with values in unitary
operators onH has been already constructed so that

K = Ji−1(t) (D +H + Ai−1 +Bi−1(t)) Ji−1(t)
∗,

with Ai−1 ∈ Y(∞, γ) being Hermitian and commuting withH, and Bi−1(t) ∈
Y(p − i + 1, iγ) being symmetric,T -periodic andC1 in the strong sense. In the first step
one setsA0 := 0, B0(t) := V (t) andJ0(t) := 1.

Corollary 16 can be applied to the Floquet HamiltonianKi−1 := D+H+Ai−1+Bi−1(t),
with r = p− i+ 1, provided there is satisfied the assumption

‖Ai−1‖∞,γ + ‖Bi−1‖p−i+1,iγ ≤ cH
4πCp−i+2

. (45)

Recall that the constantCp is given by (8). Under this assumption, there exists a strongly
differentiable family of unitary operatorsUi(t) such that

Ki := D +H + Ai +Bi(t) = Ui(t)Ki−1 Ui(t)
∗

whereAi ∈ Y(∞, γ) is symmetric and diagonal, andBi(t) ∈ Y(p − i, (i + 1)γ) is T -
periodic, symmetric and stronglyC1. Moreover,

‖Ai‖∞,γ ≤ 2 (‖Ai−1‖∞,γ + ‖Bi−1‖p−i+1,iγ) (46)

and

‖Bi‖p−i,(i+1)γ ≤ 1

2Cp−i+1
exp

(

2
Cp−i+1

Cp−i+2

)

(

exp(4Cp−i+1T ‖Bi−1‖p−i+1,iγ)− 1
)

× (CH + 4‖Ai−1‖∞,γ + 2Cp−i+1‖Bi−1‖p−i+1,iγ) . (47)

Finally,Ji(t) := Ji−1(t)Ui(t)
∗ is a family of unitary operators which is continuously differ-

entiable in the strong sense and such that

K = Ji(t) (D +H + Ai +Bi(t)) Ji(t)
∗.

To finish the proof we have to chooseε > 0 sufficiently small so that if‖V ‖p,γ < ε then
condition (45) is satisfied in each stepi = 1, 2, . . . , q.

From (46) one derives by induction

‖Ai‖∞,γ ≤
i−1
∑

j=0

2i−j‖Bj‖p−j,(j+1)γ.

From here we deduce that inequalities (45) are satisfied fori = 1, 2, . . . , k, provided the
inequalities

i−1
∑

j=0

2i−1−j‖Bj‖p−j,(j+1)γ ≤
cH

4πCp−i+2

(48)
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are satisfied for the same range of indices. Furthermore, relations (45) and (47) imply that

‖Bi‖p−i,(i+1)γ ≤ φi(‖Bi−1‖p−i+1,iγ) (49)

where

φi(y) :=
exp
(

2
Cp−i+1

Cp−i+2

)

2Cp−i+1

(

exp(4Cp−i+1T y)− 1
)

(

CH +
cH

πCp−i+2
+ (2Cp−i+1 − 4)y

)

.

Set

Fi(y) := 2i−1y +
i−1
∑

j=1

2i−1−jφj ◦ φj−1 ◦ · · · ◦ φ1(y), i = 1, 2, . . . , q.

It follows from (49) that inequalities (48) are satisfied fori = 1, 2, . . . , k, if it holds

Fi(‖B0‖p,γ) ≤
cH

4πCp−i+2

for the same range of indices.
Recall thatB0(t) = V (t). From this discussion it is clear that condition (45) is satisfied

in all stepsi = 1, 2, . . . , q, provided‖V ‖p,γ ≤ ε andε > 0 is chosen so that

∀i ∈ {1, 2, . . . , q}, ∀y ∈ [0, ε ], Fi(y) ≤
cH

4πCp−i+2
.

But all functionsφi(y) are continuous, strictly increasing and satisfyφi(0) = 0. Conse-
quently, the same is true for all functionsFi(y). Hence the following choice ofε will do:

ε = min

{

F −1
i

(

cH
4πCp−i+2

)

; 1 ≤ i ≤ q

}

.

This completes the proof of Theorem 8.
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50 (1989) 325-334.

[20] Howland J. S.,Floquet operators with singular spectrum, III, Ann. Inst. H. Poincaré,
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H. Poincaré A67 (1997) 411-424.

[28] de Oliveira C. R.,Some remarks concerning stability for nonstationary quantum sys-
tems, J. Stat. Phys.78 (1995) 1055-1065.

[29] de Oliveira C. R., Simsen M. S.,A Floquet operator with pure point spectrum and
energy instability, Ann. Inst. H. Poincaré, to appear.
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