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We show in this paper by using the Wang-Landau flat-histogram Monte Carlo

method that the phase transition in the XY stacked triangular antiferromagnet is

clearly of first-order, confirming results from latest Monte Carlo simulation and

from a nonperturbative renormalization group, putting an end to a long-standing

controversial issue.

PACS numbers: 75.10.-b General theory and models of magnetic ordering ; 75.40.Mg Nu-

merical simulation studies

I. INTRODUCTION

Effects of the frustration in spin systems have been extensively investigated during the

last 30 years. Frustrated spin systems are shown to have unusual properties such as large

ground state (GS) degeneracy, additional GS symmetries, successive phase transitions with

complicated nature. Frustrated systems still challenge theoretical and experimental meth-

ods. For recent reviews, the reader is referred to Ref. 1.

Let us confine our discussion on the nature of the phase transition in strongly frustrated

spin systems. Since the nature of the phase transition depends on the symmetry and the

dimension of the system, we have to examine first its GS properties. Of course, the nature
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of the order parameter defined according to the system symmetry determines the properties

of the phase transition. One of the most studied systems is the stacked triangular anti-

ferromagnet (STA): the antiferromagnetic (AF) interaction between nearest-neighbor (NN)

spins on the triangular lattice causes a very strong frustration. It is impossible1 to fully

satisfy simultaneously the three AF bond interactions on each equilateral triangle. The GS

configuration of both Heisenberg and XY models is the well-known 120-degree structure.

The phase transition in strongly frustrated spin systems is a subject of intensive inves-

tigations in the last 20 years. Theoretically, these systems are excellent testing grounds

for theories and approximations. Many well-established methods such as renormalization

group (RG), high- and low-temperature series expansions etc often failed to deal with these

systems. Experimentally, data on different frustrated systems show a variety of possibilities:

first-order or second-order transitions with unknown critical exponents etc. (see reviews in

Ref. 1). The case of XY and Heisenberg spins on the STA has been intensively studied

mostly since 1987. There are good recent reviews on the subject (see for example reviews by

Delamotte et al2). Let us briefly recall here some main historical developments and actual

situation. In the XY and Heisenberg cases, different materials give different experimental re-

sults. The anomalous dimension is found negative in many materials and in most numerical

simulations, the scaling relations are violated and no universality in the exponents was found

in early simulations. This situation is briefly described in the following. Kawamura3,4 has

conjectured by the two-loop RG analysis in d = 3 the existence of a new universality class

for frustrated magnets. Since then there have been many other perturbative calculations

with contradictory results.5,6 From 2000, there has been a number of papers by Tessier and

coworkers 7,8,9 using a nonperturbative RG study of frustrated magnets for any dimension

between two and four. They recovered all known perturbative results at one loop in two

and four dimensions as well as for N → ∞. They determined Nc(d) for all d and found

Nc(d = 3) = 5.1 below which the transition is of first order. However, they found the exis-

tence of a whole region in the flow diagram in which the flow is slow. As a consequence, for

N = 2, 3, they found pseudo-critical exponents in good agreement with some experimental

data. This allowed them to account for the nonuniversal scaling observed in XY and Heisen-

berg frustrated magnets. The only problem in this nonperturbative technique is that the

Hamiltonian is truncated at the beginning. Giving this fact, we have to be careful about

its conclusion. As will be seen in this paper, the nonperturbative results are so far well
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confirmed. Early MC results on XY STA have been reviewed by Loison.10 Until 2003, all

numerical simulations found ambiguous results for this model and never a clear first-order

transition. A numerical breakthrough has been realized with the results of Itakura11 who

used an improved MC renormalization-group scheme to numerically investigate the renor-

malization group flow of the Heisenberg and XY STA and its effective Hamiltonian which

is used in the field-theoretical studies. He found that the XY STA exhibits clear first-order

behavior and there are no chiral fixed points of renormalization-group flow for N=2 and 3

cases. In 2004, Peles et al12 have used a continuous model to study the XY STA by MC

simulation. They found evidence of a first-order transition. In 2006, Kanki et al13, using a

microcanonical MC method, have found a first-order signature of the XY STA. While these

recent simulations have demontrated evidence of first-order transition for the XY STA in

agreement with the nonperturbative RG analysis, all of them suffer one or two uncertain

aspects: the work of Itakura has used a truncated Hamiltonian, the work of Peles et al has

used standard MC methods and the work of Kanki et al used a traditional microcanonical

MC technique. At present, we have a very high-performance technique at hand for weak

first-order transitions. This is a very good opportunity to test it on the XY STA and to say a

last word on the nature of the phase transition of this system by using the full Hamiltonian,

confirming or rejecting the nonperturbative RG and recent MC results. That is the purpose

of this work.

We study again here the XY STA with high-resolution MC technique which is very

efficient specially for weak first-order transition.14 Our aim is to try to put an end to the

controversy which has been lasting for 20 years. We will recall some important numerical

results in the next section.

The paper is organized as follows. Section II is devoted to the description of the model

and technical details of the Wang-Landau (WL) methods as applied in the present paper.

Section III shows our results. Concluding remarks are given in section IV.

II. MONTE CARLO SIMULATION: WANG-LANDAU ALGORITHM

We consider the stacking of triangular lattices in the z direction. The spins are the

classical XY model of magnitude S = 1. The Hamiltonian is given by
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H = J
∑

〈i,j〉

Si · Sj + J ′
∑

〈i,k〉

Si · Sk (1)

where Si is the XY spin at the lattice site i,
∑

〈i,j〉 indicates the sum over the NN spin pairs

Si and Sj in a xy triangular plane, while
∑

〈i,k〉 indicates that of NN spin pairs between

adjacent planes. J and J ′ are in-plane and inter-plane interactions, respectively. We shall

suppose that J = 1 (antiferromagnetic) and J ′ = −1 (ferromagnetic) in the following.

Recently, Wang and Landau14 proposed a Monte Carlo algorithm for classical statistical

models. The algorithm uses a random walk in energy space in order to obtained an accurate

estimate for the density of states g(E). This method is based on the fact that a flat energy

histogram H(E) is produced if the probability for the transition to a state of energy E is

proportional to g(E)−1.

At the beginning of the simulation, the density of states (DOS) is set equal to one for

all energies, g(E) = 1. In general, if E and E ′ are the energies before and after a spin is

flipped, the transition probability from E to E ′ is

p(E → E ′) = min [g(E)/g(E ′), 1] . (2)

Each time an energy level E is visited, the DOS is modified by a modification factor

f > 0 whether the spin flipped or not, i.e. g(E) → g(E)f . In the beginning of the random

walk the modification factor f can be as large as e1 ≃ 2.7182818. A histogram H(E) records

how often a state of energy E is visited. Each time the energy histogram satisfies a certain

”flatness” criterion, f is reduced according to f →
√

f and H(E) is reset to zero for all

energies. The reduction process of the modification factor f is repeated several times until

a final value ffinal which close enough to one. The histogram is considered as flat if

H(E) ≥ x%.〈H(E)〉 (3)

for all energies, where the flatness parameter 0% < x% < 100% controls the accuracy of the

estimated g(E), with increasing accuracy as x% approaches unity. 〈H(E)〉 is the average

histogram.

Thermodynamic quantities14,15 can be evaluated using the canonical distribution at any

temperature T by P (E, T ) = g(E) exp(−E/kBT )/Z where Z is the partition function de-

fined by Z =
∑

E g(E) exp(−E/kBT ).
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In this work, we consider a energy range of interest16,17 (Emin, Emax). We divide this

energy range to R subintervals, the minimum energy of each subinterval is Ei
min for i =

1, 2, ..., R, and maximum of the subinterval i is Ei
max = Ei+1

min+2∆E, where ∆E can be chosen

large enough for a smooth boundary between two subintervals. The Wang-Landau algorithm

is used to calculate the relative DOS of each subinterval (Ei
min, E

i
max) with the modification

factor ffinal = exp(10−9) and flatness criterion x% = 95%. We reject the suggested spin flip

and do not update g(E) and the energy histogram H(E) of the current energy level E if the

spin-flip trial would result in an energy outside the energy segment. The DOS of the whole

range is obtained by joining the DOS of each subinterval (Ei
min + ∆E, Ei

max − ∆E).

III. RESULTS

We used the system size of N × N × N where N =

12, 18, 24, 30, 36, 48, 60, 72, 84, 90, 96, 108, 120. Periodic boundary conditions are used

in the three directions. |J | = 1 is taken as unit of energy in the following.

The energy histograms for two representative sizes N = 48 and N = 120 are shown in

Figs. 1 and 2, respectively. As seen, for N = 48, the peak, though very large, does not show

yet a double-maximum structure. Only from N = 90 that the double-peak structure clearly

appears. This is a sufficient condition, not a necessary condition, for a first-order transition.

We give here the values of Tc for a few sizes: Tc = 1.458270, 1.457878, 1.457642, 1.457537

for N = 48, 84, 96, 120, respectively. Note that this result is in excellent agreement with

earlier MC simulations11,12,13 using less sophisticated methods. To explain why standard

MC methods without histogram monitoring (see for example Ref. 3) fail to see the first

order character, let us show in Fig. 3 the energy vs T obtained by averaging over states

obtained by the WL method for N = 120. We see here that even at this big size, the average

energy does not show a discontinuity as in a strong first-order transition: the averaging over

all states erases away the bimodal distribution seen in the energy histogram at the transition

temperature. Therefore care should be taken to avoid such problems due to averaging in

MC simulations. We note that the distance between to peaks in Fig. 2, i. e. the latent

heat, is ≃ 0.009 in agreement with earlier works.11,12,13
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FIG. 1: Energy histograms for N = 48 at Tc indicated on the figure.
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FIG. 2: Energy histograms for N = 84, 96, 120 at Tc indicated on the figure.

IV. CONCLUDING REMARKS

We have studied in this paper the phase transition in the XY STA by using the flat

histogram technique invented by Wang and Landau. The method is very efficient because

it helps to overcome extremely long transition time between energy valleys in systems with

a possible first-order phase transition. We found that the transition is clearly of first-order

confirming therefore recent MC results using less efficient techniques. These results put
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FIG. 3: Energy vs T for N = 120.
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definitely an end to the 20-year long controversy and lend support to nonperturbative RG

calculations using an effective average Hamiltonian.
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