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Based on the fact that any heavy tailed distribution can be approximated by a possibly infinite mixture of Pareto distributions, this paper proposes two Bayesian methodologies tailored to infer on distribution tails belonging to the Fréchet domain of attraction. Firstly, a Bayesian Pareto based clustering procedure is developed, where the mixing distribution is chosen to be the classical conjugate prior of the Pareto distribution. This allows the grouping of n objects into a certain number of clusters according to their extremal behavior and also exhibits a new estimator for the tail index. Secondly, a nonparametric extension of the model based clustering is proposed in which the parameter of interest is the mixing distribution. Estimation of the tail probability is conducted using a Dirichlet process prior for the unknown mixing distribution. To illustrate, both methodologies are applied to simulated data sets and a true data set concerning dietary exposure to a mycotoxin called Ochratoxin A.

Introduction

In the food risk analysis field, it is accepted that dietary exposure to a contaminant is heavy tailed or at least assumed to be from a conservative perspective, see [START_REF] Tressou | Probabilistic exposure assessment to food chemicals based on extreme value theory. application to heavy metals from fish and sea products[END_REF]. Indeed, dietary exposure to a given contaminant is defined as the quantity of the contaminant one individual ingests when he consumes foods that are more or less naturally contaminated. Different consumption behaviors yield different levels of exposure which may present a health risk if those levels are too high. One particular contaminant is generally present in more that one food so that different consumption behaviors can yield a high exposure. In a given population, different risk levels exist and clustering may be a powerful tool to describe that population. Yet, we can not say a priori how many clusters there are and we would like to define the similarity between individuals based on their extremal behavior. Food safety is now a crucial public health concern in many countries (for example, it is one of the thematic top priorities of the 7th European Research Framework program, see http://ec.europa.eu/research/fp7/). This topic naturally interfaces with various disciplines, such as biology, nutritional medicine, toxicology, and of course applied mathematics with the aim of developing rigorous methods for quantitative risk assessment. Scientific literature devoted to probabilistic and statistical methods for the study of dietary exposure to food contaminants is progressively carving out a place in applied probability and statistics journals (see [START_REF] Bertail | A storage model with random release rate for modeling exposure to food contaminants[END_REF][START_REF] Van Der | A probabilistic model for simultaneous exposure to multiple compounds from food and its use for risk-benefit assessment[END_REF][START_REF] Tressou | Non parametric modelling of the left censorship of analytical data in food risk exposure assessment[END_REF][START_REF] Bertail | Incomplete generalized U-Statistics for food risk assessment[END_REF][START_REF] Edler | Mathematical modelling and quantitative methods[END_REF][START_REF] Gibney | Introduction to the Monte Carlo project and the approach to the validation of probabilistic models of dietary exposure to selected food chemicals[END_REF][START_REF] Gauchi | Quantitative assessment of exposure to the mycotoxin Ochratoxin A in food[END_REF].

The main idea of this paper is that heavy tailed distributions can be represented as mixtures of Pareto distributions so that most, if not all, heavy tailed distribution can be expressed as a (possibly infinite) mixture of Pareto distributions, where the mixing occurs on both parameters of the Pareto distributions. Two bayesian methodologies are thus proposed to estimate the different components of this mixture: a Bayesian model-based clustering approach [START_REF] Fraley | Model-based clustering, discriminant analysis, and density estimation[END_REF] and a Bayesian nonparametric mixture approach [START_REF] Petrone | A note on the Dirichlet process prior in bayesian nonparametric inference with partial exchangeability[END_REF][START_REF] Green | Modelling heterogeneity with and without the Dirichlet process[END_REF], following ideas exposed in [START_REF] Lau | Advances in Statistical Modeling and Inference: Essays in Honor of Kjell A[END_REF]. For both approaches, the kernel is defined to be a Pareto distribution while most applications are realized with a Gaussian kernel [START_REF] Lau | Bayesian model based clustering procedures[END_REF][START_REF] Lau | Advances in Statistical Modeling and Inference: Essays in Honor of Kjell A[END_REF] since we are specifically interested in these mixtures to model heavy tailed distribution. In recent years, parametric and nonparametric Bayesian approaches have been developped for extreme value analysis [START_REF] Coles | Bayesian methods in extreme value modelling: A review and new developments[END_REF][START_REF] Frigessi | A dynamic mixture model for unsupervised tail estimation without threshold selection[END_REF][START_REF] Bottolo | Bayesian analysis of extreme values by mixture modeling[END_REF][START_REF] Stephenson | Bayesian inference for extremes: Accounting for the three extremal types[END_REF]Diebolt et al., 2005;[START_REF] Kottas | Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis[END_REF]. In this paper, estimators of the tail index and tail probability are derived from the posterior distribution. The tail index estimator is compared to a standard estimator (the Hill estimator).

The paper is organized as follows. Section 2 gives some background about Extreme Value Theory and emphasizes that heavy tailed distributions can be approximated by mixtures of Pareto distributions. Section 3 gives the general principle of Bayesian modelbased clustering as well as one MCMC algorithm to find the best partition (Gibbs WCR) and presents the Pareto-based clustering. Section 4 introduces two key results for the nonparametric extension of the model-based clustering and details the quantities one may infer when extremes are at stake. The last section is dedicated to the implementation of both methodologies on simulated data first, with empirical validation and understanding perspectives, and on data concerning the French population's exposure to Ochratoxin A (OTA) in a purely applied perspective.

2 Characterization of the maximum domain of attraction of the Fréchet distribution as a general mixture of Pareto distribution In Extreme Value Theory, one major breakthrough is the Fisher-Tippett theorem stating that there are only three possible limiting distributions for the properly normalized maximum: the Gumbel, the Weibull and the Fréchet distributions. These laws are called extreme value distributions and each one corresponds to a special tail behavior: the Gumbel distribution is related to light-tailed distribution such as normal, log-normal or exponential distributions; the Weibull distribution to finite support distributions such as the uniform distribution and the Fréchet distribution to heavy-tailed distributions such as Pareto, Cauchy or Student distributions. The latter one is of prime interest in the food risk analysis context since the distribution of exposure to a contaminant is often assumed to be heavy-tailed [START_REF] Tressou | Probabilistic exposure assessment to food chemicals based on extreme value theory. application to heavy metals from fish and sea products[END_REF].

The usual characterization of the Fréchet maximum domain of attraction(MDA) is the following [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF]. The tail probability can be written as

P (X > x) ∼ x→∞ Cx -α * L(x),
where C and α * are non negative constants and L(.) is a slowly varying function, that is, a function satisfying the condition

∀t > 0, lim x→∞ L(tx) L(x) = 1.
In this setting, the estimation of α * is crucial and has been studied a lot as α * -1 may be interpreted as a risk indicator. Indeed the higher the α * -1 , the higher the probability of exceeding a fixed level x. A well known estimator for α -1 is the Hill estimator based on the k largest observations of a sample [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF]. If X 1,n ≤ . . . ≤ X n,n denotes the order statistic associated to a sample (X 1 , . . . , X n ) then the Hill estimator is defined for k = 1, . . . , n -1 as

H k,n = 1 k k i=1 ln X n-i+1,n -ln X n-k,n .
The Hill estimator is obtained as the conditional maximum likelihood estimator in the exact Pareto model (L(x) = 1), given the number k of extreme values. This is very sensitive to the choice of k. Indeed, its bias increases with k while its variance decreases.

Several authors proposed bias correction using more or less explicit forms of the slowly varying function L, see for example [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF]; [START_REF] Feuerverger | Estimating a tail exponent by modelling departure from a Pareto Distribution[END_REF].

These slowly varying functions naturally appear when considering mixtures of Pareto distributions.

Let f α,τ and F α,τ denote the density and cumulative distribution function of the Pareto distribution with tail index parameter α and precision parameter τ , abbreviated by P(α, τ ), i.e.

1 -F α,τ (x) = (τ x) -α 1 (τ x>1) + 1 (τ x≤1) f α,τ (x) = ατ (τ x) -(α+1) 1 (τ x>1) , (1) 
where

1 (A) is the indicator function, equal to 1 if A is true, 0 otherwise.
If G is an unknown mixing distribution over the two dimensional parameter space

Θ 1 × Θ 2 ⊆ R 2 + , then the tail probability is P (X > x) = Θ 1 Θ 2 P (X > x|α, τ ) G(dα, dτ ) = Θ 1 Θ 2 [1 -F α,τ (x)] G(dα, dτ ). (2)
In the case of a discrete mixing distribution, if (α, τ ) = (α j , τ j ) with probability w j , j = 1, . . . , J, such that J j=1 w j = 1, and α 1 ≤ . . . ≤ α J , then

P (X > x) = J j=1 w j (τ j x) -α j 1 (τ j x>1) +1 (τ j x≤1) ∼ x→∞ Cx -α *   1 + J j=2 D j-1 x -β j-1   , (3) 
where α * = min j=1,...J α j (= α 1 ) and the (D j , β j ) and C are non negative constants such that β 1 ≤ . . . ≤ β J-1 . More precisely, C = w 1 (τ 1 ) -α 1 , and for j = 2, . . . , J,

β j-1 = α j -α 1 and D j-1 = w j (τ j ) -α j /w 1 (τ 1 ) -α 1 . The quantity L(x) = (1 + J j=2 D j-1 x -β j-1
) is a slowly varying function, meaning that any discrete mixture of Pareto distributions is of the Fréchet type. Moreover, a natural estimator of the tail index α is the minimum tail index parameter of the Pareto components of the mixture. This argument does not prove any relation between the Fréchet MDA and the set of all possibly infinite mixtures of Pareto distributions but advocates for an approximation of the Fréchet MDA with such mixtures.

3 Bayesian model based clustering

General principle

For statistical clustering of n objects, it is assumed that the numerical measurements, x = (x 1 , . . . , x n ), of the n objects have a joint model density given a certain partition of the n objects. Given a partition p = {C 1 , . . . , C n(p) } of the indices {1, . . . , n} of the n objects, the measurements of the objects are modeled by a classification likelihood that, given p, has a product form

f (x|p) = n(p) j=1 k(x i , i ∈ C j ),
where k(x i , i ∈ C j ) is the joint density of the measurements for objects in cluster C j , k(x i , i ∈ {1, . . . , n}) = k(x) being the joint density of the whole data x. Typically, in a Bayesian framework, these joint densities result from a former parametric inference in which, given an unknown parameter θ with prior distribution π 0 (θ)dθ, the x i are assumed to be i.i.d. from a model density f θ . Then k(x i , i ∈ C j ) is just the normalization constant of the posterior distribution of θ given the measurements of cluster C j , given by

k(x i , i ∈ C j ) = i∈C j f θ (x i )π 0 (θ)dθ.
Alternatively, they can be directly assigned to some chosen function of the x i , i ∈ C j that measures the homogeneity within the cluster, see [START_REF] Lau | Bayesian model based clustering procedures[END_REF] for more details. When the first option is retained, direct calculation of the k(x i , i ∈ C j ) is easily achievable if the prior for θ is chosen to be the conjugate prior for the model density f θ . Most applications of model-based clustering relate to the Normal model, where the conjugate prior is the Gamma-Normal distributio: this results in marginal t-densities for the k(x i , i ∈ C j ), see [START_REF] Lau | Advances in Statistical Modeling and Inference: Essays in Honor of Kjell A[END_REF] for a gene clustering application. In the present paper, we focus on the Pareto kernel as detailed in section 3.3.

As soon as the "classification likelihood" f (x|p) is chosen, the partition is the unknown parameter for which a prior-posterior analysis is required. A conjugate prior for p can be any distribution that has the product form, namely

π(p) ∝ n(p) j=1 g(C j ).
(4)

In this case, the posterior distribution of p given the data is also of the product form

π(p|x) ∝ n(p) j=1 g * (C j ), where g * (C j ) = g(C j ) × k(x i , i ∈ C j ).
Finally, an estimator of the optimal clustering is the one that maximizes the posterior distribution, which can be approximated by MCMC techniques (the usual Gibbs sampler is used in this paper and described in section 3.2). [START_REF] Lau | Bayesian model based clustering procedures[END_REF] also propose other estimators based on the minimization of loss functions.

For the prior choice, the only requirement is the product form given in (4) so that many prior distributions can be used. A very convenient one is the Chinese Restaurant Process with parameter e 0 , CRP(e 0 ), for which g(C j ) = e 0 × (e j -1)!, where e j is the size of cluster C j . The parameter e 0 can be interpreted as the expected number of clusters.

Implementation: Gibbs Weighed Chinese Restaurant Process

In this section, the Gibbs sampler used in the application is described for a CRP(e 0 )

prior distribution on partitions. This algorithm is precisely the computational strategy described for normal kernels in Eachern (1994) and more generally in Eachern (1998).

The first work on Gibbs sampling for such models is [START_REF] Escobar | estimating normal means with a dirichlet process prior[END_REF] (see also his 1988 dissertation). This is only one of several possible algorithms (see [START_REF] Lau | Advances in Statistical Modeling and Inference: Essays in Honor of Kjell A[END_REF][START_REF] Lau | Bayesian model based clustering procedures[END_REF][START_REF] Heard | Quantitative study of gene regulation involved in the immune response of anopheline mosquitoes: An application of bayesian hierarchical clustering of curves[END_REF][START_REF] Quintana | Bayesian clustering and product partition models[END_REF], and the references therein).

Algorithm 1 Choose an initial partition p 0 (the one with n clusters p 0 = {{1}, ..., {n}} is the default choice).

Then, repeat L + M times (L times for burn in / warm up and M times for estimation of any function h(p)) the following Gibbs cycle:

For i = 1, ...n, do • Remove {i} from the current partition p of {1, ..., n} to get a partition p (-i) of {1, ..., i -1, i + 1, ..., n} (n -1 elements)
• {i} is then assigned to the cluster j, j = 1, ..., n(p (-i) ) with probability proportional

to g * (C j ∪ {i}) g * (C j ) = e j × k(x l , l ∈ C j ∪ {i}) k(x l , l ∈ C j ) = e j × k(x i |x l , l ∈ C j ) (5)
and to a new one with probability proportional to e 0 × k(x i ).

The assignment of {n} completes a Gibbs cycle and the last partition is stored and used as the initial one in the next cycle.

The L + M + 1 partitions, p 0 , p 1 , ..., p L , p L+1 , ..., p L+M , are then used to compute estimators for quantities such as ξ = p π(p|x)h(p) or p * = arg max p π(p|x), namely

ξ M = 1 M L+M m=L+1 h(p m ), p * = arg max m=0,...,L+M π(p m |x).
As suggested during the review of this paper, a "polishing" stage can be added to this MCMC algorithm. This consists of adding extra deterministic cycles until a global fixed point is hit. In these cycles, observation {i} is deterministically assigned to the most likely cluster (including the new cluster) instead of being randomly assigned as it was in the Gibbs cycle.

Pareto-based clustering

In 

π 0 (α, τ ) ∝ α a-1 e -bα αd(dτ ) -(cα+1) 1 (dτ >1) (6) 
Straightforward computations yield the following marginal densities

k(x i , i ∈ C j ) = i∈C j f α,τ (x i )π 0 (α, τ )dαdτ =   i∈C j x i   -1 Γ a * j Γ (a) cb a c * j b * j a * j (7) with a * j = a+e j , c * j = c+e j , d * j = min d, min i∈C j x i , b * j = b+ i∈C j ln x i +c ln d-c * j ln d * j , (8) 
where e j is the size of cluster C j .

Then, the model driven part of so called seating probabilities of the Gibbs sampler (cf.

Eq. ( 5)) are such that

k(t|x i , i ∈ C j ) = (t -1 ) × c * j a * j b * j a * j (c * j + 1) b * j (t) a * j +1 , (9) 
where b * j (t) = b + i∈C j ln x i + ln t + c ln d -c * j + 1 ln min d * j , t . For this Pareto-based model, the optimal clustering determined as p * = arg max p π(p|x) allows us to characterize the studied objects in terms of extreme behavior. For example, in the food safety context, an analysis of the cluster composition would help food safety authorities to target their consumption recommendation campaigns at those most at risk. An interesting quantity to compute for the cluster description is the expected value of the tail index within each cluster E(α

| {x i , i ∈ C j }). Since the pos- terior marginal of α | {x i , i ∈ C j } is a Gamma distribution with parameters (a * j , b * j ), E(α | {x i , i ∈ C j }) = a * j /b * j .
Using the relationship between discrete mixtures of Pareto distributions and tail index estimation, given in Eq. ( 3) , an estimator of the "global" tail index α * can be derived given a partition p based on the fact that

α(p) = min j=1,...,n(p) E(α | {x i , i ∈ C j }) = min j=1,...,n(p) a * j b * j , ( 10 
)
where a * j and b * j are the quantities defined in (8) for the partition p. From this, using the optimal partition p * , we get a first estimator of α * given by

α(p * ) = min j=1,...,n(p * ) a * * j b * * j (11)
if a * * j and b * * j are the quantities defined in (8) for the optimal partition p * . Another estimator for α * is the one obtained by a Monte Carlo simulation in which the function given in Eq. ( 10) is computed for the M partitions (p m ) m=1,...,M sampled from π(p|x), and averaged, that is

α M = 1 M L+M m=L+1 α(p m ). ( 12 
)
Remark 1 [Conjugate Prior Choice] The chosen conjugate prior family is the one defined as the modified Lwin Priors in [START_REF] Arnold | Bayesian estimation and prediction for Pareto data[END_REF]. A larger one is described in [START_REF] Arnold | Bayesian analysis for classical distributions using conditionally specified priors[END_REF], which also includes one prior such that α|τ ∼ Γ(a(τ ), b(τ )), and the independent Gamma and Pareto priors, it is a 6-parameter family which could also be used in this model-based clustering. However the nonparametric methodology introduced in the next section is even more general.

Remark 2 From a practical point of view, the computation of the driven part of the seating probability in (9) needs to be carefully checked since overflow problems often occur in the presence of terms such as b a with large values of a. The solution is therefore to use logarithm and exponential functions to avoid any undefined values (NaN).

Remark 3 [Tail behavior of the Gamma-Pareto predictive density] One can easily compute the tail probability of the Gamma-Pareto predictive distribution as 

P (X > x) = cb a (1 + c)b 0 (x)

Two key results

Let us first recall two key results of Bayesian Nonparametric statistics (see Theorems 1 and 2 in [START_REF] Lo | On a class of bayesian nonparametric estimates: I. Density estimates[END_REF], and the references therein) in a general framework before considering the mixture of Pareto distributions.

The model assumption for a mixture model is

f (x | G) = k(x | u)G(du),
where G is an unknown distribution (the parameter) and k is a known kernel density in x

with parameter u ∈ U ⊂ R k , so that k(x | u)dx = 1.
The natural prior distribution for G is the Dirichlet process [START_REF] Ferguson | A bayesian analysis of some nonparametric problems[END_REF]) with a nondecreasing shape function

γ such that γ(U ) < ∞. It is denoted G ∼ D(dG | γ). Theorem 1 If G ∼ D(dG | γ) and x = (x 1 , ..., x n ) | G are i.i.d. f (x | G), then for any nonnegative function h E [h(G)|x] = . . . h(G)D dG | γ + n i=1 δ u i κ n d -→ u (13)
where -→ u = (u 1 , ..., u n ),

κ n d -→ u = n i=1 k(x i | u i )χ n d -→ u . . . n i=1 k(x i | u i )χ n d -→ u , χ n d -→ u = n i=1   γ + i-1 j=1 δ u j   (du i ), and 
. . . n χ d -→ u = Γ(γ(U ) + n) Γ(γ(U )) .
Remark 4 κ n d -→ u can be seen as a weighted Blackwell-MacQueen urn distribution since

B n d -→ u = χn(d -→ u ) ... n χ(d -→ u )
is called the Blackwell-MacQueen urn distribution [START_REF] Blackwell | Ferguson distributions via Pólya urn schemes[END_REF].

This first theorem reduces an infinite dimensional integral (on G) to a n-folded one (on u). The second result reduces the n-folded integral to a sum over partitions which allows the use of the same MCMC techniques as the one described in the previous section.

Theorem 2 Denoting h(G)D (dG | α + n i=1 δ u i ) = E(h(G) | -→ u ) = h( -→ u ), and 
w(p) = n(p) j=1 (e j -1)! i∈C j k(x i | u)γ(du), (14) 
then

E (h(G)|x) = . . . E(h(G) | -→ u )κ n d -→ u = p w (p) E h( -→ u ) | p ,
where the distribution of -→ u | p as the product of the distribution of -→ u | -→ u * , p and the distribution of -→ u * | p , i.e.

• For j = 1, ..., n(p), u * j are i.i.d. π(du | C j ), with

π(du | C j ) ∝ i∈C j k(x i | u)γ(du) = i∈C j k(x i | u)γ(du) i∈C j k(x i | u)γ(du) , (15) 
• For j = 1, ..., n(p), u i = u * j if i ∈ C j .
This result is used in different manners to conduct Monte Carlo approximations of the 

General mixture of Pareto distributions

Let us now turn back to the case of the mixture of Pareto distributions and the model assumption given by

f (x | G) = f α,τ (x)G(dα, dτ ),
where f α,τ is the pareto density given in Eq. ( 1) . ), the prior distribution for G is chosen to be a Dirichlet process with shape γ = Π 0 such that γ(dα, dτ ) = Π 0 (dα, dτ ) = π 0 (α, τ )dαdτ, where π 0 (α, τ ) is the Gamma-Pareto density defined in (6) so that expressions ( 14) and ( 15) are easily computed from the prior-posterior analysis done in Section 3.3. Indeed, the expression in ( 14) exactly matches the posterior distribution of partitions in the Paretobased clustering. The expression in ( 15) is the Gamma-Pareto distribution with parameters (a * j , b * j , c * j , d * j ) since it is the posterior distribution of (α, τ ), when the {x i , i ∈ C j } given (α, τ ) are assumed to be P(α, τ ), with prior π 0 (α, τ ).

By analogy, u = (α, τ ) ∈ R 2 + , k(. | u) = f α,τ (.
When the quantity of interest is the tail probability, namely when

h(G) = P(X > x) = P (X > x|α, τ ) G(dα, dτ ),
simple Dirichlet calculation and integration yield

h( -→ α , -→ τ ) = E(h(G) | -→ α , -→ τ ) = P (X > x|α, τ ) G(dα, dτ ) D dG | Π 0 + n i=1 δ α i ,τ i = 1 (1 + n) cb a (1 + c) (b * 0 (x)) a + 1 x<d (1 + n) 1 - b a (b + c ln (d/x)) a + 1 (1 + n) n i=1 (τ i x) -α i 1 (τ i x>1) + n i=1 1 (τ i x≤1) , (16) 
where

-→ α = (α 1 , . . . , α n ) ′ , -→ τ = (τ 1 , . . . , τ n ) ′ , and b * 0 (x) = b + ln(x) + c ln(d) -(1 + c) ln(min {d, x}).
This can even be further simplified in case of ties among the (α i , τ i ) i , that is, given the fact that the distribution of

-→ α , -→ τ | p is the product of the distribution of -→ α , -→ τ | -→ α * , -→ τ * , p and the distribution of -→ α * , -→ τ * | p .
Taking the expectancy of ( 16) with respect to this product distribution yields

E h( -→ α , -→ τ ) | p = 1 (1 + n) cb a (1 + c) (b * 0 (x)) a + 1 x<d (1 + n) 1 - b a (b + c ln (d/x)) a + 1 (1 + n) n(p) j=1 e j c * j (b * j ) a * j (1 + c * j )(b * j (x)) a * j + 1 (1 + n) n(p) j=1 e j 1 x<d * j 1 - (b * j ) a * j (b * j + c * j ln(d * j /x)) a * j , where b * j (x) = b * j + ln(x) + c * j ln(d * j ) -(1 + c * j ) ln(min d * j , x ) and (a * j , b * j , c * j , d * j ) are given in (8) .
Algorithm 2 Estimation of the probability tail P(X > x)

1. Sample M partitions from the distribution w(p) (cf. using the Gibbs sampler provided in section 3.2).

2. For each partition p m , given x > 0, compute the quantity

h m (x) = 1 (1 + n) cb a (1 + c) (b * 0 (x)) a + n(pm) j=1 e j (1 + n) c * j (b * j ) a * j (1 + c * j )(b * j (x)) a * j (17) + 1 x<d (1 + n) 1 - b a (b + c ln (d/x)) a + 1 (1 + n) n(p) j=1 e j 1 x<d * j   1 - b * j a * j (b * j + c * j ln(d * j /x)) a * j    , (18) 
where e j is the size of cluster C j of p m , and all * j quantities are computed with respect to cluster C j of p m as in Eq. (8).

3. Compute the tail probability estimator as the mean of the (h m (x)) m=1,...M .

Application

In this section, the Pareto based clustering is first applied to simulated data and then to a true data set related to dietary exposure to ochratoxin A (OTA).

In both applications, the Gibbs WCR was run from a Gauss routine (cf. http://www.aptech.com for information about the Gauss software) such that • the parameter of the Chinese Restaurant Process is fixed to e 0 = 1.

Simulated data

Description

Four sets of data are generated based on discrete mixtures of four Pareto distributions: 4 j=1 w j P(α j , τ j ) with the settings given in Table 1. The size of each simulated data set is fixed at n = 200. For example, 100 values are randomly selected from a P(3, 1) and 100 from a P(6, 1) to constitute data set 2. For all of these simulated data sets, the true tail index is 3: the main goal of this simulation study is to determine whether the proposed methodology provides a good estimation of this tail index or not. Figure 1 gives examples of histograms obtained with the different settings.

Results

Table 2 gives a description of the resulting optimal partition as well as a few outputs of the two proposed approaches. A bias corrected Hill estimator is also computed for comparison's sake. The methodology here is similar to the one used in [START_REF] Tressou | Probabilistic exposure assessment to food chemicals based on extreme value theory. application to heavy metals from fish and sea products[END_REF], adapted from [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF] and [START_REF] Feuerverger | Estimating a tail exponent by modelling departure from a Pareto Distribution[END_REF]. Comparison to other estimators of the tail index, namely the one proposed by [START_REF] Beirlant | Estimation of the extreme-value index and generalized quantile plots[END_REF], is conducted in a forthcoming study. The main findings of these simulations are the following:

1. Mixtures over the location parameter τ are easily detected (cf. data set 3) whereas mixtures over the tail index parameter α are a lot more difficult to detect (cf. data sets 2 & 4) even if one considers data sets involving two tail indexes with a huge difference.

2. The tail index estimator referred to as (optimal partition) in Table 2 is α(p * ), defined in ( 11) , and the one referred to as (MCMC) is α M , defined in (12) . When both parameters are mixed over, the two proposed Tail Index Estimators are less biased than, or equivalent to, the Bias Corrected Hill estimator. However, our estimators tend to overestimate α which is not desirable in risk analysis since one certainly does not want to underestimate the risk.

3. The methodology also allows to compute any tail probability as exemplified by the probability of exceeding the observed maximum given in Table 2. It is computed as the mean of the (h m (max x i )) m=1,...,M as defined in (17).

4. When computing the tail index estimator and posterior log likelihood associated to the simulated partition (the original one generically denoted p 0 in the sequel, that is, the one with 4 clusters in the case of data set 4 as an example), we obtain the following results:

• For data set 2, α(p 0 ) = 3.400, π(p 0 |x) =730.4.

• For data set 3, α(p 0 ) = 3.433, π(p 0 |x) =790.3.

• For data set 4, α(p 0 ) = 3.223, π(p 0 |x) =659.0.

This illustrates the well known identifiability problem of mixture models (see for example [START_REF] Marin | Bayesian modelling and inference on mixtures of distributions[END_REF] and the fact that maximizing the posterior likelihood is not always the right approach. Indeed, the optimal partition described in Table 2 enjoys a higher posterior likelihood than the one generating the data for the three data sets 2, 3 and 4. Furthermore, the tail index estimator associated with this "generating" partition is still biased but (not shown) simulations empirically show that it goes to zero for large values of n. For example for n = 3000 (OTA data set size) in the setting of data set 2, we get α(p 0 ) = 3.147 on one particular simulation and 3.006 if averaging on 100 independent simulation results.

5. The "polishing" stage described at the end of section 3.2 was applied on these simulated data but does not change any of the results. Indeed, the optimal partition p * already has a larger likelihood than the one that generated the data.

OTA data set

Food risk assessment context, description of the data

Ochratoxin A (OTA) is a mycotoxin produced by fungi Aspergillus Ochraceus and Penicillium Viridicatum. This mycotoxin can be detected in several food items: cereals, coffee, grapes, pork meat, wine, beer, and so on. Ochratoxin A is nephrotoxic, genotoxic, teratogenic, carcinogenic and immunosuppressive. The compound has been linked to Balkan Endemic Nephropathy, a kidney disease frequently observed in the Balkan countries (Boižić et al., 1995, for a review). Such a disease can appear after long and excessive exposure to the contaminant. This exposure is not directly observed but is assessed from food consumption surveys that record the quantity of different foods consumed and contamination data mostly derived from national surveillance plans in which foods are analyzed and contaminant levels are measured. This exposure assessment step can be conducted in different ways which are not the concern here but are described in [START_REF] Kroes | Assessment of intake from the diet[END_REF] and the reference therein. [START_REF] Bertail | Incomplete generalized U-Statistics for food risk assessment[END_REF][START_REF] Tressou | Non parametric modelling of the left censorship of analytical data in food risk exposure assessment[END_REF][START_REF] Counil | Handling of contamination variability in exposure assessment: A case study with Ochratoxin A[END_REF][START_REF] Counil | Fitness-for-purpose of dietary survey duration: A case-study with the assessment of exposure to Ochratoxin A[END_REF], for a full description of the data and examples of OTA exposure assessments.). Then the 95 th percentile of this simulated distribution is retained as evidence of possible extreme exposure to OTA. This is expressed on a body weight basis (quantity of contaminant divided by body weight). A histogram of the observations is given in Figure 2.

Results

Tables 3 and4 introduce and describe the resulting optimal partitions comprising 11 clusters respectively before and after the polishing stage (that hit a fixed point after only 3 iterations) detailed at the end of Section 3.2. The two resulting optimal partitions do not differ much, but the polished log-likelihood (LL= 4629) is 2.5 times higher than the non polished one (LL= 1850). We observe that the cluster sizes are heterogeneous (Cluster 11 only comprises 2 or 3 individuals, respectively in the polished and non polished cases).

Analysis of the clusters is not obvious: a few socioeconomic variates were considered here and a comparison of Tables 3 and4 show the consistency of our findings before and after.

The proportion of female adults and under-reporting individuals (who declare insufficient consumption in relation to their nutritional needs) decreases with an average of the 95 th percentile of exposure whereas the proportion of children increases with this average. The body mass index (BMI: body weight divided by squared height) also decreases with the average 95 th percentile of exposure, which is in character with the usual fish consumer typology. Cluster 9 is mostly comprised of children and this cluster enjoys the highest average 95 th percentile of exposure and the lowest BMI. These two features are consistent with the child population in most food risk assessments.

The Cluster Tail Index (CTI), computed as the ratio a * j /b * j for each cluster j (see ( 11)) allows classification of the clusters according to risk levels, the larger the CTI, the less serious the risk. The entire population tail index is 1.440 in the polished case, and 0.622 in the non polished case, when the estimator based on the optimal partition α(p * ) is used, see Eq. ( 11) . Indeed, this is the minimum tail index among all cluster tail indexes reached for Cluster 11 in both cases. This is not satisfactory because of the very small size of this cluster. Indeed, we can question here whether the estimation of the α 11 is consistent with only 2 or 3 observations in this cluster. If α M , defined in (12) , is used instead, the tail index estimator is equal to 0.863 (see Figure 3) and does not depend on the polishing stage. This last estimation is certainly much closer to the actual general tail index for the extreme exposures to OTA. Note that the bias corrected Hill Estimator would be 11.52, which totally misses the heaviest part of the tail.

As in the simulation, the tail probability was computed using ( 17) and is plotted in Figure 4. The proposed methodology provides a nonparametric estimator of the tail probability on the half line so that any tail probability (even an extremely small one) can be estimated. 

Discussion

The implementation of the two proposed methodologies together with classical extreme value approaches illustrates the difficulty of estimating the tail index if the data is generated from a mixture. Yet, in many applications, this assumption holds. The two proposed tail index estimators are actually at least as good as the Hill estimator even though the Monte Carlo approximation is preferable above all when cluster sizes are small. The proposed estimator for the tail probability is a good alternative to the basic empirical estimator: still nonparametric, it does not require any specific parametric assumption except the heavy tailed one, and has the advantage of being defined on the whole half line.

The resulting clusters are not easy to describe and, surprisingly for univariate data, they do not correspond to a partition of the real line into disjoint intervals.

Several extensions or changes in the framework may be considered. First, in the parametric approach, other distributions may be considered for the Pareto parameters α and τ as mentionned in Remark 1. In the nonparametric extension, a basic Dirichlet process was considered as the prior for the mixing distribution using Ferguson's original definition as in [START_REF] Lo | On a class of bayesian nonparametric estimates: I. Density estimates[END_REF]: G ∼ D(dG | γ). One could also use the (θ, H) parametrization such that G ∼ D(dG | θ, H), where θ is the total mass of the base-line measure H, that is θ corresponds to γ(U ) in our setting. Going deeper in this direction the recent paper of [START_REF] Lijoi | Controlling the reinforcement in bayesian nonparametric mixture models[END_REF] provides interesting extensions. Furthermore, other processes, such as the Poisson-Dirichlet process, may be considered, see [START_REF] Lau | Bayesian model based clustering procedures[END_REF] and the references therein.

From the applied perspective, it would be interesting to work on the individual exposure curves instead of only considering the 95 th percentile of exposure for each individ-ual. This could be conducted using a Hierarchical Dirichlet process, also called "Chinese Restaurant Franchise", see [START_REF] Teh | Hierarchical Dirichlet processes[END_REF]. This way, there would be a double clustering of exposure values and individual exposure distributions. This would require some computational adaptation since the data set would be huge (from the OTA data set, we can actually get n = 3003 exposure distribution curves, described by n × M points if M exposure levels are simulated for each individual). The use of the Gibbs sampling methods for stick-breaking priors proposed in [START_REF] Ishwaran | Gibbs sampling methods for stick-breaking priors[END_REF] will be investigated in future work.

A Technical details

The notations from Eq. ( 8) are again used in this appendix and recalled here:

a * j = a + e j , c * j = c + e j , d * j = min d, min i∈C j x i , b * j = b + i∈C j ln x i + c ln d -c * j ln d * j .
A.1 Derivation of Eq. (7)

Eq. ( 7) is obtained by:

k(x i , i ∈ C j ) = i∈C j f α,τ (x i )π 0 (α, τ )dαdτ = i∈C j ατ (τ x i ) -(α+1) 1 (τ x i >1) b a Γ(a) α a-1 e -bα cαd(dτ ) -(cα+1) 1 (dτ >1) dαdτ = cb a Γ(a)   i∈C j x i   -1 α a+e j exp   -α   b + i∈C j ln x i + c ln d     dα × ∞ τ =1/ min d,min i∈C j x i τ -α(e j +c)-1 dτ = cb a Γ(a)c * j   i∈C j x i   -1 α a * j -1 exp -αb * j dα =   i∈C j x i   -1 Γ(a * j ) Γ(a) cb a c * j b * j a * j .
A.2 Derivation of Eq. (9)

Eq. ( 9) is the model driven part of the seating probability, used to reassign a measurement t in one of the cluster C j and denoted k(t | {x i , i ∈ C j }). It can be obtained in two ways:

[Way 1] First, the ratio of the marginal densities of the clusters {x i , i ∈ C j } ∪ {t} and In the Pareto case, both calculations are straightforward and may be used to check on the exactitude of the result, while for other kernel densities, there may be a edge favouring the second one since calculations are exactly the same as the ones for the marginal densities.

{x i , i ∈ C j } , namely k(t | {x i , i ∈ C j }) = k({x i , i ∈ C j } ∪ {t}) k({x i , i ∈ C j }) = t -1 i∈C j x i -1 Γ(a * j +1) Γ(a) cb a (c * j +1)(b * j (t)) a * j +1 i∈C j x i -1 Γ(a * j ) Γ(a) cb a c * j (b * j ) a * j = (t -1 ) × c * j a * j b *
From a computational point of view, remark that e j , min i∈C j x i and i∈C j ln x i are the only quantities needed to compute the marginal of cluster C j and the seating probability to cluster C j so that there is no need to store and manipulate all the {x i , i ∈ C j } for j = 1, ..., n(p) in the Gibbs cycle.

A.3 Derivation of Eq. ( 16)

Eq. ( 16) is obtained by first applying the Fubini result for Dirichlet processes (see Lemma 1 of [START_REF] Lo | On a class of bayesian nonparametric estimates: I. Density estimates[END_REF]). Then, given -→ α = (α 1 , . . . , α n ) ′ , -→ τ = (τ 1 , . . . , τ n ) ′ and considering h(G) = P (X > x) = P (X > x|α, τ ) G(dα, dτ ), we have 

E(h(G) | -→ α , -→ τ ) = P (X > x|α, τ ) G(dα, dτ ) D dG | Π 0 + n i=1 δ α i ,τ i = 1 (Π 0 + n i=1 δ α i ,τ i ) (R 2+ ) P (X > x|α, τ ) Π 0 (dα, dτ ) + n i=1 P (X > x|α, τ ) δ α i ,τ i (dα, dτ ) = 1 (1 + n) (τ x) -α 1 (τ x>1) + 1 (τ x≤1) π 0 (α, τ )dαdτ + n i=1 (τ i x) -α i 1 (τ i x>1) + 1 (τ i x≤1) = 1 (1 + n) cb a (1 + c) (b * 0 (x)) a + 1 (1 + n) 1 (τ x≤1) π 0 (α, τ )dαdτ + 1 (1 + n)

  the Pareto-based clustering, the model density is f α,τ given in (1) , and a conjugate prior for (α, τ ) is retained. The classical conjugate family for the Pareto model is the Gamma-Pareto(a, b, c, d), such that α ∼ Γ(a, b), and τ |α ∼ P(cα, d) with a, b, c, and d > 0, that is,

  a where b 0 (x) = b + ln x + c ln d -(c + 1) ln (min {d, x}) . For large x (x > d), b 0 (x) = b + ln x -ln d and lim x→∞ P (X > tx) P (X > x) = (1 + ln t) -a , which belongs to the Fréchet MDA. 4 Bayesian Nonparametric mixture methods In this section, a general mixture of Pareto distributions is considered. The unknown mixing distribution G is now an infinite dimensional parameter of the model and quantities of the form E [h(G)|x] , such as the tail probability given in (2), are of interest.

  quantity E (h(G)|x) depending on the form of h(G). If the density h(G) = f (t|G) or the mixing distribution h(G) = G(t) are to be estimated, further simplifications occur since h( -→ u ) has an explicit form, as we shall see in the Pareto kernel case in the next section.

•

  a burn-in of L = 10000 iterations is used, • M = 20000 Monte Carlo iterations are computed • a diffuse prior choice for the Gamma-Pareto hyperparameters: a = b = c = 0 and d = ∞, which is improper. In practice, the following setting is used: a = b = c = 0.001 and d = max i x i × 1.1.

  The motivating true data set is composed of the possible extreme OTA exposure of n = 3003 French individuals. More precisely, each of the 3003 individual food consumption is observed in the INCA data (CREDOC-AFSSA-DGAL, 1999) and individual distribution of exposure is built by a Monte Carlo simulation using the individual consumption and the empirical distribution of several independently available OTA contamination data (cf.

  j (t) = b + i∈C j ln x i + ln t + c ln d -c * j ln min{d * j , t} .[Way 2] The predictive density of a new data t given observations {x i , i ∈ C j } can also be directly computed by first computing the predictive density for no observation, namelyk(t) = f α,τ (t)π 0 (α, τ)dαdτ, and then replacing all hyperparameters by their updated version ( * j ) given in (8) sincek(t | {x i , i ∈ C j }) = f α,τ (t)π(α, τ | {x i , i ∈ C j })dαdτ, where π(α, τ | {x i , i ∈ C j })is the posterior density in a Pareto model with Gamma Pareto prior, i.e. a Gamma Pareto (a * j , b * j , c * j , d * j ).k(t) = f α,τ (t)π 0 (α, τ )dαdτ = cab a t -1 (1 + c)(b + ln t + c ln d -(1 + c) ln (min {d, t})) a+1 =⇒ k(t|x i , i ∈ C j ) = (t -1 ) j (t) = b * j + ln t + c * j ln d * j -c * j + 1 ln min{d * j ,t} which is the same as the one obtained using the ratio method in [Way 1].
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 123 Figure 1: Example histograms of the 4 simulated datasets (n = 200).

Table 1 :

 1 Description of the simulated datasets.

		w 1	w 2	w 3	w 4
	Pareto Parameters (3,1) (6,1) (3,3) (6,3)
	Data set 1	1	0	0	0
	Data set 2	1/2	1/2	0	0
	Data set 3	1/2	0	1/2	0
	Data set 4	1/4	1/4	1/4	1/4

Table 2 :

 2 Results on simulated data.

	Data set	1	2	3	4
	Observed maximum	4.8	3.9	3.4	2.8
	Size of the optimal partition	1	1	2	2
	Posterior log-likelihood (optimal partition)	800.1	880.8	803.3	836.7
	Tail Index Estimator (optimal partition) from Eq. (11) 3.120 4.280 3.517 4.091
	Tail Index Estimator (MCMC) from Eq. (12) 3.130 4.280 3.507 4.082
	Probability of exceeding the observed maximum (MCMC) 0.81% 0.32% 0.77% 0.85%
	Bias Corrected Hill	2.896	4.300	3.564	4.911

Table 3 :

 3 Description of the resulting partition for the OTA dataset (before polishing).

		MLL=Marginal log-likelihood of the cluster; CTI=Cluster Tail Index; Avg.= Average; StD.=Standard
		Deviation; Min=Minimum; Max=Maximum; BMI=Body Mass Index (body weight divided by squared
		height); P.Ch= proportion of Children; P.AF=proportion of Female Adults; P.UR=proportion of under-
		reporting individuals.									
			Cluster		Observations (P95 of exposure)		Covariates		
	j	Size	MLL	CTI	Avg	StD	Min	Max Avg.Age Avg.BMI	P.Ch	P.AdF	P.UR
	1	549	-2652.61	2.582	122.4	53.9	77.7	467.5	24.0	19.5	51.7%	6.6%	2.2%
	2	259	-1121.28	1.542	50.5	50.4	20.7	369.4	39.2	24.1	17.0%	22.0% 44.0%
	3	104	-427.31	1.243	32.6	45.0	10.3	366.5	42.6	25.3	14.4%	24.0% 64.4%
	4	237	-863.487	4.538	59.9	16.1	46.8	161.7	36.5	23.0	18.6%	19.8% 17.7%
	5	205	-622.761	9.201	64.1	7.1	57.2	101.4	34.9	22.4	26.3%	11.7% 11.2%
	6	515	-2184.36	2.458	66.3	39.3	40.1	346.6	36.2	22.9	20.8%	16.7% 21.0%
	7	569	-2505.73	3.127	95.0	36.2	65.7	429.0	28.9	21.0	37.3%	7.6%	4.4%
	8	272	-1017.33	2.826	43.6	23.2	28.4	249.3	37.5	24.2	16.5%	19.5% 39.0%
	9	278	-1390.29	2.987	157.8	51.3	108.2	364.4	15.1	17.6 76.6%	2.2%	0.4%
	10	12	-42.5631	2.338	7.9	3.3	4.9	17.1	54.7	25.2	0.0%	25.0% 91.7%
	11	3 -22.5831	0.622	8.1	11.2	0.7	21.0	41.7	24.8	0.0%	0.0% 66.7%

Table 4 :

 4 Description of the resulting partition for the OTA dataset (after polishing).

		MLL=Marginal log-likelihood of the cluster; CTI=Cluster Tail Index; Avg.= Average; StD.=Standard	
		Deviation; Min=Minimum; Max=Maximum; BMI=Body Mass Index (body weight divided by squared	
		height); P.Ch= proportion of Children; P.AF=proportion of Female Adults; P.UR=proportion of under-	
		reporting individuals.									
			Cluster		Observations (P95 of exposure)		Covariates		
	j	Size	MLL	CTI	Avg	StD	Min	Max	Avg.Age Avg.BMI	P.Ch	P.AdF	P.UR
	1	633	-2303.4501	6.689	90.8	8.6	77.8	108.1	31.0	21.0	33.5%	8.8%	2.7%
	2	118	-307.33299	5.856	24.7	2.2	20.7	28.3	46.2	25.9	5.1%	21.2%	63.6%
	3	67	-208.77301	2.474	15.7	3.0	10.3	20.6	43.4	25.8	10.4%	25.4%	76.1%
	4	337	-906.07401	10.173	51.7	3.0	46.8	57.2	38.0	23.7	14.2%	18.4%	22.6%
	5	293	-714.13941	15.589	61.0	2.4	57.2	65.6	37.1	22.8	21.2%	17.4%	16.0%
	6	206	-483.343	12.503	43.5	2.0	40.1	46.8	39.5	23.9	12.6%	19.4%	35.4%
	7	375	-1052.3487	12.391	71.3	3.5	65.7	77.7	33.1	22.3	24.5%	10.9%	8.8%
	8	251	-713.35581	5.804	33.8	3.4	28.3	39.9	40.6	24.9	11.6%	23.9%	49.8%
	9	710	-3559.2548	2.863	160.7	55.7	108.2	467.5	15.2	17.7	75.5%	3.5%	0.3%
	10	11	-37.305571	2.838	7.1	1.6	4.9	9.7	54.6	25.1	0.0%	27.3%	90.9%
	11	2 -15.761918	1.440	1.7	1.4	0.7	2.7	28.0	23.8	0.0%	0.0% 100.0%
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