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Abstract

Based on the fact that any heavy tailed distribution can be approximated by a

possibly infinite mixture of Pareto distributions, this paper proposes two Bayesian

methodologies tailored to infer on distribution tails belonging to the Fréchet domain

of attraction. Firstly, a Bayesian Pareto based clustering procedure is developed,

where the mixing distribution is chosen to be the classical conjugate prior of the

Pareto distribution. This allows the grouping of n objects into a certain number of

clusters according to their extremal behavior and also exhibits a new estimator for

the tail index. Secondly, a nonparametric extension of the model based clustering is

proposed in which the parameter of interest is the mixing distribution. Estimation

of the tail probability is conducted using a Dirichlet process prior for the unknown

mixing distribution. To illustrate, both methodologies are applied to simulated data

sets and a true data set concerning dietary exposure to a mycotoxin called Ochratoxin

A.

Keywords: Dirichlet process; Model Based clustering; Ochratoxin A; Tail index

estimation.
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1 Introduction

In the food risk analysis field, it is accepted that dietary exposure to a contaminant is

heavy tailed or at least assumed to be from a conservative perspective, see Tressou et al.

(2004). Indeed, dietary exposure to a given contaminant is defined as the quantity of the

contaminant one individual ingests when he consumes foods that are more or less nat-

urally contaminated. Different consumption behaviors yield different levels of exposure

which may present a health risk if those levels are too high. One particular contaminant

is generally present in more that one food so that different consumption behaviors can

yield a high exposure. In a given population, different risk levels exist and clustering may

be a powerful tool to describe that population. Yet, we can not say a priori how many

clusters there are and we would like to define the similarity between individuals based

on their extremal behavior. Food safety is now a crucial public health concern in many

countries (for example, it is one of the thematic top priorities of the 7th European Re-

search Framework program, see http://ec.europa.eu/research/fp7/). This topic naturally

interfaces with various disciplines, such as biology, nutritional medicine, toxicology, and of

course applied mathematics with the aim of developing rigorous methods for quantitative

risk assessment. Scientific literature devoted to probabilistic and statistical methods for

the study of dietary exposure to food contaminants is progressively carving out a place in

applied probability and statistics journals (see Bertail et al., 2008; van der Voet et al.,

2007; Tressou, 2006; Bertail and Tressou, 2006; Edler et al., 2002; Gibney and van der

Voet, 2003; Gauchi and Leblanc, 2002).

The main idea of this paper is that heavy tailed distributions can be represented as

mixtures of Pareto distributions so that most, if not all, heavy tailed distribution can be

expressed as a (possibly infinite) mixture of Pareto distributions, where the mixing occurs

on both parameters of the Pareto distributions. Two bayesian methodologies are thus

proposed to estimate the different components of this mixture: a Bayesian model-based

clustering approach (Fraley and Raftery, 2002) and a Bayesian nonparametric mixture ap-

proach (Petrone and Raftery, 1997; Green and Richardson, 2001), following ideas exposed

in Lau and Lo (2007). For both approaches, the kernel is defined to be a Pareto distribu-

tion while most applications are realized with a Gaussian kernel (Lau and Green, 2007; Lau

and Lo, 2007) since we are specifically interested in these mixtures to model heavy tailed

distribution. In recent years, parametric and nonparametric Bayesian approaches have

been developped for extreme value analysis (Coles and Powell, 1996; Frigessi et al., 2002;

Bottolo et al., 2003; Stephenson and Tawn, 2004; Diebolt et al., 2005; Kottas and Sansó,
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2007). In this paper, estimators of the tail index and tail probability are derived from the

posterior distribution. The tail index estimator is compared to a standard estimator (the

Hill estimator).

The paper is organized as follows. Section 2 gives some background about Extreme

Value Theory and emphasizes that heavy tailed distributions can be approximated by

mixtures of Pareto distributions. Section 3 gives the general principle of Bayesian model-

based clustering as well as one MCMC algorithm to find the best partition (Gibbs WCR)

and presents the Pareto-based clustering. Section 4 introduces two key results for the

nonparametric extension of the model-based clustering and details the quantities one may

infer when extremes are at stake. The last section is dedicated to the implementation of

both methodologies on simulated data first, with empirical validation and understanding

perspectives, and on data concerning the French population’s exposure to Ochratoxin A

(OTA) in a purely applied perspective.

2 Characterization of the maximum domain of attraction

of the Fréchet distribution as a general mixture of Pareto

distribution

In Extreme Value Theory, one major breakthrough is the Fisher-Tippett theorem stat-

ing that there are only three possible limiting distributions for the properly normalized

maximum: the Gumbel, the Weibull and the Fréchet distributions. These laws are called

extreme value distributions and each one corresponds to a special tail behavior: the Gum-

bel distribution is related to light-tailed distribution such as normal, log-normal or ex-

ponential distributions; the Weibull distribution to finite support distributions such as

the uniform distribution and the Fréchet distribution to heavy-tailed distributions such as

Pareto, Cauchy or Student distributions. The latter one is of prime interest in the food

risk analysis context since the distribution of exposure to a contaminant is often assumed

to be heavy-tailed (Tressou et al., 2004).

The usual characterization of the Fréchet maximum domain of attraction(MDA) is the

following (Embrechts et al., 1999). The tail probability can be written as

P (X > x) ∼x→∞ Cx−α∗L(x),

where C and α∗ are non negative constants and L(.) is a slowly varying function, that is,
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a function satisfying the condition

∀t > 0, lim
x→∞

L(tx)

L(x)
= 1.

In this setting, the estimation of α∗ is crucial and has been studied a lot as α∗−1 may

be interpreted as a risk indicator. Indeed the higher the α∗−1, the higher the probability

of exceeding a fixed level x. A well known estimator for α−1 is the Hill estimator based

on the k largest observations of a sample (Hill, 1975). If X1,n ≤ . . . ≤ Xn,n denotes the

order statistic associated to a sample (X1, . . . , Xn) then the Hill estimator is defined for

k = 1, . . . , n− 1 as

Hk,n =
1

k

k∑

i=1

lnXn−i+1,n − lnXn−k,n.

The Hill estimator is obtained as the conditional maximum likelihood estimator in the

exact Pareto model (L(x) = 1), given the number k of extreme values. This is very

sensitive to the choice of k. Indeed, its bias increases with k while its variance decreases.

Several authors proposed bias correction using more or less explicit forms of the slowly

varying function L, see for example Beirlant et al. (1999); Feuerverger and Hall (1999).

These slowly varying functions naturally appear when considering mixtures of Pareto

distributions.

Let fα,τ and Fα,τ denote the density and cumulative distribution function of the

Pareto distribution with tail index parameter α and precision parameter τ , abbreviated

by P(α, τ), i.e.

1− Fα,τ (x) = (τx)−α1(τx>1) + 1(τx≤1)

fα,τ (x) = ατ(τx)−(α+1)1(τx>1), (1)

where 1(A) is the indicator function, equal to 1 if A is true, 0 otherwise.

If G is an unknown mixing distribution over the two dimensional parameter space

Θ1 ×Θ2⊆ R
2
+, then the tail probability is

P (X > x) =

∫

Θ1

∫

Θ2

P (X > x|α, τ)G(dα, dτ) =

∫

Θ1

∫

Θ2

[1− Fα,τ (x)]G(dα, dτ). (2)

In the case of a discrete mixing distribution, if (α, τ) = (αj , τj) with probability wj ,

4



j = 1, . . . , J , such that
∑J

j=1 wj = 1, and α1 ≤ . . . ≤ αJ , then

P (X > x) =

J∑

j=1

wj(τjx)
−αj1(τjx>1)+1(τjx≤1) ∼x→∞ Cx−α∗


1 +

J∑

j=2

Dj−1x
−βj−1


 , (3)

where α∗ = minj=1,...J αj(= α1) and the (Dj , βj) and C are non negative constants such

that β1 ≤ . . . ≤ βJ−1. More precisely, C = w1(τ1)
−α1 , and for j = 2, . . . , J, βj−1 = αj−α1

and Dj−1 = wj(τj)
−αj/w1(τ1)

−α1 . The quantity L(x) = (1 +
∑J

j=2 Dj−1x
−βj−1) is a

slowly varying function, meaning that any discrete mixture of Pareto distributions is of

the Fréchet type. Moreover, a natural estimator of the tail index α is the minimum tail

index parameter of the Pareto components of the mixture.

This argument does not prove any relation between the Fréchet MDA and the set of

all possibly infinite mixtures of Pareto distributions but advocates for an approximation

of the Fréchet MDA with such mixtures.

3 Bayesian model based clustering

3.1 General principle

For statistical clustering of n objects, it is assumed that the numerical measurements,

x = (x1, . . . , xn), of the n objects have a joint model density given a certain partition of

the n objects. Given a partition p = {C1, . . . , Cn(p)} of the indices {1, . . . , n} of the n

objects, the measurements of the objects are modeled by a classification likelihood that,

given p, has a product form

f(x|p) =

n(p)∏

j=1

k(xi, i ∈ Cj),

where k(xi, i ∈ Cj) is the joint density of the measurements for objects in cluster Cj ,

k(xi, i ∈ {1, . . . , n}) = k(x) being the joint density of the whole data x. Typically, in

a Bayesian framework, these joint densities result from a former parametric inference in

which, given an unknown parameter θ with prior distribution π0(θ)dθ, the xi are assumed

to be i.i.d. from a model density fθ. Then k(xi, i ∈ Cj) is just the normalization constant
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of the posterior distribution of θ given the measurements of cluster Cj , given by

k(xi, i ∈ Cj) =

∫ ∏

i∈Cj

fθ(xi)π0(θ)dθ.

Alternatively, they can be directly assigned to some chosen function of the xi, i ∈ Cj

that measures the homogeneity within the cluster, see Lau and Green (2007) for more

details. When the first option is retained, direct calculation of the k(xi, i ∈ Cj) is easily

achievable if the prior for θ is chosen to be the conjugate prior for the model density

fθ. Most applications of model-based clustering relate to the Normal model, where the

conjugate prior is the Gamma-Normal distributio: this results in marginal t-densities for

the k(xi, i ∈ Cj), see Lau and Lo (2007) for a gene clustering application. In the present

paper, we focus on the Pareto kernel as detailed in section 3.3.

As soon as the ”classification likelihood” f(x|p) is chosen, the partition is the unknown

parameter for which a prior-posterior analysis is required. A conjugate prior for p can be

any distribution that has the product form, namely

π(p) ∝

n(p)∏

j=1

g(Cj). (4)

In this case, the posterior distribution of p given the data is also of the product form

π(p|x) ∝

n(p)∏

j=1

g∗(Cj),

where g∗(Cj) = g(Cj)× k(xi, i ∈ Cj).

Finally, an estimator of the optimal clustering is the one that maximizes the posterior

distribution, which can be approximated by MCMC techniques (the usual Gibbs sampler

is used in this paper and described in section 3.2). Lau and Green (2007) also propose

other estimators based on the minimization of loss functions.

For the prior choice, the only requirement is the product form given in (4) so that

many prior distributions can be used. A very convenient one is the Chinese Restaurant

Process with parameter e0, CRP(e0), for which g(Cj) = e0× (ej − 1)!, where ej is the size

of cluster Cj . The parameter e0 can be interpreted as the expected number of clusters.
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3.2 Implementation: Gibbs Weighed Chinese Restaurant Process

In this section, the Gibbs sampler used in the application is described for a CRP(e0)

prior distribution on partitions. This algorithm is precisely the computational strategy

described for normal kernels in Eachern (1994) and more generally in Eachern (1998).

The first work on Gibbs sampling for such models is Escobar (1994) (see also his 1988

dissertation). This is only one of several possible algorithms (see Lau and Lo, 2007; Lau

and Green, 2007; Heard et al., 2006; Quintana and Iglesias, 2003, and the references

therein).

Algorithm 1 Choose an initial partition p0 (the one with n clusters p0 = {{1}, ..., {n}}

is the default choice).

Then, repeat L + M times (L times for burn in / warm up and M times for estimation

of any function h(p)) the following Gibbs cycle:

For i = 1, ...n, do

• Remove {i} from the current partition p of {1, ..., n} to get a partition p(−i) of

{1, ..., i− 1, i+ 1, ..., n} (n− 1 elements)

• {i} is then assigned to the cluster j, j = 1, ..., n(p(−i)) with probability proportional

to
g∗(Cj ∪ {i})

g∗(Cj)
= ej ×

k(xl, l ∈ Cj ∪ {i})

k(xl, l ∈ Cj)
= ej × k(xi|xl, l ∈ Cj) (5)

and to a new one with probability proportional to e0 × k(xi).

The assignment of {n} completes a Gibbs cycle and the last partition is stored and used

as the initial one in the next cycle.

The L + M + 1 partitions, p0,p1, ...,pL,pL+1, ...,pL+M , are then used to compute

estimators for quantities such as ξ =
∑

p
π(p|x)h(p) or p∗ = argmaxp π(p|x), namely

ξ̃M =
1

M

L+M∑

m=L+1

h(pm), p̃∗ = arg max
m=0,...,L+M

π(pm|x).

As suggested during the review of this paper, a ”polishing” stage can be added to

this MCMC algorithm. This consists of adding extra deterministic cycles until a global

fixed point is hit. In these cycles, observation {i} is deterministically assigned to the most

likely cluster (including the new cluster) instead of being randomly assigned as it was in

the Gibbs cycle.
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3.3 Pareto-based clustering

In the Pareto-based clustering, the model density is fα,τ given in (1) , and a conjugate prior

for (α, τ) is retained. The classical conjugate family for the Pareto model is the Gamma-

Pareto(a, b, c, d), such that α ∼ Γ(a, b), and τ |α ∼ P(cα, d) with a, b, c, and d > 0, that

is,

π0(α, τ) ∝ αa−1e−bααd(dτ)−(cα+1)1(dτ>1) (6)

Straightforward computations yield the following marginal densities

k(xi, i ∈ Cj) =

∫ ∫ ∏

i∈Cj

fα,τ (xi)π0(α, τ)dαdτ =


∏

i∈Cj

xi



−1

Γ
(
a∗j

)

Γ (a)

cba

c∗j

(
b∗j

)a∗j
(7)

with

a∗j = a+ej , c∗j = c+ej , d∗j = min

{
d,min

i∈Cj

xi

}
, b∗j = b+

∑

i∈Cj

lnxi+c ln d−c∗j ln d∗j , (8)

where ej is the size of cluster Cj .

Then, the model driven part of so called seating probabilities of the Gibbs sampler (cf.

Eq. (5)) are such that

k(t|xi, i ∈ Cj) = (t−1)×
c∗ja

∗
j

(
b∗j

)a∗j

(c∗j + 1)
(
b∗j (t)

)a∗j+1
, (9)

where b∗j (t) = b+
∑

i∈Cj
lnxi + ln t+ c ln d−

(
c∗j + 1

)
ln
(
min

{
d∗j , t

})
.

For this Pareto-based model, the optimal clustering determined as p∗ = argmaxp π(p|x)

allows us to characterize the studied objects in terms of extreme behavior. For ex-

ample, in the food safety context, an analysis of the cluster composition would help

food safety authorities to target their consumption recommendation campaigns at those

most at risk. An interesting quantity to compute for the cluster description is the ex-

pected value of the tail index within each cluster E(α | {xi, i ∈ Cj}). Since the pos-

terior marginal of α | {xi, i ∈ Cj} is a Gamma distribution with parameters (a∗j , b
∗
j ),

E(α | {xi, i ∈ Cj}) = a∗j/b∗j .

Using the relationship between discrete mixtures of Pareto distributions and tail index

estimation, given in Eq. (3) , an estimator of the ”global” tail index α∗ can be derived
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given a partition p based on the fact that

α(p) = min
j=1,...,n(p)

E(α | {xi, i ∈ Cj}) = min
j=1,...,n(p)

a∗j
b∗j

, (10)

where a∗j and b∗j are the quantities defined in (8) for the partition p.

From this, using the optimal partition p∗, we get a first estimator of α∗ given by

α(p∗) = min
j=1,...,n(p∗)

a∗∗j
b∗∗j

(11)

if a∗∗j and b∗∗j are the quantities defined in (8) for the optimal partition p∗.

Another estimator for α∗ is the one obtained by a Monte Carlo simulation in which

the function given in Eq. (10) is computed for the M partitions (pm)m=1,...,M sampled

from π(p|x), and averaged, that is

α̃M =
1

M

L+M∑

m=L+1

α(pm). (12)

Remark 1 [Conjugate Prior Choice] The chosen conjugate prior family is the one defined

as the modified Lwin Priors in Arnold and Press (1989). A larger one is described in

Arnold et al. (1998), which also includes one prior such that α|τ ∼ Γ(a(τ), b(τ)), and the

independent Gamma and Pareto priors, it is a 6-parameter family which could also be

used in this model-based clustering. However the nonparametric methodology introduced

in the next section is even more general.

Remark 2 From a practical point of view, the computation of the driven part of the

seating probability in (9) needs to be carefully checked since overflow problems often

occur in the presence of terms such as ba with large values of a. The solution is therefore

to use logarithm and exponential functions to avoid any undefined values (NaN).

Remark 3 [Tail behavior of the Gamma-Pareto predictive density] One can easily com-

pute the tail probability of the Gamma-Pareto predictive distribution as

P (X > x) =
cba

(1 + c)b0(x)a

where b0(x) = b + lnx + c ln d − (c+ 1) ln (min {d, x}) . For large x (x > d), b0(x) =
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b+ lnx− ln d and

lim
x→∞

P (X > tx)

P (X > x)
= (1 + ln t)−a ,

which belongs to the Fréchet MDA.

4 Bayesian Nonparametric mixture methods

In this section, a general mixture of Pareto distributions is considered. The unknown

mixing distribution G is now an infinite dimensional parameter of the model and quantities

of the form E [h(G)|x] , such as the tail probability given in (2), are of interest.

4.1 Two key results

Let us first recall two key results of Bayesian Nonparametric statistics (see Theorems 1

and 2 in Lo, 1984, and the references therein) in a general framework before considering

the mixture of Pareto distributions.

The model assumption for a mixture model is

f(x | G) =

∫
k(x | u)G(du),

where G is an unknown distribution (the parameter) and k is a known kernel density in x

with parameter u ∈ U ⊂ R
k, so that

∫
k(x | u)dx = 1.

The natural prior distribution for G is the Dirichlet process (Ferguson, 1973) with a

nondecreasing shape function γ such that γ(U) <∞. It is denoted G ∼ D(dG | γ).

Theorem 1 If G ∼ D(dG | γ) and x = (x1, ..., xn) | G are i.i.d. f(x | G), then for any

nonnegative function h

E [h(G)|x] =

∫
. . .

∫ [∫
h(G)D

(
dG | γ +

n∑

i=1

δui

)]
κn

(
d−→u
)

(13)

where −→u = (u1, ..., un),

κn

(
d−→u
)
=

∏n
i=1 k(xi | ui)χn

(
d−→u
)

∫
. . .
∫ ∏n

i=1 k(xi | ui)χn

(
d−→u
) ,

χn

(
d−→u
)
=

n∏

i=1


γ +

i−1∑

j=1

δuj


 (dui),
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and

∫
. . .

∫

n
χ
(
d−→u
)
=
Γ(γ(U) + n)

Γ(γ(U))
.

Remark 4 κn

(
d−→u
)
can be seen as a weighted Blackwell-MacQueen urn distribution since

Bn

(
d−→u
)
=

χn(d−→u )
∫

...
∫

n
χ(d−→u )

is called the Blackwell-MacQueen urn distribution (Blackwell and

MacQueen, 1973).

This first theorem reduces an infinite dimensional integral (on G) to a n-folded one (on

u). The second result reduces the n-folded integral to a sum over partitions which allows

the use of the same MCMC techniques as the one described in the previous section.

Theorem 2 Denoting
∫

h(G)D (dG | α+
∑n

i=1 δui
) = E(h(G) | −→u ) = h(−→u ), and

w(p) =

n(p)∏

j=1

(ej − 1)!

∫ ∏

i∈Cj

k(xi | u)γ(du), (14)

then

E (h(G)|x) =

∫
. . .

∫
E(h(G) | −→u )κn

(
d−→u
)
=
∑

p

w (p)E
[
h(−→u ) | p

]
,

where the distribution of −→u | p as the product of the distribution of
(
−→u |

−→
u∗,p

)
and the

distribution of
(−→
u∗ | p

)
, i.e.

• For j = 1, ..., n(p), u∗j are i.i.d. π(du | Cj), with

π(du | Cj) ∝
∏

i∈Cj

k(xi | u)γ(du) =

∏
i∈Cj

k(xi | u)γ(du)
∫ ∏

i∈Cj
k(xi | u)γ(du)

, (15)

• For j = 1, ..., n(p), ui = u∗j if i ∈ Cj .

This result is used in different manners to conduct Monte Carlo approximations of the

quantity E (h(G)|x) depending on the form of h(G). If the density h(G) = f(t|G) or the

mixing distribution h(G) = G(t) are to be estimated, further simplifications occur since

h(−→u ) has an explicit form, as we shall see in the Pareto kernel case in the next section.
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4.2 General mixture of Pareto distributions

Let us now turn back to the case of the mixture of Pareto distributions and the model

assumption given by

f(x | G) =

∫ ∫
fα,τ (x)G(dα, dτ),

where fα,τ is the pareto density given in Eq. (1) .

By analogy, u = (α, τ) ∈ R
2
+, k(. | u) = fα,τ (.), the prior distribution for G is chosen to

be a Dirichlet process with shape γ = Π0 such that γ(dα, dτ) = Π0(dα, dτ) = π0(α, τ)dαdτ,

where π0(α, τ) is the Gamma-Pareto density defined in (6) so that expressions (14) and

(15) are easily computed from the prior-posterior analysis done in Section 3.3. Indeed, the

expression in (14) exactly matches the posterior distribution of partitions in the Pareto-

based clustering. The expression in (15) is the Gamma-Pareto distribution with param-

eters (a∗j , b
∗
j , c

∗
j , d

∗
j ) since it is the posterior distribution of (α, τ), when the {xi, i ∈ Cj}

given (α, τ) are assumed to be P(α, τ), with prior π0(α, τ).

When the quantity of interest is the tail probability, namely when

h(G) = P(X > x) =

∫ ∫
P (X > x|α, τ)G(dα, dτ),

simple Dirichlet calculation and integration yield

h(−→α ,−→τ ) = E(h(G) | −→α ,−→τ )

=

∫ [∫ ∫
P (X > x|α, τ)G(dα, dτ)

]
D

(
dG | Π0 +

n∑

i=1

δαi,τi

)

=
1

(1 + n)

cba

(1 + c) (b∗0(x))
a +

1x<d

(1 + n)

[
1−

ba

(b+ c ln (d/x))a

]

+
1

(1 + n)

(
n∑

i=1

(τix)
−αi 1(τix>1) +

n∑

i=1

1(τix≤1)

)
, (16)

where −→α = (α1, . . . , αn)
′ , −→τ = (τ1, . . . , τn)

′ , and b∗0(x) = b + ln(x) + c ln(d) − (1 +

c) ln(min {d, x}).

This can even be further simplified in case of ties among the (αi, τi)i, that is, given the

fact that the distribution of−→α ,−→τ | p is the product of the distribution of
(
−→α ,−→τ |

−→
α∗,
−→
τ∗,p

)
and

the distribution of
(−→
α∗,
−→
τ∗ | p

)
. Taking the expectancy of (16) with respect to this product
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distribution yields

E
[
h(−→α ,−→τ ) | p

]
=

1

(1 + n)

cba

(1 + c) (b∗0(x))
a +

1x<d

(1 + n)

[
1−

ba

(b+ c ln (d/x))a

]

+
1

(1 + n)

n(p)∑

j=1

ej c∗j (b
∗
j )

a∗j

(1 + c∗j )(b
∗
j (x))

a∗j

+
1

(1 + n)

n(p)∑

j=1

ej1x<d∗j

[
1−

(b∗j )
a∗j

(b∗j + c∗j ln(d
∗
j/x))a

∗

j

]
,

where b∗j (x) = b∗j + ln(x) + c∗j ln(d
∗
j )− (1 + c∗j ) ln(min

{
d∗j , x

}
) and (a∗j , b

∗
j , c

∗
j , d

∗
j ) are given

in (8) .

Algorithm 2 Estimation of the probability tail P(X > x)

1. Sample M partitions from the distribution w(p) (cf. using the Gibbs sampler pro-

vided in section 3.2).

2. For each partition pm, given x > 0, compute the quantity

hm(x) =
1

(1 + n)

cba

(1 + c) (b∗0(x))
a +

n(pm)∑

j=1

ej

(1 + n)

c∗j (b
∗
j )

a∗j

(1 + c∗j )(b
∗
j (x))

a∗j
(17)

+
1x<d

(1 + n)

[
1−

ba

(b+ c ln (d/x))a

]

+
1

(1 + n)

n(p)∑

j=1

ej1x<d∗j


1−

(
b∗j

)a∗j

(b∗j + c∗j ln(d
∗
j/x))a

∗

j


 , (18)

where ej is the size of cluster Cj of pm, and all ∗j quantities are computed with respect

to cluster Cj of pm as in Eq. (8).

3. Compute the tail probability estimator as the mean of the (hm(x))m=1,...M .

5 Application

In this section, the Pareto based clustering is first applied to simulated data and then to

a true data set related to dietary exposure to ochratoxin A (OTA).
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In both applications, the GibbsWCR was run from a Gauss routine (cf. http://www.aptech.com

for information about the Gauss software) such that

• a burn-in of L = 10000 iterations is used,

• M = 20000 Monte Carlo iterations are computed

• a diffuse prior choice for the Gamma-Pareto hyperparameters: a = b = c = 0 and

d = ∞, which is improper. In practice, the following setting is used: a = b = c =

0.001 and d = maxi xi × 1.1.

• the parameter of the Chinese Restaurant Process is fixed to e0 = 1.

5.1 Simulated data

5.1.1 Description

Four sets of data are generated based on discrete mixtures of four Pareto distributions:
∑4

j=1 wjP(αj , τj) with the settings given in Table 1.

Table 1: Description of the simulated datasets.

w1 w2 w3 w4

Pareto Parameters (3,1) (6,1) (3,3) (6,3)

Data set 1 1 0 0 0

Data set 2 1/2 1/2 0 0

Data set 3 1/2 0 1/2 0

Data set 4 1/4 1/4 1/4 1/4

The size of each simulated data set is fixed at n = 200. For example, 100 values are

randomly selected from a P(3, 1) and 100 from a P(6, 1) to constitute data set 2. For all

of these simulated data sets, the true tail index is 3: the main goal of this simulation study

is to determine whether the proposed methodology provides a good estimation of this tail

index or not. Figure 1 gives examples of histograms obtained with the different settings.
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5.1.2 Results

Table 2 gives a description of the resulting optimal partition as well as a few outputs

of the two proposed approaches. A bias corrected Hill estimator is also computed for

comparison’s sake. The methodology here is similar to the one used in Tressou et al.

(2004), adapted from Beirlant et al. (1999) and Feuerverger and Hall (1999). Comparison

to other estimators of the tail index, namely the one proposed by Beirlant et al. (2005),

is conducted in a forthcoming study.

Table 2: Results on simulated data.

Data set 1 2 3 4

Observed maximum 4.8 3.9 3.4 2.8

Size of the optimal partition 1 1 2 2

Posterior log-likelihood (optimal partition) 800.1 880.8 803.3 836.7

Tail Index Estimator (optimal partition) from Eq. (11) 3.120 4.280 3.517 4.091

Tail Index Estimator (MCMC) from Eq. (12) 3.130 4.280 3.507 4.082

Probability of exceeding the observed maximum (MCMC) 0.81% 0.32% 0.77% 0.85%

Bias Corrected Hill 2.896 4.300 3.564 4.911

The main findings of these simulations are the following:

1. Mixtures over the location parameter τ are easily detected (cf. data set 3) whereas

mixtures over the tail index parameter α are a lot more difficult to detect (cf. data

sets 2 & 4) even if one considers data sets involving two tail indexes with a huge

difference.

2. The tail index estimator referred to as (optimal partition) in Table 2 is α(p∗), defined

in (11) , and the one referred to as (MCMC) is α̃M , defined in (12) . When both

parameters are mixed over, the two proposed Tail Index Estimators are less biased

than, or equivalent to, the Bias Corrected Hill estimator. However, our estimators

tend to overestimate α which is not desirable in risk analysis since one certainly does

not want to underestimate the risk.

3. The methodology also allows to compute any tail probability as exemplified by the

probability of exceeding the observed maximum given in Table 2. It is computed as

the mean of the (hm(maxxi))m=1,...,M as defined in (17).

4. When computing the tail index estimator and posterior log likelihood associated to

the simulated partition (the original one generically denoted p0 in the sequel, that
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is, the one with 4 clusters in the case of data set 4 as an example), we obtain the

following results:

• For data set 2, α(p0) = 3.400, π(p0|x) =730.4.

• For data set 3, α(p0) = 3.433, π(p0|x) =790.3.

• For data set 4, α(p0) = 3.223, π(p0|x) =659.0.

This illustrates the well known identifiability problem of mixture models (see for

example Marin et al., 2005) and the fact that maximizing the posterior likelihood

is not always the right approach. Indeed, the optimal partition described in Table 2

enjoys a higher posterior likelihood than the one generating the data for the three

data sets 2, 3 and 4. Furthermore, the tail index estimator associated with this

”generating” partition is still biased but (not shown) simulations empirically show

that it goes to zero for large values of n. For example for n = 3000 (OTA data set

size) in the setting of data set 2, we get α(p0) = 3.147 on one particular simulation

and 3.006 if averaging on 100 independent simulation results.

5. The ”polishing” stage described at the end of section 3.2 was applied on these simu-

lated data but does not change any of the results. Indeed, the optimal partition p∗

already has a larger likelihood than the one that generated the data.

5.2 OTA data set

5.2.1 Food risk assessment context, description of the data

Ochratoxin A (OTA) is a mycotoxin produced by fungi Aspergillus Ochraceus and Peni-

cillium Viridicatum. This mycotoxin can be detected in several food items: cereals, coffee,

grapes, pork meat, wine, beer, and so on. Ochratoxin A is nephrotoxic, genotoxic, ter-

atogenic, carcinogenic and immunosuppressive. The compound has been linked to Balkan

Endemic Nephropathy, a kidney disease frequently observed in the Balkan countries (Boižić

et al., 1995, for a review). Such a disease can appear after long and excessive exposure

to the contaminant. This exposure is not directly observed but is assessed from food

consumption surveys that record the quantity of different foods consumed and contami-

nation data mostly derived from national surveillance plans in which foods are analyzed

and contaminant levels are measured. This exposure assessment step can be conducted in

different ways which are not the concern here but are described in Kroes et al. (2002) and

the reference therein.
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The motivating true data set is composed of the possible extreme OTA exposure of

n = 3003 French individuals. More precisely, each of the 3003 individual food consumption

is observed in the INCA data (CREDOC-AFSSA-DGAL, 1999) and individual distribution

of exposure is built by a Monte Carlo simulation using the individual consumption and

the empirical distribution of several independently available OTA contamination data (cf.

Bertail and Tressou, 2006; Tressou, 2006; Counil et al., 2005, 2006, for a full description

of the data and examples of OTA exposure assessments.). Then the 95th percentile of this

simulated distribution is retained as evidence of possible extreme exposure to OTA. This

is expressed on a body weight basis (quantity of contaminant divided by body weight). A

histogram of the observations is given in Figure 2.

5.2.2 Results

Tables 3 and 4 introduce and describe the resulting optimal partitions comprising 11

clusters respectively before and after the polishing stage (that hit a fixed point after only

3 iterations) detailed at the end of Section 3.2. The two resulting optimal partitions do

not differ much, but the polished log-likelihood (LL= 4629) is 2.5 times higher than the

non polished one (LL= 1850). We observe that the cluster sizes are heterogeneous (Cluster

11 only comprises 2 or 3 individuals, respectively in the polished and non polished cases).

Analysis of the clusters is not obvious: a few socioeconomic variates were considered here

and a comparison of Tables 3 and 4 show the consistency of our findings before and after.

The proportion of female adults and under-reporting individuals (who declare insufficient

consumption in relation to their nutritional needs) decreases with an average of the 95th

percentile of exposure whereas the proportion of children increases with this average. The

body mass index (BMI: body weight divided by squared height) also decreases with the

average 95th percentile of exposure, which is in character with the usual fish consumer

typology. Cluster 9 is mostly comprised of children and this cluster enjoys the highest

average 95th percentile of exposure and the lowest BMI. These two features are consistent

with the child population in most food risk assessments.

The Cluster Tail Index (CTI), computed as the ratio a∗j/b∗j for each cluster j (see (11))

allows classification of the clusters according to risk levels, the larger the CTI, the less

serious the risk. The entire population tail index is 1.440 in the polished case, and 0.622

in the non polished case, when the estimator based on the optimal partition α(p∗) is used,

see Eq. (11) . Indeed, this is the minimum tail index among all cluster tail indexes reached

for Cluster 11 in both cases. This is not satisfactory because of the very small size of
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this cluster. Indeed, we can question here whether the estimation of the α11 is consistent

with only 2 or 3 observations in this cluster. If α̃M , defined in (12) , is used instead, the

tail index estimator is equal to 0.863 (see Figure 3) and does not depend on the polishing

stage. This last estimation is certainly much closer to the actual general tail index for the

extreme exposures to OTA. Note that the bias corrected Hill Estimator would be 11.52,

which totally misses the heaviest part of the tail.

As in the simulation, the tail probability was computed using (17) and is plotted

in Figure 4. The proposed methodology provides a nonparametric estimator of the tail

probability on the half line so that any tail probability (even an extremely small one) can

be estimated.

Table 3: Description of the resulting partition for the OTA dataset (before polishing).
MLL=Marginal log-likelihood of the cluster; CTI=Cluster Tail Index; Avg.= Average; StD.=Standard

Deviation; Min=Minimum; Max=Maximum; BMI=Body Mass Index (body weight divided by squared

height); P.Ch= proportion of Children; P.AF=proportion of Female Adults; P.UR=proportion of under-

reporting individuals.

Cluster Observations (P95 of exposure) Covariates

j Size MLL CTI Avg StD Min Max Avg.Age Avg.BMI P.Ch P.AdF P.UR

1 549 -2652.61 2.582 122.4 53.9 77.7 467.5 24.0 19.5 51.7% 6.6% 2.2%

2 259 -1121.28 1.542 50.5 50.4 20.7 369.4 39.2 24.1 17.0% 22.0% 44.0%

3 104 -427.31 1.243 32.6 45.0 10.3 366.5 42.6 25.3 14.4% 24.0% 64.4%

4 237 -863.487 4.538 59.9 16.1 46.8 161.7 36.5 23.0 18.6% 19.8% 17.7%

5 205 -622.761 9.201 64.1 7.1 57.2 101.4 34.9 22.4 26.3% 11.7% 11.2%

6 515 -2184.36 2.458 66.3 39.3 40.1 346.6 36.2 22.9 20.8% 16.7% 21.0%

7 569 -2505.73 3.127 95.0 36.2 65.7 429.0 28.9 21.0 37.3% 7.6% 4.4%

8 272 -1017.33 2.826 43.6 23.2 28.4 249.3 37.5 24.2 16.5% 19.5% 39.0%

9 278 -1390.29 2.987 157.8 51.3 108.2 364.4 15.1 17.6 76.6% 2.2% 0.4%

10 12 -42.5631 2.338 7.9 3.3 4.9 17.1 54.7 25.2 0.0% 25.0% 91.7%

11 3 -22.5831 0.622 8.1 11.2 0.7 21.0 41.7 24.8 0.0% 0.0% 66.7%

6 Discussion

The implementation of the two proposed methodologies together with classical extreme

value approaches illustrates the difficulty of estimating the tail index if the data is gener-

ated from a mixture. Yet, in many applications, this assumption holds. The two proposed

tail index estimators are actually at least as good as the Hill estimator even though the
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Table 4: Description of the resulting partition for the OTA dataset (after polishing).
MLL=Marginal log-likelihood of the cluster; CTI=Cluster Tail Index; Avg.= Average; StD.=Standard

Deviation; Min=Minimum; Max=Maximum; BMI=Body Mass Index (body weight divided by squared

height); P.Ch= proportion of Children; P.AF=proportion of Female Adults; P.UR=proportion of under-

reporting individuals.

Cluster Observations (P95 of exposure) Covariates

j Size MLL CTI Avg StD Min Max Avg.Age Avg.BMI P.Ch P.AdF P.UR

1 633 -2303.4501 6.689 90.8 8.6 77.8 108.1 31.0 21.0 33.5% 8.8% 2.7%

2 118 -307.33299 5.856 24.7 2.2 20.7 28.3 46.2 25.9 5.1% 21.2% 63.6%

3 67 -208.77301 2.474 15.7 3.0 10.3 20.6 43.4 25.8 10.4% 25.4% 76.1%

4 337 -906.07401 10.173 51.7 3.0 46.8 57.2 38.0 23.7 14.2% 18.4% 22.6%

5 293 -714.13941 15.589 61.0 2.4 57.2 65.6 37.1 22.8 21.2% 17.4% 16.0%

6 206 -483.343 12.503 43.5 2.0 40.1 46.8 39.5 23.9 12.6% 19.4% 35.4%

7 375 -1052.3487 12.391 71.3 3.5 65.7 77.7 33.1 22.3 24.5% 10.9% 8.8%

8 251 -713.35581 5.804 33.8 3.4 28.3 39.9 40.6 24.9 11.6% 23.9% 49.8%

9 710 -3559.2548 2.863 160.7 55.7 108.2 467.5 15.2 17.7 75.5% 3.5% 0.3%

10 11 -37.305571 2.838 7.1 1.6 4.9 9.7 54.6 25.1 0.0% 27.3% 90.9%

11 2 -15.761918 1.440 1.7 1.4 0.7 2.7 28.0 23.8 0.0% 0.0% 100.0%

Monte Carlo approximation is preferable above all when cluster sizes are small. The

proposed estimator for the tail probability is a good alternative to the basic empirical

estimator: still nonparametric, it does not require any specific parametric assumption ex-

cept the heavy tailed one, and has the advantage of being defined on the whole half line.

The resulting clusters are not easy to describe and, surprisingly for univariate data, they

do not correspond to a partition of the real line into disjoint intervals.

Several extensions or changes in the framework may be considered. First, in the

parametric approach, other distributions may be considered for the Pareto parameters

α and τ as mentionned in Remark 1. In the nonparametric extension, a basic Dirichlet

process was considered as the prior for the mixing distribution using Ferguson’s original

definition as in Lo (1984): G ∼ D(dG | γ). One could also use the (θ,H) parametrization

such that G ∼ D(dG | θ,H), where θ is the total mass of the base-line measure H, that

is θ corresponds to γ(U) in our setting. Going deeper in this direction the recent paper

of Lijoi et al. (2007) provides interesting extensions. Furthermore, other processes, such

as the Poisson-Dirichlet process, may be considered, see Lau and Green (2007) and the

references therein.

From the applied perspective, it would be interesting to work on the individual expo-

sure curves instead of only considering the 95th percentile of exposure for each individ-
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ual. This could be conducted using a Hierarchical Dirichlet process, also called “Chinese

Restaurant Franchise”, see Teh et al. (2006). This way, there would be a double clus-

tering of exposure values and individual exposure distributions. This would require some

computational adaptation since the data set would be huge (from the OTA data set, we

can actually get n = 3003 exposure distribution curves, described by n ×M points if M

exposure levels are simulated for each individual). The use of the Gibbs sampling methods

for stick-breaking priors proposed in Ishwaran and James (2001) will be investigated in

future work.
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A Technical details

The notations from Eq. (8) are again used in this appendix and recalled here:

a∗j = a+ ej , c∗j = c+ ej , d∗j = min

{
d,min

i∈Cj

xi

}
, b∗j = b+

∑

i∈Cj

lnxi + c ln d− c∗j ln d∗j .

A.1 Derivation of Eq. (7)

Eq. (7) is obtained by:

k(xi, i ∈ Cj) =

∫ ∫ ∏

i∈Cj

fα,τ (xi)π0(α, τ)dαdτ

=

∫ ∫ ∏

i∈Cj

[
ατ (τxi)

−(α+1) 1(τxi>1)

] [ ba

Γ(a)
αa−1e−bα

] [
cαd(dτ)−(cα+1)1(dτ>1)

]
dαdτ

=
cba

Γ(a)


∏

i∈Cj

xi



−1 ∫

αa+ej exp


−α


b+

∑

i∈Cj

lnxi + c ln d




 dα

×

(∫ ∞

τ=1/min
{

d,mini∈Cj
xi

}

τ−α(ej+c)−1dτ

)

=
cba

Γ(a)c∗j


∏

i∈Cj

xi



−1 ∫

αa∗j−1 exp
[
−αb∗j

]
dα

=


∏

i∈Cj

xi



−1

Γ(a∗j )

Γ(a)

cba

c∗j

(
b∗j

)a∗j
.

A.2 Derivation of Eq. (9)

Eq. (9) is the model driven part of the seating probability, used to reassign a measurement

t in one of the cluster Cj and denoted k(t | {xi, i ∈ Cj}). It can be obtained in two ways:

[Way 1] First, the ratio of the marginal densities of the clusters {xi, i ∈ Cj} ∪ {t} and

{xi, i ∈ Cj} , namely

k(t | {xi, i ∈ Cj}) =
k({xi, i ∈ Cj} ∪ {t})

k({xi, i ∈ Cj})
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=

t−1
(∏

i∈Cj
xi

)−1 Γ(a∗j+1)
Γ(a)

cba

(c∗j+1)(b∗j (t))
a∗

j
+1

(∏
i∈Cj

xi

)−1 Γ(a∗j )
Γ(a)

cba

c∗j(b∗j)
a∗

j

= (t−1)×
c∗ja

∗
j

(
b∗j

)a∗j

(c∗j + 1)
(
b∗j (t)

)a∗j+1
,

where b∗j (t) = b+
∑

i∈Cj
lnxi + ln t+ c ln d− c∗j ln

(
min{d∗j , t}

)
.

[Way 2] The predictive density of a new data t given observations {xi, i ∈ Cj} can also be di-

rectly computed by first computing the predictive density for no observation, namely

k(t) =
∫ ∫

fα,τ (t)π0(α, τ)dαdτ, and then replacing all hyperparameters by their up-

dated version (∗j ) given in (8) since

k(t | {xi, i ∈ Cj}) =

∫ ∫
fα,τ (t)π(α, τ | {xi, i ∈ Cj})dαdτ,

where π(α, τ | {xi, i ∈ Cj}) is the posterior density in a Pareto model with Gamma

Pareto prior, i.e. a Gamma Pareto (a∗j , b
∗
j , c

∗
j , d

∗
j ).

k(t) =

∫ ∫
fα,τ (t)π0(α, τ)dαdτ

=
cabat−1

(1 + c)(b+ ln t+ c ln d− (1 + c) ln (min {d, t}))a+1

=⇒ k(t|xi, i ∈ Cj) = (t−1)×
c∗ja

∗
j

(
b∗j

)a∗j

(c∗j + 1)
(
b∗j (t)

)a∗j+1
,

with b∗j (t) = b∗j + ln t + c∗j ln d∗j −
(
c∗j + 1

)
ln
(
min{d∗j , t}

)
which is the same as the

one obtained using the ratio method in [Way 1].

In the Pareto case, both calculations are straightforward and may be used to check on

the exactitude of the result, while for other kernel densities, there may be a edge favouring

the second one since calculations are exactly the same as the ones for the marginal densities.

From a computational point of view, remark that ej , mini∈Cj
xi and

∑
i∈Cj

lnxi are the

only quantities needed to compute the marginal of cluster Cj and the seating probability
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to cluster Cj so that there is no need to store and manipulate all the {xi, i ∈ Cj} for

j = 1, ..., n(p) in the Gibbs cycle.

A.3 Derivation of Eq. (16)

Eq. (16) is obtained by first applying the Fubini result for Dirichlet processes (see Lemma

1 of Lo (1984)). Then, given −→α = (α1, . . . , αn)
′ , −→τ = (τ1, . . . , τn)

′ and considering

h(G) = P (X > x) =
∫ ∫

P (X > x|α, τ)G(dα, dτ), we have

E(h(G) | −→α ,−→τ ) =

∫ [∫ ∫
P (X > x|α, τ)G(dα, dτ)

]
D

(
dG | Π0 +

n∑

i=1

δαi,τi

)

=
1

(Π0 +
∑n

i=1 δαi,τi
) (R2+)

[ ∫ ∫
P (X > x|α, τ)Π0(dα, dτ)

+
∑n

i=1

∫ ∫
P (X > x|α, τ) δαi,τi

(dα, dτ)

]

=
1

(1 + n)

[ ∫ ∫ [
(τx)−α 1(τx>1) + 1(τx≤1)

]
π0(α, τ)dαdτ

+
∑n

i=1 (τix)
−αi 1(τix>1) + 1(τix≤1)

]

=
1

(1 + n)

cba

(1 + c) (b∗0(x))
a +

1

(1 + n)

∫ ∫
1(τx≤1)π0(α, τ)dαdτ

+
1

(1 + n)

(
n∑

i=1

(τix)
−αi 1(τix>1) +

n∑

i=1

1(τix≤1)

)
,

where b∗0(x) = b+ ln(x) + c ln(d)− (1 + c) ln(min {d, x}) and

∫ ∫
1(τx≤1)π0(α, τ)dαdτ =

∫ ∫
1(τx≤1)

[
ba

Γ(a)
αa−1e−bα

] [
cαd(dτ)−(cα+1)1(dτ>1)

]
dαdτ

= 1x<d
cba

Γ(a)

∫
αae−(b+c ln d)α

[∫ 1/x

τ=1/d
τ−(cα+1)dτ

]
dα

= 1x<d
cba

Γ(a)

∫
αae−(b+c ln d)α

[
τ−cα

−cα

]1/x

τ=1/d

dα

= 1x<d
ba

Γ(a)

∫
αa−1e−(b+c ln d)α [dcα − xcα] dα

= 1x<d

[∫
ba

Γ(a)
αa−1e−bαdα−

ba

Γ(a)

∫
αa−1e−(b+c ln d−lnx)αdα

]

= 1x<d

[
1−

ba

(b+ c ln d− lnx)a

]
,
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so that finally,

E(h(G) | −→α ,−→τ ) =
1

(1 + n)

cba

(1 + c) (b∗0(x))
a +

1x<d

(1 + n)

[
1−

ba

(b+ c ln d− lnx)a

]

+
1

(1 + n)

(
n∑

i=1

(τix)
−αi 1(τix>1) +

n∑

i=1

1(τix≤1)

)
.
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Figure 1: Example histograms of the 4 simulated datasets (n = 200).
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Figure 2: Histogram of the 95th percentile of individual exposure (expressed in ng/kg bw/w).

30



1.81.61.41.21.00.80.60.4

800

700

600

500

400

300

200

100

0

Fr
e
q
u
e
n
c
y

Mean 0.8630

StDev 0.2526

N 20000

Figure 3: Empirical distribution of the Monte Carlo simulation for the tail index α, resulting in
the α̃M estimator.
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Figure 4: Tail estimation in the OTA dataset
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