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Abstract

Using the fact that any heavy tailed distribution can be approximated by a, possi-
bly in�nite, mixture of Pareto distributions, this paper proposes two Bayesian method-
ologies tailored to infer on distribution tails belonging to the Fréchet domain of at-
traction. Firstly, a Bayesian Pareto based clustering procedure is developed, where
the mixing distribution is chosen to be the classical conjugate prior of the Pareto dis-
tribution. It allows one to group n objects into a certain number of clusters according
to their extremal behavior. It also exhibits a new estimator for the tail index. Sec-
ondly a nonparametric extension of the model based clustering is proposed in which
the parameter of interest is the mixing distribution. Estimation of the tail probability
is conducted using a Dirichlet process prior for the unknown mixing distribution. As
an illustration, both methodologies are applied to simulated data sets and a true data
set concerning dietary exposure to a mycotoxin called Ochratoxin A.

Keywords: Dirichlet process; Model Based clustering; Ochratoxin A; Tail index
estimation.
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1 Introduction

In the food risk analysis �eld, it is accepted that dietary exposure to a contaminant is
heavy tailed or at least it can be assumed to be so in a conservative perspective, see Tressou
et al. (2004). Indeed dietary exposure to a given contaminant is de�ned as the quantity of
the contaminant one individual ingests when he consumes foods that are naturally more
or less contaminated. Di¤erent consumption behaviors yield di¤erent levels of exposure
which may present a health risk if too high. One contaminant is generally present in
more that one food so that di¤erent consumption behaviors can yield a high exposure. In
a given population, di¤erent risk levels certainly exist and clustering may be a powerful
tool to describe the population. Yet, we can not a priori say how many clusters there are
and we would like to de�ne the similarity between individuals based on their extremal
behavior.

The main idea of this paper is that heavy tailed distributions can be represented as
mixtures of Pareto distributions so that most of, if not all, heavy tailed distribution can be
expressed as a (possibly in�nite) mixture of Pareto distributions, where the mixing occurs
on the two parameters of the Pareto distribution. Two bayesian methodologies are thus
proposed to estimate the di¤erent components of this mixture: a Bayesian model-based
clustering approach (Fraley and Raftery, 2002) and a Bayesian nonparametric mixture
approach (Petrone and Raftery, 1997; Green and Richardson, 2001), following ideas ex-
posed in Lau and Lo (2007). For both approaches, the kernel is de�ned to be a Pareto
distribution while most applications are realized with a Gaussian kernel (Lau and Green,
2007; Lau and Lo, 2007) since we are speci�cally interested in these mixtures to model
heavy tailed distribution. In recent years, parametric and nonparametric Bayesian ap-
proaches have bee developped for extreme value analysis (Coles and Powell, 1996; Frigessi
et al., 2002; Bottolo et al., 2003; Stephenson and Tawn, 2004; Diebolt et al., 2005; Kottas
and Sansó, 2007). In this paper, estimators of the tail index and tail probability are de-
rived from the posterior distribution. The tail index estimator is compared to a standard
estimator (the Hill estimator).

The paper is organized as follows. Section 2 gives some background about Extreme
Value Theory and emphasizes that heavy tailed distributions can be approximated by
mixtures of Pareto distributions. Section 3 gives the general principle of Bayesian model-
based clustering as well as one MCMC algorithm to �nd the best partition (Gibbs WCR)
and presents the Pareto-based clustering. Section 4 describes the two key results for the
nonparametric extension of the model-based clustering and details the quantities one may
infer on when extremes are at stake. The last section is dedicated to the implementation of
both methodologies on simulated data �rst, with empirical validation and understanding
perspectives, and on data concerning French exposure to Ochratoxin A (OTA) in a purely
applied perspective.
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2 Characterization of the maximum domain of attraction
of the Fréchet distribution as a general mixture of Pareto
distribution

In Extreme Value Theory, one major result is the Fisher-Tippett theorem stating that
there are only three possible limiting distributions for the properly normalized maximum:
the Gumbel, the Weibull and the Fréchet distributions. These laws are called extreme
value distributions and each one corresponds to a special tail behavior: the Gumbel dis-
tribution is related to light-tailed distribution such as normal, log-normal or exponential
distributions; the Weibull distribution to �nite support distributions such as the uniform
distribution and the Fréchet distribution to heavy-tailed distributions such as Pareto,
Cauchy or Student distributions. The latter one is of prime interest in the food risk analy-
sis context since the distribution of exposure to a contaminant is often assumed to be
heavy-tailed (Tressou et al., 2004).

The usual characterization of the Fréchet maximum domain of attraction(MDA) is the
following (Embrechts et al., 1999). The tail probability can be written as

P (X > x) �x!1 Cx��
�
L(x);

where C and �� are non negative constants and L(:) is a slowly varying function, i.e. a
function satisfying the condition

8t > 0; lim
x!1

L(tx)

L(x)
= 1:

In this setting, the estimation of �� is crucial and has been studied a lot as ���1 may
be interpreted as a risk indicator. Indeed the higher ���1 is, the higher the probability
to exceed a �xed level x is. A well known estimator for ��1 is the Hill estimator based
on the k largest observations of a sample (Hill, 1975). If X1;n � : : : � Xn;n denotes the
order statistic associated to a sample (X1; : : : ; Xn) then the Hill estimator is de�ned for
k = 1; : : : ; n� 1 as

Hk;n =
1

k

kX
i=1

lnXn�i+1;n � lnXn�k;n:

The Hill estimator is obtained as a maximum likelihood estimator in the exact Pareto
model (L(x) = 1) conditionally to the number k of extreme values. It is very sensitive
to the choice of k. Indeed its bias increases with k while its variance decreases. Several
authors proposed bias correction using more or less explicit forms for the slowly varying
function L; see for example Beirlant et al. (1999); Feuerverger and Hall (1999).

These slowly varying functions naturally appear when considering mixtures of Pareto
distributions.

Let f�;� and F�;� denote the density and cumulative distribution function of the
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Pareto distribution with tail index parameter � and precision parameter � , abbreviated
by P(�; �); i.e.

1� F�;� (x) = (�x)��1(�x>1) + 1(�x�1)

f�;� (x) = ��(�x)�(�+1)1(�x>1); (1)

where 1(A) is the indicator function, equal to 1 if A is true, 0 otherwise.
If G is an unknown mixing distribution over the two dimensional parameter space

�1 ��2� R2+, then the tail probability is

P (X > x) =

Z
�1

Z
�2

P (X > xj�; �)G(d�; d�) =
Z
�1

Z
�2

[1� F�;� (x)]G(d�; d�): (2)

In the case of a discrete mixing distribution, if (�; �) = (�j ; � j) with probability wj ,
j = 1; : : : ; J , such that

PJ
j=1wj = 1; and �1 � : : : � �J ; then

P (X > x) =
JX
j=1

wj(� jx)
��j1(�jx>1) + 1(�jx�1) �x!1 Cx��

�

0@1 + JX
j=2

Dj�1x
��j�1

1A ;
(3)

where �� = minj=1;:::J �j(= �1) and the (Dj ; �j) and C are non negative constants such
that �1 � : : : � �J�1. More precisely, C = w1(�1)

��1 ; and for j = 2; : : : ; J; �j�1 =

�j � �1and Dj�1 = wj(� j)
��j=w1(�1)��1 : The quantity L(x) = (1 +

PJ
j=2Dj�1x

��j�1)
is a slowly varying function, meaning that any discrete mixture of Pareto distributions is
of the Fréchet type. Moreover, a natural estimator of the tail index � is the minimum tail
index parameter of the Pareto components of the mixture.

This argument does not prove any identity between the Fréchet MDA and the set of
all possibly in�nite mixtures of Pareto distributions but advocates for an approximation
of the Fréchet MDA with such mixtures.

3 Bayesian model based clustering

3.1 General principle

For statistical clustering of n objects, it is assumed that the numerical measurements,
x = (x1; : : : ; xn), of the n objects have a joint model density given a certain partition of
the n objects. Given a partition p = fC1; : : : ; Cn(p)g of the indices f1; : : : ; ng of the n
objects, the measurements of the objects are modeled by a classi�cation likelihood that,
given p; has a product form

f(xjp) =
n(p)Y
j=1

k(xi; i 2 Cj);
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where k(xi; i 2 Cj) is the joint density of the measurements for objects in cluster Cj ,
k(xi; i 2 f1; : : : ; ng) = k(x) being the joint density of the whole data x. Typically, in a
Bayesian framework, these joint densities results from a former parametric inference in
which, given an unknown parameter � with prior distribution �0(�)d�, the xi are assumed
to be i.i.d. from a model density f�. Then k(xi; i 2 Cj) is just the normalization constant
of the posterior distribution of � given the measurements of cluster Cj , given by

k(xi; i 2 Cj) =
Z Y

i2Cj

f�(xi)�0(�)d�:

Alternatively, they can be directly assigned to some chosen function of the xi; i 2 Cj that
measures the homogeneity within the cluster, see Lau and Green (2007) for more details.
When the �rst option is retained, direct calculation of the k(xi; i 2 Cj) is easily achievable
if the prior for � is chosen to be the conjugate prior for the model density f�. Most of the
applications of model-based clustering concern the Normal model, prior choice being the
usual Gamma-Normal distribution, yielding the k(xi; i 2 Cj) to be t-densities, see Lau
and Lo (2007) for an application to gene clustering.

As the "classi�cation likelihood" f(xjp) is chosen, the partition is now the unknown
parameter for which a prior-posterior analysis is required. A conjugate prior for p can be
any distribution that has the product form, namely

�(p) /
n(p)Y
j=1

g(Cj): (4)

In this case, the posterior distribution of p given the data is also of the product form

�(pjx) /
n(p)Y
j=1

g�(Cj);

where g�(Cj) = g(Cj)� k(xi; i 2 Cj).
Finally, an estimator of the optimal clustering is the one that maximizes the posterior

distribution, which can be approximated by MCMC techniques. Lau and Green (2007)
also propose other estimators based on the minimization of loss functions. The usual
Gibbs sampler is used in this paper and described in section 3.2.

For the prior choice, the only requirement is the product form given in (4) so that
many prior distributions can be used. A very convenient one is the Chinese Restaurant
Process with parameter e0, CRP(e0), for which g(Cj) = e0� (ej � 1)!, where ej is the size
of cluster Cj . The parameter e0 can be interpreted as the expected number of clusters.
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3.2 Implementation: Gibbs Weighed Chinese Restaurant Process

In this section, the Gibbs sampler used in the application is described for a CRP(e0) prior
distribution on partitions. This is only one of several possible algorithms (see Lau and
Lo, 2007; Lau and Green, 2007; Quintana and Iglesias, 2003, and the references therein).

Algorithm 1 Choose an initial partition p0 (the one with n clusters p0 = ff1g; :::; fngg
is the default choice).
Then, repeat L +M times (L times for burn in / warm up and M times for estimation
of any function h(p)) the following Gibbs cycle:

For i = 1; :::n; do

� Remove fig from the current partition p of f1; :::; ng to get a partition p(�i) of
f1; :::; i� 1; i+ 1; :::; ng (n� 1 elements)

� fig is then assigned to the cluster j, j = 1; :::; n(p(�i)) with probability proportional
to

g�(Cj [ fig)
g�(Cj)

= ej �
k(xl; l 2 Cj [ fig)
k(xl; l 2 Cj)

= ej � k(xijxl; l 2 Cj) (5)

and to a new one with probability proportional to e0 � k(xi).

The assignment of fng completes a Gibbs cycle and the last partition is stored and used
as initial one in the next cycle.

The L + M + 1 partitions, p0;p1; :::;pL;pL+1; :::;pL+M ; are then used to compute
estimators for quantities such as � =

P
p �(pjx)h(p) or p� = maxp �(pjx); namely

f�M =
1

M

L+MX
m=L+1

h(pm); fp� = arg max
m=0;:::;L+M

�(pmjx):

3.3 Pareto-based clustering

In the Pareto-based clustering, the model density is f�;� given in (1) and a conjugate prior
for (�; �) is retained. The classical conjugate family for the Pareto model is the Gamma-
Pareto(a; b; c; d), such that � � �(a; b); and � j� � P(c�; d) with a; b; c; and d > 0; i.e.

�0(�; �) / �a�1e�b��d(d�)�(c�+1)1(d�>1) (6)

Straightforward computations yields the following marginal densities

k(xi; i 2 Cj) =
Z Z Y

i2Cj

f�;� (xi)�0(�; �)d�d� =

0@Y
i2Cj

xi

1A�1 �
�
a�j

�
� (a)

cba

c�j

�
b�j

�a�j (7)
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with

a�j = a+ej ; c�j = c+ej ; d�j = min

�
d;min
i2Cj

xi

�
; b�j = b+

X
i2Cj

lnxi+c ln d�c�j ln d�j ; (8)

where ej is the size of cluster Cj :
Then, the model driven part of so called seating probabilities of the Gibbs sampler (cf.

Eq. (5)) are such that

k(tjxi; i 2 Cj) = (t�1)�
c�ja

�
j

�
b�j

�a�j
(c�j + 1)

�
b�j (t)

�a�j+1 ; (9)

where b�j (t) = b+
P
i2Cj lnxi + ln t+ c ln d�

�
c�j + 1

�
ln
�
min

n
d�j ; t

o�
.

For this Pareto-based model, the optimal clustering determined as p� = maxp �(pjx)
allows to characterize the studied objects in term of extreme behavior. For example,
in the food safety context, an analysis of the cluster composition would help food safety
authorities to target their consumption recommendation campaigns towards to the riskiest.
An interesting quantity to compute for the cluster description is the expected value of the
tail index within each cluster E(� j fxi; i 2 Cjg): Since the posterior marginal of � j
fxi; i 2 Cjg is a Gamma distribution with parameters (a�j ; b�j ); E(� j fxi; i 2 Cjg) = a�j=b�j .
This also gives a way to �nd another estimator for the tail index of the whole data (xi)i
(to be compared to the Hill horror plot!). Indeed, if p� denotes the optimal partition,

�(p�) = min
j=1;:::;n(p�)

E(� j fxi; i 2 Cjg) = min
j=1;:::;n(p�)

a�j
b�j

(10)

is an estimator of �� the general tail index, cf. the leading term in the expansion given in
(3) :

Another estimator for �� is the one given by

e�M =
1

M

L+MX
m=L+1

�(pm); (11)

computed from the M partitions sampled from �(pjx).

Remark 1 [Conjugate Prior Choice] The chosen conjugate prior family is the one de�ned
as the modi�ed Lwin Priors in Arnold and Press (1989). A larger one is described in Arnold
et al. (1998), it also includes one prior such that �j� � �(a(�); b(�)); and the independent
Gamma and Pareto priors, it is a 6-parameter family which could also be used in this
model-based clustering. However the nonparametric methodology introduced in the next
section is even more general.
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Remark 2 From a practical point of view, the computation of the driven part of the
seating probability in (9) needs to be carefully checked since over�ow problems often
occur in the presence of terms such as ba with large values of a: The solution is therefore
to use logarithm and exponential functions to avoid any unde�ned values (NaN).

Remark 3 [Tail behavior of the Gamma-Pareto predictive density] One can easily com-
pute the tail probability of the Gamma-Pareto predictive distribution as

P (X > x) =
cba

(1 + c)b0(x)a

where b0(x) = b + lnx + c ln d � (c+ 1) ln (min fd; xg) : For large x (x > d); b0(x) =
b+ lnx� ln d and

lim
x!1

P (X > tx)

P (X > x)
= (1 + ln t)�a ;

which belongs to the Fréchet MDA.

4 Bayesian Nonparametric mixture methods

In this section, a general mixture of Pareto distributions is considered. The unknown
mixing distribution G is now an in�nite dimensional parameter of the model and quantities
of the form E [h(G)jx] ; such as the tail probability given in (2), are of interest.

4.1 Two key results

Let us �rst recall two key results of Bayesian Nonparametric statistics (see Theorems 1
and 2 in Lo, 1984, and the references therein) in a general framework before considering
the mixture of Pareto distributions.

The model assumption for a mixture model is

f(x j G) =
Z
k(x j u)G(du);

where G is an unknown distribution (the parameter) and k is a known kernel density in x
with parameter u 2 U � Rk; so that

R
k(x j u)dx = 1:

The natural prior distribution for G is the Dirichlet process (Ferguson, 1973) with a
nondecreasing shape function  such that (U) <1: It is denoted G � D(dG j ):

Theorem 2 If G � D(dG j ) and x = (x1; :::; xn) j G are i.i.d. f(x j G); then for any
nonnegative function h

E [h(G)jx] =
Z
: : :

Z "Z
h(G)D

 
dG j  +

nX
i=1

�ui

!#
�n
�
d�!u
�

(12)
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where �!u = (u1; :::; un);

�n
�
d�!u
�
=

Qn
i=1 k(xi j ui)�n

�
d�!u
�R

: : :
R Qn

i=1 k(xi j ui)�n
�
d�!u
� ;

�n
�
d�!u
�
=

nY
i=1

0@ + i�1X
j=1

�uj

1A (dui);
and

Z
: : :

Z
n
�
�
d�!u
�
=

�((U) + n)

�((U))
:

Remark 4 �n
�
d�!u
�
can be seen as a weighted Blackwell-MacQueen urn distribution since

Bn
�
d�!u
�
=

�n(d
�!u )R

:::
R
n �(d

�!u )
is called the Blackwell-MacQueen urn distribution (Blackwell and

MacQueen, 1973).

This �rst theorem reduces an in�nite dimensional integral (on G) to a n-folded one (on
u). The second result reduces the n-folded integral to a sum over partitions which allows
to use the same MCMC techniques as the ones described in the previous section.

Theorem 3 Denoting
R
h(G)D (dG j �+

Pn
i=1 �ui) = E(h(G) j

�!u ) = h(�!u ); and

w(p) =

n(p)Y
j=1

(ej � 1)!
Z Y

i2Cj

k(xi j u)(du); (13)

then

E (h(G)jx) =
Z
: : :

Z
E(h(G) j �!u )�n

�
d�!u
�
=
X
p

w (p)E
�
h(�!u ) j p

�
;

where the distribution of �!u j p as the product of the distribution of
��!u j �!u�;p� and the

distribution of
��!
u� j p

�
; i.e.

� For j = 1; :::; n(p); u�j are i.i.d. �(du j Cj); with

�(du j Cj) /
Y
i2Cj

k(xi j u)(du) =
Q
i2Cj k(xi j u)(du)R Q
i2Cj k(xi j u)(du)

; (14)

� For j = 1; :::; n(p); ui = u�j if i 2 Cj :

This result is used in di¤erent manners to conduct MonteCarlo approximations of the
quantity E (h(G)jx) depending on the form of h(G). If the density h(G) = f(tjG) or the
mixing distribution h(G) = G(t) are to be estimated, further simpli�cations occur since
h(�!u ) has an explicit form.
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4.2 General mixture of Pareto distributions

Let us now turn back to the case of the mixture of Pareto distributions and the model
assumption given by

f(x j G) =
Z Z

f�;� (x)G(d�; d�):

By analogy, u = (�; �) 2 R2+; k(: j u) = f�;� (:); the prior distribution for G is cho-
sen to be a Dirichlet process with shape  = �0 such that (d�; d�) = �0(d�; d�) =
�0(�; �)d�d�; where �0(�; �) is the Gamma-Pareto density de�ned in (6) so that expres-
sions (13) and (14) are easily computed from the prior-posterior analysis done in section
3.3. Indeed, the expression in (13) exactly matches the posterior distribution of partitions
of the Pareto-based clustering. The expression in (14) is the Gamma-Pareto distribution
with parameters (a�j ; b

�
j ; c

�
j ; d

�
j ) since it is the posterior distribution of (�; �); when the

fxi; i 2 Cjg given (�; �) are assumed to be P(�; �); with prior �0(�; �):
When the quantity of interest is the tail probability, namely when

h(G) = P(X > x) =

Z Z
P (X > xj�; �)G(d�; d�);

simple Dirichlet calculation and integration yield

h(�!� ;�!� ) = E(h(G) j �!� ;�!� )

=

Z �Z Z
P (X > xj�; �)G(d�; d�)

�
D
 
dG j �0 +

nX
i=1

��i;� i

!

=
1

(1 + n)

cba

(1 + c) (b�0(x))
a +

1x<d
(1 + n)

�
1� ba

(b+ c ln (d=x))a

�
+

1

(1 + n)

 
nX
i=1

(� ix)
��i 1(� ix>1) +

nX
i=1

1(� ix�1)

!
; (15)

where �!� = (�1; : : : ; �n)
0 ; �!� = (�1; : : : ; �n)

0 ; and b�0(x) = b + ln(x) + c ln(d) � (1 +
c) ln(min fd; xg):

This can even be further simpli�ed in case of ties among the (�i; � i)i; i.e. using the fact

that the distribution of�!� ;�!� j p is the product of the distribution of
��!� ;�!� j �!��;�!� �;p� and

the distribution of
��!
��;

�!
� � j p

�
: Taking the expectancy of (15) with respect to this product

distribution yields

E
�
h(�!� ;�!� ) j p

�
=

1

(1 + n)

cba

(1 + c) (b�0(x))
a +

1x<d
(1 + n)

�
1� ba

(b+ c ln (d=x))a

�

+
1

(1 + n)

n(p)X
j=1

ej c�j (b
�
j )
a�j

(1 + c�j )(b
�
j (x))

a�j
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+
1

(1 + n)

n(p)X
j=1

ej1x<d�j

"
1�

(b�j )
a�j

(b�j + c
�
j ln(d

�
j=x))

a�j

#
;

where b�j (x) = b
�
j + ln(x) + c

�
j ln(d

�
j )� (1 + c�j ) ln(min

n
d�j ; x

o
) and (a�j ; b

�
j ; c

�
j ; d

�
j ) are given

in (8) :

Algorithm 4 Estimation of the probability tail P(X > x)

1. Sample M partitions from the distribution w(p) (cf. using the Gibbs sampler pro-
vided in section 3.2).

2. For each partition pm; for certain values of x; compute the quantity

hm(x) =
1

(1 + n)

cba

(1 + c) (b�0(x))
a +

n(pm)X
j=1

ej
(1 + n)

c�j (b
�
j )
a�j

(1 + c�j )(b
�
j (x))

a�j
(16)

+
1x<d
(1 + n)

�
1� ba

(b+ c ln (d=x))a

�

+
1

(1 + n)

n(p)X
j=1

ej1x<d�j

2641�
�
b�j

�a�j
(b�j + c

�
j ln(d

�
j=x))

a�j

375 ; (17)

where ej is the size of cluster Cj of pm; and all �j quantities are computed with respect
to cluster Cj of pm.

3. Compute the tail probability estimator as the mean of the (hm(x))m=1;:::M :

5 Application

In this section, the Pareto based clustering is �rst applied to simulated data and then to
a true data set related to dietary exposure to ochratoxin A (OTA).

In both applications, the GibbsWCR was run from a Gauss routine (cf. http://www.aptech.com
for information about the Gauss software) such that

� a burn-in of L = 10000 iterations is used;

� M = 20000 Monte Carlo iterations are computed

� a di¤use prior choice for the Gamma-Pareto hyperparameters: a = b = c = 0 and
d = 1; which is improper. In practice, the following setting is used: a = b = c =
0:001 and d = maxi xi � 1:1:

� the parameter of the Chinese Restaurant Process is �xed to e0 = 1:
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5.1 Simulated data

5.1.1 Description

Four sets of data are generated based on discrete mixtures of four Pareto distributions:P4
j=1wjP(�j ; � j) with the settings given in Table 1.

Table 1: Description of the simulated datasets.

w1 w2 w3 w4
Pareto Parameters (3,1) (6,1) (3,3) (6,3)

Data set 1 1 0 0 0

Data set 2 1/2 1/2 0 0

Data set 3 1/2 0 1/2 0

Data set 4 1/4 1/4 1/4 1/4

The size of each simulated data set is set to n = 200. For example, 100 values are
randomly selected from a P(3; 1) and 100 from a P(6; 1) to constitute data set 2. For all
these simulated data sets, the true tail index is 3: the main goal of this simulation study
is to determine whether the proposed methodology provides a good estimation of this tail
index or not. Figure 1 gives examples of histograms obtained with the di¤erent settings.

5.1.2 Results

Table 2 gives a description of the resulting optimal partition as well as a few outputs
of the two proposed approaches. A bias corrected Hill estimator is also computed for
comparison�s sake. The methodology used here is similar to the one used in Tressou et al.
(2004), adapted from Beirlant et al. (1999) and Feuerverger and Hall (1999). Comparison
to other estimators of the tail index, namely the one proposed by Beirlant et al. (2005),
will be conducted in a forthcoming study.

The main �ndings of these simulations are the following:

1. Mixtures over the location parameter � are easily detected (cf. data set 3) whereas
mixtures over the tail index parameter � are a lot more di¢ cult to detect (cf. data
sets 2 & 4) even if one considers data sets involving two tail indexes with a huge
di¤erence.

2. The tail index estimator referred to as (optimal partition) in Table 2 is �(p�); de�ned
in (10) ; and the one referred to as (MCMC) is e�M ; de�ned in (11) : When both
parameters are mixed over, the two proposed Tail Index Estimators are less biased
than, or equivalent to, the Bias Corrected Hill estimator. However, our estimators
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Table 2: Results on simulated data.

Data set 1 2 3 4

Observed maximum 4.8 3.9 3.4 2.8

Size of the optimal partition 1 1 2 2

Posterior log-likelihood (optimal partition) 800.1 880.8 803.3 836.7

Tail Index Estimator (optimal partition) 3.120 4.280 3.517 4.091

Tail Index Estimator (MCMC) 3.130 4.280 3.507 4.082

Probability of exceeding the observed maximum (MCMC) 0.81% 0.32% 0.77% 0.85%

Bias Corrected Hill 2.896 4.300 3.564 4.911

tend to overestimate � which is not desirable in risk analysis since one certainly does
not want to underestimate the risk.

3. The methodology also allows to compute any tail probability as exempli�ed by the
probability of exceeding the observed maximum given in Table 2. It is computed as
the mean of the (hm(maxxi))m=1;:::;M as de�ned in (16).

4. When computing the tail index estimator and posterior log likelihood associated to
the simulated partition (the original one generically denoted p0 in the sequel, i.e.
the one with 4 clusters in the case of data set 4 for example), we obtain the following
results:

� For data set 2, �(p0) = 3:400; �(p0jx) =730:4:
� For data set 3, �(p0) = 3:433; �(p0jx) =790:3:
� For data set 4, �(p0) = 3:223; �(p0jx) =659:0:

This illustrates the well known identi�ability problem of mixture models (see for
example Marin et al., 2005) and the fact that maximizing the posterior likelihood
is not always the right approach. Indeed, the optimal partition described in Table
2 enjoys a higher posterior likelihood than the one generating the data for the three
data sets 2, 3 and 4. Furthermore, the tail index estimator associated with this
"generating" partition is still biased but not shown simulations empirically show
that it goes to zero for large values of n:For example for n = 3000 (size of the
OTA data set) in the setting of data set 2; we get �(p0) = 3:147 on one particular
simulation and 3:006 if averaging on 100 independent simulation results.

5.2 OTA data set

5.2.1 Food risk assessment context, description of the data

Ochratoxin A (OTA) is a mycotoxin produced by fungi Aspergillus Ochraceus and Peni-
cillium Viridicatum. This mycotoxin can be detected in several food items: cereals, co¤ee,

13



grapes, pork meat, wine, beer. . . Ochratoxin A is nephrotoxic, genotoxic, teratogenic,
carcinogenic and immunosuppressive. The compound has been linked to Balkan Endemic
Nephropathy, a kidney disease frequently observed in the Balkan countries (Boiµzíc et al.,
1995, for a review). Such disease can appear after a long and excessive exposure to the
contaminant. This exposure is not directly observed but is assessed from food consump-
tion surveys that record the consumed quantity of di¤erent foods and contamination data
mostly resulting from national surveillance plans in which foods are analyzed and conta-
minant levels are measured. This exposure assessment step can be conducted in di¤erent
ways which are not the concern here but are described in Kroes et al. (2002) and the
reference therein.

The motivating true data set is composed of possible extreme OTA exposures of
n = 3003 French individuals. More precisely, each of the 3003 individual food consumption
is observed from the INCA data (CREDOC-AFSSA-DGAL, 1999) and individual distrib-
ution of exposure is built by a Monte Carlo simulation using the individual consumption
and the empirical distribution of several independently available OTA contamination data
(cf. Bertail and Tressou, 2006; Tressou, 2006; Counil et al., 2005, 2006, for a full descrip-
tion of the data and examples of OTA exposure assessments.). Then the 95th percentile
of this simulated distribution is retained as a possibly extreme exposure to OTA. It is
expressed on a body weight basis (quantity of contaminant divided by body weight). The
histogram of the observations is given in Figure 2.

5.2.2 Results

Table 3 introduces the description of the resulting optimal partition comprising 11 clus-
ters. We observe that the cluster sizes are heterogeneous (Cluster 11 only comprises 3
individuals). Description of the clusters is not obvious: a few socioeconomic variates were
considered here. The proportion of female adults and under-reporting individuals (who
do not declare enough consumption compared to their nutritional needs) are decreasing
with the average of the 95th percentile of exposure whereas the proportion of children is
increasing with this average. The body mass index (BMI: body weight divided by squared
height) is also decreasing with the average P95 of exposure, which is coherent with the
usual �sh consumer typology. Cluster 9 is mostly constituted of children and this clus-
ter enjoys the highest.average P95 of exposure and the lowest BMI. These two features
characterize the children population in most food risk assessments.

The Cluster Tail Index (CTI), computed as the ratio a�j=b
�
j for each cluster j (see (10))

allows to classify the clusters according to risk levels, the larger the CTI, the less serious
the risk. The entire population tail index is very close to 0:622 if considering the one
related to the optimal partition �(p�); de�ned in (10) : Indeed, this is the minimum tail
index among all cluster tail indexes, reached for cluster 11. If e�M ; de�ned in (11) ; is used,
the tail index estimator is equal to 0:863 while the bias corrected Hill Estimator would be
11:52 which totally misses the heaviest part of the tail.

As in the simulation, the tail probability was computed using (16)and is plotted in
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Figure 3. The proposed methodology provides a nonparametric estimator of the tail
probability on the half line so that any tail probability (even an extremely small one) can
be estimated.

Table 3: Description of the resulting partition for the OTA dataset.
MLL=Marginal log-likelihood of the cluster; CTI=Cluster Tail Index; Avg.= Average; StD.=Standard

Deviation; Min=Minimum; Max=Maximum; BMI=Body Mass Index (body weight divided by squared

height); P.Ch= proportion of Children; P.AF=proportion of Female Adults; P.UR=proportion of under-

reporting individuals.

Cluster Observations (P95 of exposure) Covariates

j Size MLL CTI Avg StD Min Max Avg.Age Avg.BMI P.Ch P.AdF P.UR

1 549 -2652.61 2.582 122.4 53.9 77.7 467.5 24.0 19.5 51.7% 6.6% 2.2%

2 259 -1121.28 1.542 50.5 50.4 20.7 369.4 39.2 24.1 17.0% 22.0% 44.0%

3 104 -427.31 1.243 32.6 45.0 10.3 366.5 42.6 25.3 14.4% 24.0% 64.4%

4 237 -863.487 4.538 59.9 16.1 46.8 161.7 36.5 23.0 18.6% 19.8% 17.7%

5 205 -622.761 9.201 64.1 7.1 57.2 101.4 34.9 22.4 26.3% 11.7% 11.2%

6 515 -2184.36 2.458 66.3 39.3 40.1 346.6 36.2 22.9 20.8% 16.7% 21.0%

7 569 -2505.73 3.127 95.0 36.2 65.7 429.0 28.9 21.0 37.3% 7.6% 4.4%

8 272 -1017.33 2.826 43.6 23.2 28.4 249.3 37.5 24.2 16.5% 19.5% 39.0%

9 278 -1390.29 2.987 157.8 51.3 108.2 364.4 15.1 17.6 76.6% 2.2% 0.4%

10 12 -42.5631 2.338 7.9 3.3 4.9 17.1 54.7 25.2 0.0% 25.0% 91.7%

11 3 -22.5831 0.622 8.1 11.2 0.7 21.0 41.7 24.8 0.0% 0.0% 66.7%

6 Discussion

The implementation of the two proposed methodologies together with classical extreme
value approaches illustrates the di¢ culty to estimate the tail index if the data is gener-
ated from a mixture. Yet, in many applications, this assumption holds. The two proposed
tail index estimators are actually at least as good as the Hill estimator. The proposed
estimator for the tail probability is a good alternative to the basic empirical estimator:
still nonparametric, it has the advantage to be de�ned on the whole half line. The re-
sulting clusters are not easy to describe and, surprisingly for univariate data, they do not
correspond to a partition of the real line into disjoint intervals.

Several extensions or changes in the framework may be considered. First, in the
parametric approach, other distributions may be considered for the Pareto parameters
� and � as mentionned in Remark 1. In the nonparametric extension, a basic Dirichlet
process was considered as the prior for the mixing distribution using the original Ferguson�s
de�nition as in Lo (1984): G � D(dG j ): One could also use the (�;H) parametrization
such that G � D(dG j �;H); where � is the total mass of the base-line measure H; that is

15



� corresponds to (U) in our setting. Going deeper in this direction the recent paper of
Lijoi et al. (2007) provides interesting extensions. Furthermore, other processes may be
considered, see Lau and Green (2007) and the references therein.

From the applied perspective, it would be interesting to work on the individual expo-
sure curves instead of only considering the 95th percentile of exposure for each individ-
ual. This could be conducted using a Hierarchical Dirichlet process, also called �Chinese
Restaurant Franchise�, see Teh et al. (2006). There would this way be a double clus-
tering of exposure values and individual exposure distribution. This would require some
computational adaptation since the data set would be huge (from the OTA data set, we
can actually get n = 3003 exposure distribution curves, described by n �M points if M
exposure levels are simulated for each individual). The investigation of the use of the
Gibbs sampling methods for stick-breaking priors proposed in Ishwaran and James (2001)
will be investigated in future work.
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A Technical details

The notations from Eq. (8) are again used in this appendix and recalled here:

a�j = a+ ej ; c�j = c+ ej ; d�j = min

�
d;min
i2Cj

xi

�
; b�j = b+

X
i2Cj

lnxi + c ln d� c�j ln d�j :

A.1 Derivation of Eq. (7)

Eq. (7) is obtained by:

k(xi; i 2 Cj) =

Z Z Y
i2Cj

f�;� (xi)�0(�; �)d�d�

=

Z Z Y
i2Cj

h
�� (�xi)

�(�+1) 1(�xi>1)

i � ba

�(a)
�a�1e�b�

� h
c�d(d�)�(c�+1)1(d�>1)

i
d�d�

=
cba

�(a)

0@Y
i2Cj

xi

1A�1 Z �a+ej exp

24��
0@b+X

i2Cj

lnxi + c ln d

1A35 d�
�
 Z 1

�=1=min
n
d;mini2Cj xi

o ���(ej+c)�1d�
!

=
cba

�(a)c�j

0@Y
i2Cj

xi

1A�1 Z �a
�
j�1 exp

�
��b�j

�
d�

=

0@Y
i2Cj

xi

1A�1 �(a�j )
�(a)

cba

c�j

�
b�j

�a�j :
A.2 Derivation of Eq. (9)

Eq. (9) is the model driven part of the seating probability, used to reassign a measurement
t in one of the cluster Cj and denoted k(t j fxi; i 2 Cjg): It can be obtained in two ways:

[Way 1] First, the ratio of the marginal densities of the clusters fxi; i 2 Cjg [ ftg and
fxi; i 2 Cjg ; namely

k(t j fxi; i 2 Cjg) =
k(fxi; i 2 Cjg [ ftg)
k(fxi; i 2 Cjg)
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=

t�1
�Q

i2Cj xi
��1 �(a�j+1)

�(a)
cba

(c�j+1)(b�j (t))
a�
j
+1�Q

i2Cj xi
��1 �(a�j )

�(a)
cba

c�j(b�j)
a�
j

= (t�1)�
c�ja

�
j

�
b�j

�a�j
(c�j + 1)

�
b�j (t)

�a�j+1 ;
where b�j (t) = b+

P
i2Cj lnxi + ln t+ c ln d� c

�
j ln

�
minfd�j ; tg

�
:

[Way 2] The predictive density of a new data t given observations fxi; i 2 Cjg can also be di-
rectly computed by �rst computing the predictive density for no observation, namely
k(t) =

R R
f�;� (t)�0(�; �)d�d�; and then replacing all hyperparameters by their up-

dated version (�j ) given in (8) since

k(t j fxi; i 2 Cjg) =
Z Z

f�;� (t)�(�; � j fxi; i 2 Cjg)d�d�;

where �(�; � j fxi; i 2 Cjg) is the posterior density in a Pareto model with Gamma
Pareto prior, i.e. a Gamma Pareto (a�j ; b

�
j ; c

�
j ; d

�
j ):

k(t) =

Z Z
f�;� (t)�0(�; �)d�d�

=
cabat�1

(1 + c)(b+ ln t+ c ln d� (1 + c) ln (min fd; tg))a+1

=) k(tjxi; i 2 Cj) = (t�1)�
c�ja

�
j

�
b�j

�a�j
(c�j + 1)

�
b�j (t)

�a�j+1 ;
with b�j (t) = b

�
j + ln t + c

�
j ln d

�
j �

�
c�j + 1

�
ln
�
minfd�j ; tg

�
which is the same as the

one obtained using the ratio method in [Way 1].

In the Pareto case, both calculations are straightforward and may be used to check on
the exactitude of the result, while for other kernel densities, there may be a edge favouring
the second one since calculations are exactly the same as the ones for the marginal densities.

From a computational point of view, remark that ej ; mini2Cj xi and
P
i2Cj lnxi are the

only quantities needed to compute the marginal of cluster Cj and the seating probability
to cluster Cj so that there is no need to store and manipulate all the fxi; i 2 Cjg for
j = 1; :::; n(p) in the Gibbs cycle.
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A.3 Derivation of Eq. (15)

Eq. (15) is obtained by �rst applying the Fubini result for Dirichlet processes (see Lemma
1 of Lo (1984)). Then, given �!� = (�1; : : : ; �n)

0 ; �!� = (�1; : : : ; �n)
0 and considering

h(G) = P (X > x) =
R R
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Figure 1: Example histograms of the 4 simulated datasets (n = 200).
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Figure 2: Histogram of the 95th percentile of individual exposure (expressed in ng/kg bw/w).
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Figure 3: Tail estimation in the OTA dataset
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