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Abstract

Let X be a real Banach space with a normalized duality mapping uni-
formly norm-to-weak* continuous on bounded sets or a reflexive Banach
space which admits a weakly continuous duality mapping Je with gauge ¢.
Let f be an a-contraction and {15, } a sequence of nonexpansive mapping,
we study the strong convergence of explicit iterative schemes

Tnt1 = anf(xn) + (1 — an)Thzn (1)

with a general theorem and then recover and improve some specific cases
studied in the literature [T, 8] 31 T4 3] @].
1 Introduction and preliminaries

Let X be a real Banach space, C' a nonempty closed convex subset of X. Recall
that a mapping T : C' — C is nonexpansive if | T(x) — T(y)|| < ||lx — y|| for all
x,y € C and a mapping f : C'+— C' is an a-contraction if there exists o € (0, 1)
such that ||f(z) — f(y)|| < aflz —y|| for all z, y € C.

We denote by Fixz(T) the set of fixed points of T, that is

Fiz(T) = {z € C : Tx =2z} (2)
and I will denote the collection of contractions on C'.

Let X be a real Banach space. The (normalized) duality map J : X — X*|
where X™ is the dual space of X, is defined by :

J@) = {or e X* 5 (o,0) = ol = ¥}
and there holds the inequality

lz +ylI* < l|z)” +2 (g, j (@ + y)) where z,y € X and j(z +y) € J(x+y).

*Cermics, Ecole Nationale des Ponts et Chaussées, 6 et 8 avenue Blaise Pascal, 77455,
Marne la Vallée, Cedex, France



Recall that if C and F' are nonempty subsets of a Banach space X such that
C is nonempty closed convex and F' C C, then a map R : C — F is called a
retraction from C onto F if R(x) = x for all z € F. A retraction R: C'+— F is
sunny provided R(z + t(z — R(z))) = R(x) for all z € C and ¢t > 0 whenever
x4+ t(x — R(z)) € C. A sunny nonexpansive retraction is a sunny retraction,
which is also nonexpansive.

Suppose that F' is the non empty fixed point set of a nonexpansive mapping
T :C — C, that is F = FizT # () and assume that F is closed. For a
given u € C and every t € (0,1) there exists a fixed point, denoted z;, of the
(1 — t)-contraction tu + (1 — t)T. Then we define Q : C — F = Fiz(T) by
Q(u) = o-limy_o z; when this limit exists (o-lim denotes the strong limit). Q
will also be denoted by @ i (1) Wwhen necessary and note that it is easy to check
that, when it exists, ) is a nonexpansive retraction.

Consider now f an a-contraction, then Qpi,(1) © f is also an a-contraction
and admits therefore a unique fixed point & = Qr o f(Z). We define by Q(f) or
Qriz(r)(f) the mapping Q(f) : Il — Fiz (T') such that :

Q(f) i where i= (QFiz(T) o f)(7). (3)

For t € (0,1) we can also find a fixed point, denoted z of the (1 — (1 —t)a)-
contraction tf+ (1 —¢)T and if lim;_,¢o xf is well defined we can define a mapping
Q: ¢ — Fix(T) by :

Q) “limrf  where  af = tf(x])+ (1~ )T (4)

We then gather know theorems under which @, Q and C} are defined and
give relations between them.

When X is a uniformly smooth Banach space, denoted by Bys, It is known
I, Theorem 4.1] that Q(f) is well defined and equal to Q(f) and & = Q(f) is
characterized by :

(z— f(z),J(z —p)) <0forallpe F = Fix (T). (5)

A special case is when f is a constant function u(x) = uw. Then [I7, Theorem
4.1] shows that @ is well defined and that Q(u) = Q(u) = Ppizru (where Pg
is the metric projection on S). If X is a smooth Banach space, R: C — F is a
sunny nonexpaunsive retraction [0 if and only if the following inequality holds :

(x — Rz, J(y — Rx)) <O forallz € C and y € F. (6)

Q is thus the unique sunny non expansive retraction from C to FixT. [l
Theorem 4.1] was already known in the case f constant and in the context of
Hilbert spaces [I7, Theorem 3.1] and [I1}, Theorem 2.1].

The same existence and characterization results can be found firstly when X
is a reflexive Banach space which admits a weakly continuous duality mapping
Jo with gauge ¢, denoted by Byysc, in [I8, Theorem 3.1] (with f constant) and



[I4, Theorem 2.2] (where J is the (normalized) duality mapping). Note that
the limitation of f constant in [I8] can be relaxed with [I5]. Secondly when
X is a reflexive and a strictly convex Banach space with a uniformly Gateaux
differentiable norm, denoted by Byug, [I3, Theorem 3.1]. Note that in this three
Banach spaces cases listed here the normalized duality mapping is shown to be
single valued.

The aim of this paper is to study the strong convergence of iterative schemes :

Tpy1 = anf(Tn) + (1 — an)Thrn (7)

when X can be a Bus, or a Biwse, Or & Bryg real Banach space and {T,} is a
sequence of nonexpansive mappings which share at least a common fixed point.
We give a general framework to show that {z,} will converge strongly to &
where Z is the unique solution of (H) for a fixed nonexpansive mapping 7" related
to the sequence {T,}. The key ingredient is the fact that Lemma given in
section Blis valid in the three previous context. Then we show that by specifying
the sequence T,, we can recover and extend some known convergence theorems
7, &, 03, T4, B, @). Note also that in equation [@), f is an a-contraction,
but following [T5] it is easy to show that f can be replaced by a Meir-Keeler
contraction (Lemma BIlin section Bl is devoted to this extension). The paper is
organized as follows : a main theorem is proved in section Blusing a set of lemmas
which are postponed to the last section of the paper and which are verbatim
or slight extensions of know results. Then in a collection of subsections, known
convergence theorems are revisited with shorter proofs.

2 Main theorem

In the sequel a B real Banach space, will denote when not specifically stated a
real Banach space with a normalized duality mapping uniformly norm-to-weak*
continuous on bounded sets (which is the case for Bus or Bryg) or a reflexive
Banach space which admits a weakly continuous duality mapping Jo with gauge

d) (Brwsc)-

H; n: For a fixed given N > 1 and a given sequence {w,}, a sequence of
mappings {7} will be said to verify Hy N, if for a given bounded sequence
{zn}, we have

H(l - O‘n-l-N)Tn-‘rNZn —(1- O‘n)Tnan <6 M (8)
with either (¢) Yo" |0n] < co or (¢') limsup,, .. 0n/a, <0 and M a constant.

Remark 1 Note that using LemmaB {6, } can be replaced by { ., + pn} where
{pn} satisfies (i) and {pn} satisfies (i').

Remark 2 Note that when oy, € (0,1) we have :

”(1 — Oy N) Ty N2Zn — (1 - an)Tnan < |O‘n+N_an|||Tn+NZnH+||Tn+NZn - C(Tn)ZnH
9



Thus, when {a,} satisfies Ha N (given below), if for each bounded sequence
{zn}, {Thzn} is bounded and either (vi) Yo" o | TntNzn — Tnzn|| < 0o or (vi')
I ThtNzn — Tonznl|l/am — 0 then Hy N is satisfied (again using previous remark
about mixing between conditions with or without prime). In the previous case,

Hi ~ is thus implied by H;,N which is stated now :

H/l,N: For a fixed given N > 1 and a given sequence {a,,} which satisfies

H3 n a sequence of mappings {7}, } will be said to verify H;LN, if given bounded
sequence {z,}, we have || T, nzn — Tpzn| < pn with either (vi) D07 ) pn < 00
or (vi') pp/an — 0.
H, ,,: For a given p € X, a sequence {z,} will be said to verify Ha j if we
have
limsup (f(p) — p, J(zn —p)) < 0. (10)

n—oo
Hsn: For a fixed given N > 1, a sequence of real numbers {a,} will
be said to verify Hg n if the sequence {a,,} is such that (i) «, € (0,1), (i)
limy, o0ty = 0, (448) D07 5 oy, = 00 and either (iv) Y0 |onyn — an| < 00 or
(iv") limp— 00 (niN/an) = 1.
We can now formulate the main theorem of the paper :

Theorem 3 Let X be a B real Banach space, C' a closed convex subset of X,
T, : C — C a sequence of nonexpansive mapping, T a monexrpansive mapping
and f € . We assume that Fiz(T) # 0 and that for all n € N Fiz(T) C
Fix(T,). Let {an} be a sequence of real numbers for which there exists a fived
N > 1 such that Ha N is satisfied and suppose that there exists p € Fix(T) such
that Ha  is satisfied, then the sequence {xy} defined by (54) converges strongly
to p.

Proof : The proof uses a set of Lemmas which are given in section Bl Since p
is in Fixz(T,) for all n we can use Lemma 3 to obtain the boundedness of the
sequence {z,}. Thus we can conclude using Lemma (]

Corollary 4 Assume that the hypothesis of Theorem [A except Ha p are satis-

fied. Suppose that Hy N or H;LN is satisfied and that for each bounded sequence
{yn}, the sequence | Tnyn — Tyn|| — 0. Then the conclusion of Theorem [ re-

mains for p = Q(f).

Proof : We just need to prove that Hg p, is satisfied for p = Q(f). We first

show that if Hll,N is satisfied then H; v is also satisfied. As in previous theorem
{z,} is a bounded sequence. Then, let p € Fiz(T), we have :

[Than —Tan|| < [[Tazy — Topll + | Tup — Tl + (|Tp — T
< 2zn = pll + | Top = Tl

and since ||T,p — T'p|| — 0 by hypothesis we have that {T,(z,)} is bounded.
As shown in remark ] we are within the case where H; 1y is implied by H;LN.



Applying Lemma 24 and Corollary ZH we obtain the convergence of || Tz, — x|
We can then apply Lemma P to obtain Hs ;, for p = Q(f). O

Corollary B can be extended as follows when a constant 7' cannot be found.

Corollary 5 Assume that the hypothesis of Theorem [d except Ha i are satis-
fied. Suppose that H,LN is satisfied and that {T,x,} is bounded and that from
each subsequence o(n) we can extract a subsequence p(n) and find a fired map-
ping T,, such that

1T um)@patmy = T pu(my | = 0.

If F = Fiz (T,) does not depend on p, then the conclusion of Theorem[d remains
forp=Qr(f).

Proof : We just need to prove that Hp , is satisfied for p = Q(f). Using

remark Pl we are in the case where H; v is implied by H/l,N' Using H1 N we
first easily obtain that ||z, — Thay,| — 0 by an argument similar to Corollary
Then Hy , for p = Q(f) follows from Corollary 24 O

We can now consider the case of composition. Assume that {T)}} and {77}
satisfy H; N With sequences denoted by pf,. Assume also that for a bounded
sequence {zn} then the sequences {T7, yz,} and {T\ T3, yz,} and also
bounded. Then it is straightforward, since the mappings 7} are nonexpansive,
that :

|| +NZn_T11"'Tr%Zn” < pn+|| +NZn—T Znl| -
Thus the composition T}} o T? satisfy Hll,N with p, = pL + p2. This lead us to
propose the following Corollary for dealing with composition :

Corollary 6 Assume that the hypothesis of corollary [A are satisfied for the
sequence {T}} with H1 N and for {T2} also with H1 n- Then the conclusion
of Theorem [ remains for the sequence {T} o T?} with p = Qr(f) and F =
Fiz(T, o T?).

Proof :As pointed out before the statement of the corollary the composi-
tion T o T72 satisfy H; . Consider a subsequence o(n) we can find first a
subsequence ps(n) and pg such that :

1Tyt = Ty | = 0.

Then, using properties of the T} sequence, we can re-extract a new subsequence
p(n) and p such that :

1 2
1T Tptmy Zotm) — Tp Loy Tt |l = 0.



Since we have :

+ || — T2 2p(n) ||
When obtain the conclusion for the composition. O

Recall that a mapping T is attracting non expansive if it is nonexpansive
and satisfies :

|Tx —p| < ||x —pl| for all x & FizT and p € Fix T. (11)

In particular a firmly nonezpansive mapping, i.e |Tx — Ty||*> < (x — y, Tz — Ty)
is attracting nonexpansive [6].

Remark 7 In the previous corollary, we obtain a fized point of a composition
and in practice the aim is to obtain a common fized point of two mappings. If
the mappings T1 and T2 are attracting, have a common fixed point and T1 or
T2 is attracting then we wzll have Fix T1 N Fix T2 Fix T1 o T2 The proof 18
contamed in [1, Proposition 2.10 (i)] and given m LemmaEZZfor completeness.

Remark 8 Note that if X is a strictly convex Banach space, then for A €
(0,1) the mapping T\ = (1 — NI + X\T is attracting nonexpansive when T is
nonezxpansive. Fxtension to a set of N operators is immediate by induction.
This gives a way to build attracting nonexpansive mappings and mized with
previous remark it gives [16, Proposition 3.1].

Remark 9 Note also that, when X 1is strictly convex, an other way to obtain
F = n; Fixz (T;) for a sequence of nonexpansive mappings {T;} is to use T =
Yo ATy with a sequence {\;} of real positive numbers such that >, \i =1 [,
Lemma 3J.

2.1 Example 1

Theorem 10 [I7, Theorem 4.2] Let X be a B real Banach space, C a closed
convez subset of X, T : C — C a nonexpansive mapping with Fiz(T) # 0, and
[ an a-contraction. Then when the sequence {a,} satisfies Hz 1 the sequence

{x,} defined by @A) with T, 2T converges strongly to Q(f).

Proof : Here the sequence T,, does not depend on n. We just apply Corollary
H to get the result. Of course, if the sequence {z,} is bounded then {7}, (z,) =
Tx,} is bounded and equation (8) of Hy 1 is then satisfied with 6,, = |, —aum41].
Since {a,} satisfies Hg 1, {J,,} satisfies Hy ;. We also have ||T,,x,, — Tx,| =
0 — 0 and the conclusion follows. (I



def

Remark 11 Suppose now that T = Y, \;T; where {\;} is a sequence of pos-
itive real numbers such that Y, \; = 1 and the T; mappings are all supposed
nonexpansive. Then, we can apply Theorem I to obtain the strong conver-
gence of the sequence {x,} to Qpizr(f). Moreover, If we assume that X is
strictly convex then using remark [d we obtain a strong convergence to Qp(f)
with F < Nier Fiz(T;).

This can be extended to the case when the \; also depends on n and recover
[9, Theorem 4] as follows :

Corollary 12 Let X be a strictly convex B real Banach space, C a closed convex
subset of X, T; : C'+— C fori €I a finite family of nonexpansive mapping with
Nier Fix(T;) # 0, and f an a-contraction. For a sequence {ay,} satisfying Hg 1
we consider the sequence {x,,} defined by BA) with T, = Y icr MinTi. Assume
that for all i and n A € [a,b] with a > 0 and b < co either Y, Ain < 00 or

Xin/0n — 0 then {x,} converges strongly to Qp(f) with F = N;er Fix(T;)

Proof ‘The proof is given by an application of corollary Bl Indeed since the
Ai.n are bounded T}, x, remains bounded for a bounded sequence z,,. Then T,
satisfies Hll)1 with o, =3 )
o(n) a subsequence p(n) such that lim, o A um) = i for all i € T we can
use corollary Finally, noting that, for a strictly convex space X, the fixed
points of T B ZZ—GI \;T; does not depend on X and is equal to N;er Fix(T;) we
conclude the proof. O

Ain. By extracting from each given subsequence

2.2 Example 1’

In [I4] The following algorithm is considered :

Yn+1 = Planf(yn) + (1 — an)Tyn) (12)

Where P : X — (C is a sunny nonexpansive retraction, f : C' — X an a-
contraction and T : C'— X a nonexpansive mapping such that Fiz(T) # 0.

If we consider the sequence 11 = @, f(yn) + (1 — a,)Ty, then we have
Ynt+1 = Pxp41 and thus

Tny1 = an f(P(zn)) + (1 — an)T(P(zn)) (13)

Since foP is an a-contraction from X onto X and 7o P a non expansive mapping
from X onto X we can use the previous theorem to obtain the strong convergence
of the sequence {z,,} to = a fixed point of T'o P such that = Ppiy(rop)f(T (7))
(Ps is the metric projection on S). We thus obtain now the strong convergence
of the initial sequence {y,} to y = P(x) and since z is a fixed point of T o P, y
is a fixed point of Po T.

If we suppose in addition that X is such that J (or Jg) is norm-to-weak*
continuous (i.e X is smooth) and that T satisfy the weakly inward condition then



we can use the result of [T4, Lemma 1.2] which state that Fiz(T) = Fiz(PoT)
to conclude that y is in fact a fixed point of T and recover the result of [T4]
Theorem 2.4].

2.3 Example 2

We consider now the example given in [§] where the sequence {z,,} is given by :

Tnt1 = apu+ (1 — an)yn

With a sequence of mappings Tz = 8,2+ (1—B,,)Tx. This problem is rewritten
as follows :
Tn+1 = Oénf(xn) + (1 - O‘n)Tnxn (14)

Theorem 13 Let X be a B real Banach space, C a closed convex subset of X,
T :C +— C a nonexpansive mapping with Fix(T) # 0, and f an a-contraction.
When the sequence {aw} satisfies Hs 1 and the sequence {3} converges to zero
and satisfy either EZO:O |Bnt1 — Bn| < 00 or |Bnt1 — Bunl/an — 0. Then, the
sequence {x,} defined by [[@) converges strongly to Q(f).

This theorem is very similar to |8, Theorem 1] where f was supposed to be
constant. It could be covered by corollary [[2 but here strict convexity is not
needed.

Proof : We easily check that the fixed points p of T are fixed points of
T, for all n € N and T,, is nonexpansive for all n. Thus by Lemma the
sequence {z,} is bounded . If the sequence {x,} is bounded then || T, (z,)| <
max(||znl, |Tzn]])} is bounded too. Since :

[Tnyn = Tynll < Bulllynll + [ Tynll) (15)

we have ||T,yn — Tyn|| — 0 for each bounded sequence {yy,}. It is easily checked
that Hy 1 is satisfied with d,, = |ap+1— @n|+|Bnt1— Bnl|. The conclusion follows
from Corollary Bl O

2.4 Example 3
We consider here the accretive operators example given in [8] or [I§] :
Tnt1 = Qnf(xn) + (1 — ap)Than (16)

Where T,,x = J,,x and Jy is the resolvent of an m-accretive operator A, Jyz =
(I +XA)~L. The following theorem is similar to [I8, Theorem 4.2, Theorem 4.4]
or [8 Theorem 2].



Theorem 14 Let X be a B real Banach space, A an m-accretive operator in
X such that A=Y(0) # 0. We assume here that C = D(A) where D(A) is the
domain of A and suppose that C is conver. Suppose that Hz 1 is satisfied by
the sequence {c,} and that the sequence T, is such that r,, > € > 0 and either
>0l M=rp/rnga| < 00 or [1—=1y /Tnq1|/om — 0, then the sequence {x,} defined
by (@) converges strongly to a zero of A.

Proof : We first note that [I8, p 632], for A > 0, Fiz (J)) = F where F is
the set of zero of A and for an m-accretive operator A, Jy is non expansive from
X +— D(A). Using the resolvent identity Jaz = J,((u/ Nz + (1 — p/A)Jrx) we
obtain :

T
||Tn+1zn - TnZnH S n

(Iznll + 1 Tnznll) (17)

1—
r

n+1
and since the sequence Ty, is bounded for a bounded sequence y, (for p €
AY0) we have | Tyn — pll < |lyn — pl|) we can apply remark B in order to
obtain Hy 1 . We thus have ||x,4+1 — #,]] — 0 by Lemma B and ||z, — T)z,| —
0 by :

Hxn - $n+1|| + ||33n+1 - Tnxn”

20 =zl + cnllf @n)ll + 1 Tn(2a))

def

Take now r such that 0 < r < € and define T' = J,. then we have :

<
<

Ty = Tl < |1 = 2o = Tl (18)
Tn
We thus obtain that z,, — Tz, — 0 from :
20 — Tonll < |20 — ToZn|| + (| Tnwn — Tan|| (19)
The conclusion is obtained through Corollary El ([

2.5 Example 4
We consider here the example given in [3]

where T, = Qu mod N, where N > 1 is a fixed integer and the (Q;)i=o,... . n—1 is
a family of nonexpansive mappings.

Theorem 15 Let X be a B real Banach space, C a closed convex subset of X,
Q;:Cw— C forle{l,...,N} a family of nonexpansive mappings such that
F N Fiz(Qp) is not empty and

Yol Fiz(Qr) = Fia(TnyNTnin—1- Tnt1) for alln € N (21)

and f an a-contraction. When the sequence {a,} satisfies Hz n then the se-
quence {x,} defined by @) converges strongly to Qr(f).



Proof : By Lemma 23 since the T}, have a common fixed point, the sequence
{zn} is bounded. Since the sequence of mappings T, is periodic, the sequence
{T»z,} is bounded and equation () of Hy N is obtained for §,, = |an — aniN|
using [@). Since {w,} satisfies Hs N, {0, } satisfies Hy n. Thus, using Lemma
B4 we obtain that ||z,4+n — xn] — 0. Since ||xnt1 — Tonznl < an(]lf(@n)] +
ITnxnl), we have ||x,+1 — Thzy| — 0. We introduce the sequence of mappings
ASIN’O‘) = ThiN—1" Thtq for a # N and A%N’N) = Id. Using Lemma [[G
given just after this proof, we conclude that : ||z,+n — A%N’O):EHH — 0. This
combined with ||zn+n — 2n|| — 0 gives ||zp+n — A%N’O)an — 0. Note now
that the mappings A%N’O are in finite number are all nonexpansive and share
common fixed points by hypothesis. Thus we can prove that Hy , is satisfied
for p = Qr(f). Let p = Qr(f) we suppose that Hz , is not satisfied, then it
possible to extract a subsequence of {Z,,)} such that :

lim (f(p) = p, J(2o(n) —p)) <0 (22)

But it is then possible to find ¢ € {0,..., N — 1} and an extracted new subse-
quence ji(n) from o (n) such that pi(,,) mod N = q. We thus have [|2,,(,) — Tz, )| —

0, with 7= A,(JN’O) which is now a fixed mapping and Fiz (T) = F. Then Hap
should be true by Lemma 28 and this leads to a contradiction. The conclusion
follows by O

Lemma 16 Let N e N, o € {0,...,N} and A%N’a) o ThiN—1" Tniq for a#
N and AN = 1d. Assume that |Xnt1 — Thanl — 0 then ||xpin — A%N’O)an —
0.

Proof : We have for « € {0,...,N — 1} by definition of AN and using the
fact that A%N’a) is nonexpansive :

”ASLN’O‘Jrl)InJraJrl - A;N’Q)InJraH = ||A$1N7a+1)$n+a+1 - ASIN’Qle)TnJraInJraH
S Hxn—i-a—i-l - Tn-i—axn—i-a”
Thus :
N—1
|Zn+n — Agszxn” < Z [Zn+a+1 = TataZntall
a=0
and the result follows. O
2.6 Example 5
Let I‘Sf ) for j € {1,...,m} be a sequence of mappings defined recursively as
follows : _ _ _ _
Tz = W 4 (1 — g, TUH g and T = 2 (23)

10



where the sequences {ﬁr(f)} € (0,1), and {T;} for j € {1,...,m} are nonexpan-
sive mappings. We want to prove here the convergence of the sequence generated
by the iterations :

Tn+1 = anf(wn) + (1 - O‘n)rsll)xn (24)

Theorem 17 Let X be a B real Banach space, C a closed convex subset of X,
T; : C— C forje{l,...,m} a family of nonexpansive mappings such that
N2, Fix(Ty) is not empty and f an a-contraction. When the sequence {an}
satisfies Hg w and for j € {1,...,m} the sequences {57(1])} satisfy limy, 0o ﬂ,(zj) =
0 and either Y, |ﬂ,(zj_,)_1 - ﬂ,(lj)| < o0 or |57(1]—|)-1 - ﬂ,(lj)|/ozn — 0 then the sequence
defined by @A) converges strongly to Qr(f) associated to F = Fix (Ty -+ Tp,).

Proof : Note first that by an elementary induction 1"511) is a nonexpansive
mapping. If we assume that p is a common fixed point to the mappings T; then
p is a fixed point of the mappings N2 By Lemma the sequence {z,} is
bounded. Then using Lemma , given just after this proof, combined with
the boundedness of {x,}, Hy 1 is valid with

on =3 18P = 8P| + lan 1 — an (25)
p=1
Now if we can prove that
TPz, — ThTo- - Tman| — 0 (26)

the conclusion will be given by Corollary Bl The last assetion can easily be
obtained by induction on ||F§f)3:n — T, - Tpxyl|, since we have :

||F£Lj)$n =T Tmra| < 57(3)(”%” + ||Tj o Tn)
+(1 - ﬁn)HTjFSLjJrl)xn =Ty T ||
< ﬁfm”(Han + ||Tj o Ta|) + ||P$zj+l)xn — L1 Tl -

O

Remark 18 For m = 1 we obtain the same result as Theorem [I3

Lemma 19 Let T be the sequence of mappings defined by (Z3) Then we have
forje{l,...,m}:

I =T < 37180, - 8] 3 K (27)
p=J
where K is a constant which depends on the mappings (Tp)p>; and x.

11



Proof : Note first that :
T || < (||| + | 75TV a))| (28)

which applied recursively shows that ||1",(1J )x|| is bounded by a constant which
depends on the mappings (7,),>; and « and not on n. Then, using the definition

of I‘Sf) we have :
Itz -1 < 189, - 89| (l=] + | ;U V)
HIT LYY (2) — TTG) () (29)
since T} is nonexpansive mappings :

IT9) 2 — @) <189, = 89|(|2]| + 1LY+ V) + TV (2) — TG ()

by recursion and since the last term Ffﬁ_irl)(:zr) — T (2) = 0 we obtain the

result. O

Note that Lemma [[@ remains valid for the sequence
IVz = gWDg(x) + (1 - OYTTY 2 and T g = 2 (30)

if g is a nonexpansive mapping.

2.7 Example 6

We consider here the example given in [3]
Tp+1 = O‘nf(-rn) + (1 - an)TnCCn

where T,z & Po(z — M\yAz) and P is the metric projection from X to C.
The aim is to find a solution of the variational inequality problem which is to
find € C such that (Az,y —z) > 0 for all y € C. The set of solution of the
variational inequality problem is denoted by VI(C, A). The operator A is said
to be p-inverse-strongly monotone if

(x —y, Az — Ay) > p||Az — Ay|]? for all 2,y € C
The next theorem is similar to [3, Proposition 3.1].

Theorem 20 Let X be a real Hilbert space, C a nonempty closed convex, f
an «-contraction, and let A be a p-inverse-strongly monotone mapping of H
into dtself such that VI(C,A) # 0. Assume that Hg 1 is satisfied and that
{A\n} is chosen so that A, € [a,b] for some a, b with 0 < a < b < 24 and
Yoot i Ang1 — Al < oo. then the sequence {x,} generated by [BI) converges
strongly to Qr(f) associated to F = Fix (Ty) where T\(z) = Po(x — M\Az).
F = Fix (Ty) does not depend on X for A > 0 and equals VI(C, A).

12



Proof For A > 0, let The = Pp(z — AMAz). When X is an Hilbert space we
have Fixz(Ty) = VI(C,A). When A is p-inverse-strongly monotone then for,
A < 2u, I — A\A is nonexpansive. Thus the mappings 7T, are non expansive
and Fiz (T,) = VI(C, A) # (. By Lemma 3 the sequence {z,} is bounded.
Since | Tnz|| < K(||z] + 2u||Az]), the sequence {T,,z,} is bounded too. We
also have ||Th412n — Tnznl|l < |[Ant1 — M|l Azn || which gives Hy n with 6, =
[Ant1 — An| + |ant1 — an| by remark Bl The result follows now from Corollary
Indeed, since A\, (,) € [a,b] it is possible to extract a converging subsequence
Au(n) — A € [a,b] and we then have [T,z — Txz|| < [Aum) — AllAz[|. Thus
1Tty Zuan) = Txu(m |l = 0. O

Remark 21 We can note that for A < 2a, I — AA is in fact attracting nonex-
pansive since :

I(7 = M)z — (I = AA)y|| < [lo = yl| + XA - 20| Az — Ay]*.

Thus it is also the case for Poo (I — MA) [1]. For a nonexpansive mapping S
we can consider the previous theorem with Thx = S o Pg (x — MAz) and using
Remark[] (an Hilbert space is streitly convex) to obtain a strong convergence to
a point in Fix (T)) = Fiz S N VI(C, A) and thus fully recover [3, Proposition
3.1]

2.8 Example 7

We consider here the equilibrium problem for a bifunction F' : C'x C' +— R where
C is a closed convex subset of a real Hilbert space X. The problem is to find
x € C such that F(z,y) > 0 for all y € C. The set of solutions if denoted by
EP(F). It is proved in [B] (See also []) that for » > 0, the mapping 7. : X — C
defined as follows :

TT(x)"_Ef{zeC’:F(z,y)—k%(y—z,z—x}ZO,VyEC’} (31)

is such that 7, is singled valued, firmly nonexpansive (i.e ||T,z — T,y|°> <
(Thx —Try,x —y) for any z,y € X), Fiz(T,) = EP(F) and EP(F) is closed and
convex if the bifunction F satisfies (A1) F (z,z) =0 for all z € C, (A2)F(x,y) +
F(y,z) <0forallz,y € C, (A3) foreach z, y, z € C limy_,o F(tz+(1—t)z,y) <
F(z,y) and (Ay4) for each x € C y — F(z,y) is convex and lower semicontinu-
ous.

we can now consider the sequence {x,} given by :

Tn41 = anf(xn) + (1 - O‘n)Tn‘Tn

def .
where T,, = T, for a given sequence of real numbers {r,}.

13



Theorem 22 Let X be a real Hilbert space,C a nonempty closed convez, f an
a-contraction, assume that EP(F) # 0, Hg 1 is satisfied and the sequence {ry} is
such that liminf, . ry, > 0 and either ) |rni1—7n| < 00 of [rpg1—7n|/on —
0. Then, the sequence {x,} generated by B2) converges strongly to QEP(F)(f)'

Proof : Since the r,, are strictly positive the mappings 7;. are non expansive
and share the same fixed points EP(F') which was supposed non empty. By
Lemma 23 the sequence {z,} is bounded.

Using the definition of T,(x) and the monotonicity of F' (A3) easy compu-
tations leads to the following inequality [I2, p 464] :

ITo(@) = Tl < =yl + 1 = 2| I1To(e) = vl (32)

Using r > 0 such that r, > r for all n € N and y € Fiz(T,) we obtain
T, () — T (W)|| < ||z — y|| which gives the boundedness of the sequence
{T), (xn)}. Moreover, for a bounded sequence {y,} we obtain :

[rnt1 — 7|
HTTn+1 (Yn) — Tr,, (yn)| < %HTM (Yn) — ynll (33)
We thus obtain Hj 1 with 6, = |rp41 — mn| + |@nt1 — o] using remark

The result follows now from Corollary Bl Indeed, since 74,y > r it is pos-
sible to extract a converging subsequence 7,y — T > r and we then have

||Tm(n)z — TFZH < |Tu(n) —F|K. Thus

1T, (n)Tu(n) — Trzp@myll — 0.

3 A collection of Lemma

The first Lemma can be used to derive boundedness of the sequence {x,} gen-
erated by B4

Lemma 23 Let {x,}, the sequence generated by the iterations
Tn+1 = Oénf(xn) + (1 - O‘n)Tnxn (34)

where f is contraction of parameter o, T, is a family of nonexpansive mappings
and o, s a sequence in (0,1). Suppose that there exists p a common fized point
of Ty, for all n € N. Then, the sequence {x,} is bounded.

Proof : The proof exactly follows the proof of [T7, theorem 3.2], the only differ-
ence is that here the mappings T,, are indexed by n but it does not change the

14



proof. Obviously we have :

[znt1 —pll < anlflzn) —pll + (1 = an)||Thzy — pl|
< an(allzn —pll+[[f(p) = pl) + (1 = an)lzn = pl
[1f(p) = pli
< (I—an(l=a))]zn —pll +on(l - Q)W
< w22,
And, by induction, {z,} is bounded. O

The next lemma aims at proving that the sequence {x,} is asymptotically
regular i.e for a given N > 1, we have ||zp+n — 2| — 0.

Lemma 24 With the same assumptions as in Lemma 23 and assuming that
there exists N > 1 such that Hy n and Hg n are fulfilled then, for the sequence
{z,} given by iterations [34), we have ||TpntNn — Tn|| — 0.

Proof : Using the definition of {z,} we have :

Tn+N+1 — Tp+1 = O‘n-l—N(f(:En-i-N) - f(xn)) + (an-i-N - an)f(:En)
+(1 - anJrN)(TnJrNInJrN - TnJrNIn)
+ (1 — antN)TnenTn — (1 — ap)Thxy) -

By Lemma 23 the sequence {z,} is bounded, we can therefore use Hy n with
{zn}. Since {f(zy)} is bounded too, we can find three constants such that :

[Znsn+1 = g1l < angnvalZoin — 2ol + lansn — anl K1
+(1 = i) || Znt v — @l + 0, M
< (1= =a)apyn)|Tne Ny — ol + (| N — an| 4+ 6,) Ko

The proof then follows easily using the properties of a, i.e Hg n and Lemma B0l
O

The next step is to prove that we can find a fixed mapping T such that
|xn — Tzyn]| — 0. The next corollary gives a simple example for which the
property can be derived from Lemma B4l Indeed, we have seen specific proofs
in previous sections on illustrated examples.

Corollary 25 Using the same hypothesis as in Lemma and assuming that
{Thzn} is bounded and that | Tyx, — Txy|| — 0 we also have ||z, — Txy| — 0.
Proof :

lZn — Tng1ll + |Tns1 — Tonl|
lzn — g1l + an K1 + (1 = ap) | Thzn — Tan|

|zn — Tan |

IA A
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and the result follows. O

The next Lemma gives assumptions to obtain Hj p, for a given p.

Lemma 26 Suppose that X is a B real Banach space. Let T be a nonexrpansive
mapping with Fix(T) # 0, f an a-contraction and {x,} a bounded sequence
such that | Tz, — x,|| — 0. Then for & = Q(f) we have :

limsup (f(Z) — &, J(z, — %)) <0 (35)

n—oo

Proof :When X is a Bus or a By the key point is the fact that J is uniformly
norm-to-weak* continuous on bounded sets.

The proof of this Lemma can be found in the proof of Theorem [I7, Theorem
4.2] or [I3, Theorem 3.1]. We just summarize the line of the proof here. Let

7 ¥ o-limy_ 2¢ where z; solves x; = tf(z:) + (1 —¢)Tx, we thus have :

lze =2l < (L= 021T2; — 2a® + 2t (f (20) — @0, (@0 — 70))
< (=72 = Tag| + | T2n — za)?
+2t (f(wr) = @0, T (20 = 20)) + 2ty — |
< (14 ) a —wal® +an(t)
+2t (f(2e) — @0, (010 — 20))

(36)
where a,(t) = 2||Tx, — 2|20 — 20|l + | T2n — 20||> — 0 when n tends to
infinity. Thus :

an (T t
(@)~ eI (an — ) < 2D 4 Loy o (37)
and we have :
lim lim sup (f(z¢) — x¢, J(xn, — 24)) <0 (38)

t—=0 nooo

. def ~
We consider now a sequence ¢, — 0 and y, = z¢,, then we have y, — % and

with g(z) < (z) — 2 we have

<g(*fz’)7 J(wn — j» <g(yp)7 J(xn - yp)>
[{9(2), J(n — @) = J(@n —yp)) | + (1 + )2 = yplll|zn — 3|

+ IA

Since J is uniformly norm-to-weak* continuous on bounded sets and y, — ,
for € > 0, we can find p such that for all p > p and all n € N we have :

(9(2), J(xn — 7)) < (9(yp), J(n — yp)) + (L + )| — yp[[lzn — ypl(39)
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Thus :

limsup (¢(z), J(zn — 7)) < limsup(g(yp), J(@n = yp)) + €+ |7 - yp| K

< i (timsup (g(yp), J(@n —yp)) + |2 = wpl K) <€

Suppose now that X is a Bywsc. We follow the proof of [Theorem 2.2]song-
chen-1 or [I8, Theorem 3.1]. Let & = Q(f) and consider a subsequence {z, )}
such that limsup,, ., (f(Z) — @, J(z — %)) = limy—oo (f(Z) — &, J (Tp(n) — T)).
It is then possible to re-extract a subsequence x,(,) weakly converging to x*.
Since we have () — T2, (,) — 0 then z* € Fiz(T) using the key property
that X satisfies Opial’s condition [7, Theorem 1] and the fact that I — T is
demi-closed at zero [I3, Lemma 2.2]. Thus by definition of Z we must have
(f(@)—z,J(x*— %)) <0. O

Corollary 27 Suppose that X is a Bys, or a Bryg, or a Brysc. let f a con-
traction and {x,} a bounded sequence such that x, — Tnx, — 0. From each
subsequence o(n) we can extract a subsequence p(n) and find a fized mapping
T, such that || Ty um) — TpZumll — 0. Then, if F' = Fixz T, does not depend
on p, for & = Q(f) associated to F, we have :

limsup (f(z) — z, J(x, — %)) <0 (40)

n—oo

Proof :The proof is by contradiction using LemmaPfl Assume that the result
is false, then we can find a subsequence o(n) such that

limsup ( f(Z) — &, J(z,n) — &) > €>0 (41)

n—oo

by hypothesis we can extract from o (n) a sub-sequence p(n) such that || T,y 2,n) — T2y || —
0. Thus, since

1%5n) =TTy | < 1Zun) = TueyTue) | + 1Tum)Tum) = TTum I,

we have z,(,) — Tz, ) — 0 we can then apply Lemma to the sequence
{#u(ny} and mapping T}, to derive that :

limsup (f (%) — &, J(zum) — %)) <0

n—oo

for & = Q(f) corresponding to F' = Fixz T, and since F' does not depend on p,
this gives a contradiction with (EII). O

The next Lemma helps concluding the proof.
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Lemma 28 Assume that the sequence {xy} given by iterations (34) is bounded
and assume that for p, a common fized point of the mappings T,,,Ha p, is satisfied
and that (i,ii,4ii) items of Ha N is also satisfied'. Then the sequence {z,}
converges to p.

Proof :
|Zn+1 _p”2 < (1- O‘n)QHTnxn - p||2 + 20 (f(70) — p, J(Tny1 — p))
< (1- an)QHfEn —p||2 + 20, (f(zn) — f(p), J(Tny1 — p))
+20, (f(p) = P, J(Tnt1 — p))
< (1= an)z — pl* + 20z — pllznsr — p)l|

+2a (f(p) = p, J (Tnt1 — D))

Note that ||z,41 — p|| < || — p|| + an K . Thus :

lznir —pI* < (1= an)’l|lzn — p|* + 20maljz, — p|?
+2O‘121K + 20y, (f(p) = p, J(@Tny1 — P))
< (1-an(l—a)+ap)|zn —p|*
+2O‘721K + 20 (f(p) = p, J(Tny1 — )
(42)
And we conclude with Lemma O

Lemma 29 .[8, Lemma 2.1] Let {s,} be a sequence of nonnegative real numbers
satisfying the property

Snt1 < (1 — an)sn + anfn forn >0,

where a, € (0,1) and By, are sequences of real numbers such that : (i) lim,—, o o, =
0 and Y )", an = oo (i) either limsup,,_, o B <0 or > > |anBn] < co. Then
{sn} converges to zero.

Corollary 30 Let {s,} be a sequence of nonnegative real numbers satisfying
the property
Snt1 < (1= an)sn + anfn + anyn forn >0,

where ay, € (0,1), By and 7y, are sequences of real numbers such that : (i)
limy, oo @t = 0 and >0~ 5 an = 00 (i1) limsup,, . Bn < 0 and (iv) Y07 o |andn| <
oo. Then {s,} converges to zero.

Proof :The proof is similar to the proof of Lemma B9 [8, Lemma 2.1]. Fix
€ > 0 and N such that 8, < ¢/2 for n > N and E;’;N |andn| < €/2 . Then

!Note that (4, 4i, i) of Hg Ny do not use the value of N
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following [8] we have for n > N :

s

s < [Ja—asv+50 = T[=ap)+ Y landa)
j=N j=N j=N
n € n €
< Tla-apsx+50-T[a-an+3 (43)
j=N j=N

and then by taking the limit sup when n — oo we obtain limsup,,_, . sSnt+1 < €.
O

A contraction is said to be a Meir-Keeler contraction (MKC) if for every
€ > 0 there exits 6 > 0 such that ||z — y|| < e+ ¢ implies ||®(z) — (y)|| < e.

Lemma 31 [175] Suppose that the sequence {x,,} defined by equation [34)) strongly
converges for an a-contraction f (or a constant function f) to the fized point
of Pp o f then the results remains valid for a Meir-Keeler contraction ®.

Proof :Suppose that we have proved that ([B4l) converges for an a-contraction
f to the fixed point of Pr o f. Then indeed, the result is true when f is a
constant mapping. Let ® be a Meir-Keeler contraction, fix y € C, when f is
constant and equal to ®(y) then {z,} defined by B4l converges to Pr(®(y)).
If @ is a MKC then since Pp is nonexpansive Pp o ® is also MKC (Proposition
3 of [15]) and has a unique fixed point [I0]. We can consider z = Pr(®(z)) and
consider two sequences :

Tntl1 = anq)(xn) + (1 - an)Tnxn (44)

Unt1 = 0y ®(2) + (1 — an)Thyn (45)

Of course {y,} converges strongly to z. We now prove that {z,} also converges
strongly to z following [15]. Fix e > 0, by Proposition 2 of [T5], we can find
r € (0,1) such that ||z — y|| < e implies ||®(x) — ®(y)|| < ||z — y||. Choose now
N such that ||y, — z|| < (1 —r)/r. Assume now that for all n > N we have
|xn — ynll > € then

(1 = an)l|zn = yull + anl|®(zn) — @(yn)| + anl|®(yn) — 2|
(1= an(I =7))lzn — yull + ane

||517n+1 - yn+1H <
<

We cannot use here directly Lemma 29 but following the proof of this Lemma
we obtain that limsup ||z, — yn| < e. Assume now that for a given value
of n we have ||z, — yn| < e. Since @ is a MKC we have ||®(x) — ®(y)| <
max(r|lz — yl||, €) and since we have

rlen =zl < vllzn = ynll + 7llyn — 2 < € (46)
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we obtain
lTns1 = Yns1ll < (A = @) | Tazn — Toynll + an max(r||lz, — z|l,€) <e. (47)

Thus we have in both cases limsup,,_, . [|n — yn|| < € and the conclusion fol-
lows. g

Lemma 32 [1, Proposition 2.10 (i)] Suppose that X is strictly convex, Ty an
attracting non expansive mapping and Ts a non expansive mapping which have
a common fized point. Then :

F’LI(Tl e} TQ) = F’LI(TQ O Tl) = F’LI(TQ) N F’LI(T1> .

Proof :We have Fix(Ty) N Fix(T1) C Fiz(Ty oTy) and Fix(Ty) N Fix(T1) C
Fix(Ty oTy). Let « be a common fixed point of 77 and T5. If y, a fixed point
of Ty o Ty, is such that y ¢ Fiz(T>) then since T is attracting non expansive
we have :

ly —all = ITh o Ta(y) — x| < [[Ta(y) — 2| < |y — =l

which gives a contradiction. Thus y is a fixed point of 7> and then also of 7.
If now y a fixed point of T, o T and assume that y ¢ Fiz(T;) then we have

ly —ll = T2 0 Ta(y) — zl| <[[Th(y) — [l < [ly — |

which gives also a contradiction and same conclusion. (I
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