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Iterative schemes for computing fixed points of nonexpansive mappings in Banach spaces

Let X be a real Banach space with a normalized duality mapping uniformly norm-to-weak ⋆ continuous on bounded sets or a reflexive Banach space which admits a weakly continuous duality mapping JΦ with gauge φ. Let f be an α-contraction and {Tn} a sequence of nonexpansive mapping, we study the strong convergence of explicit iterative schemes

.

Introduction and preliminaries

Let X be a real Banach space, C a nonempty closed convex subset of X. Recall that a mapping T : C → C is nonexpansive if T (x) -T (y) ≤ xy for all x, y ∈ C and a mapping f : C → C is an α-contraction if there exists α ∈ (0, 1) such that f (x)f (y) ≤ α xy for all x, y ∈ C.

We denote by F ix(T ) the set of fixed points of T , that is

F ix(T ) def = {x ∈ C : T x = x} (2) 
and Π C will denote the collection of contractions on C. Let X be a real Banach space. The (normalized) duality map J : X → X ⋆ , where X ⋆ is the dual space of X, is defined by :

J(x) def = x ⋆ ∈ X ⋆ : x, x ⋆ = x 2 = x ⋆ 2
and there holds the inequality

x + y 2 ≤ x 2 + 2 y, j(x + y) where x, y ∈ X and j(x + y) ∈ J(x + y) .

Recall that if C and F are nonempty subsets of a Banach space X such that C is nonempty closed convex and F ⊂ C, then a map R : C → F is called a retraction from C onto F if R(x) = x for all x ∈ F . A retraction R : C → F is sunny provided R(x + t(x -R(x))) = R(x) for all x ∈ C and t ≥ 0 whenever x + t(x -R(x)) ∈ C. A sunny nonexpansive retraction is a sunny retraction, which is also nonexpansive.

Suppose that F is the non empty fixed point set of a nonexpansive mapping T : C → C, that is F = F ix T = ∅ and assume that F is closed. For a given u ∈ C and every t ∈ (0, 1) there exists a fixed point, denoted x t , of the (1t)-contraction tu + (1t)T . Then we define Q : C → F = F ix(T ) by Q(u) def = σ-lim t→0 x t when this limit exists (σ-lim denotes the strong limit). Q will also be denoted by Q F ix(T ) when necessary and note that it is easy to check that, when it exists, Q is a nonexpansive retraction.

Consider now f an α-contraction, then Q F ix(T ) • f is also an α-contraction and admits therefore a unique fixed point x = Q T • f (x). We define by Q(f ) or Q F ix(T ) (f ) the mapping Q(f ) : Π C → F ix (T ) such that :

Q(f ) def = x where x = (Q F ix(T ) • f )(x). (3) 
For t ∈ (0, 1) we can also find a fixed point, denoted x f t of the (1 -(1t)α)contraction tf +(1-t)T and if lim t→0 x f t is well defined we can define a mapping Q : Π C → F ix(T ) by :

Q(f ) def = lim t→0 x f t where x f t = tf (x f t ) + (1 -t)T x f t (4) 
We then gather know theorems under which Q, Q and Q are defined and give relations between them.

When X is a uniformly smooth Banach space, denoted by B us , It is known [START_REF] Xu | Viscosity approximation methods for nonexpansive mappings[END_REF]Theorem 4.1] that Q(f ) is well defined and equal to Q(f ) and x = Q(f ) is characterized by : xf (x), J(xp) ≤ 0 for all p ∈ F = F ix (T ).

(

A special case is when f is a constant function u(x) = u. Then [START_REF] Xu | Viscosity approximation methods for nonexpansive mappings[END_REF]Theorem 4.1] shows that Q is well defined and that Q(u) = Q(u) = P F ix T u (where P S is the metric projection on S). If X is a smooth Banach space, R : C → F is a sunny nonexpansive retraction [START_REF] Goebel | Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings[END_REF] if and only if the following inequality holds :

x -Rx, J(y -Rx) ≤ 0 for all x ∈ C and y ∈ F.

Q is thus the unique sunny non expansive retraction from C to F ix T . [START_REF] Xu | Viscosity approximation methods for nonexpansive mappings[END_REF]Theorem 4.1] was already known in the case f constant and in the context of Hilbert spaces [START_REF] Xu | Viscosity approximation methods for nonexpansive mappings[END_REF]Theorem 3.1] and [START_REF] Moudafi | Viscosity approximation methods for fixed-points problems[END_REF]Theorem 2.1].

The same existence and characterization results can be found firstly when X is a reflexive Banach space which admits a weakly continuous duality mapping J Φ with gauge φ, denoted by B rwsc , in [START_REF] Xu | Strong convergence of an iterative method for nonexpansive and accretive operators[END_REF]Theorem 3.1] (with f constant) and [14, Theorem 2.2] (where J is the (normalized) duality mapping). Note that the limitation of f constant in [START_REF] Xu | Strong convergence of an iterative method for nonexpansive and accretive operators[END_REF] can be relaxed with [START_REF] Suzuki | Moudafi's viscosity approximations with meir-keeler contractions[END_REF]. Secondly when X is a reflexive and a strictly convex Banach space with a uniformly Gâteaux differentiable norm, denoted by B rug , [START_REF] Song | Strong convergence theorems on an iterative method for a family of finite nonexpansive mappings[END_REF]Theorem 3.1]. Note that in this three Banach spaces cases listed here the normalized duality mapping is shown to be single valued.

The aim of this paper is to study the strong convergence of iterative schemes :

x n+1 = α n f (x n ) + (1 -α n )T n x n (7) 
when X can be a B us , or a B rwsc , or a B rug real Banach space and {T n } is a sequence of nonexpansive mappings which share at least a common fixed point.

We give a general framework to show that {x n } will converge strongly to x where x is the unique solution of (5) for a fixed nonexpansive mapping T related to the sequence {T n }. The key ingredient is the fact that Lemma 26 given in section 3 is valid in the three previous context. Then we show that by specifying the sequence T n we can recover and extend some known convergence theorems [START_REF] Xu | Viscosity approximation methods for nonexpansive mappings[END_REF][START_REF] Kim | Strong convergence of modified mann iterations[END_REF][START_REF] Song | Strong convergence theorems on an iterative method for a family of finite nonexpansive mappings[END_REF][START_REF] Song | Viscosity approximation methods for nonexpansive nonself-mappings[END_REF][START_REF] Chen | Viscosity approximation methods for nonexpansive mappings and monotone mappings[END_REF][START_REF] Kimura | Convergence to common fixed points of a finite family of nonexpansive mappings[END_REF]. Note also that in equation [START_REF] Gossez | Some geometric properties related to the fixed point theory for nonexpansive mappings[END_REF], f is an α-contraction, but following [START_REF] Suzuki | Moudafi's viscosity approximations with meir-keeler contractions[END_REF] it is easy to show that f can be replaced by a Meir-Keeler contraction (Lemma 31 in section 3 is devoted to this extension). The paper is organized as follows : a main theorem is proved in section 3 using a set of lemmas which are postponed to the last section of the paper and which are verbatim or slight extensions of know results. Then in a collection of subsections, known convergence theorems are revisited with shorter proofs.

Main theorem

In the sequel a B real Banach space, will denote when not specifically stated a real Banach space with a normalized duality mapping uniformly norm-to-weak ⋆ continuous on bounded sets (which is the case for B us or B rug ) or a reflexive Banach space which admits a weakly continuous duality mapping J Φ with gauge φ (B rwsc ).

H 1,N : For a fixed given N ≥ 1 and a given sequence {α n }, a sequence of mappings {T n } will be said to verify H 1,N , if for a given bounded sequence {z n }, we have

(1 -α n+N )T n+N z n -(1 -α n )T n z n ≤ δ n M (8) with either (i) ∞ 0 |δ n | < ∞ or (i ′ ) lim sup n→∞ δ n /α n ≤ 0 and M a constant.
Remark 1 Note that using Lemma 30 {δ n } can be replaced by {µ n + ρ n } where {µ n } satisfies (i) and {ρ n } satisfies (i ′ ).

Remark 2 Note that when α n ∈ (0, 1) we have :

(1 -α n+N )T n+N z n -(1 -α n )T n z n ≤ |α n+N -α n | T n+N z n + T n+N z n -T n z n . (9) 
Thus, when {α n } satisfies H 3,N (given below), if for each bounded sequence {z n }, {T n z n } is bounded and either (vi)

∞ n=0 T n+N z n -T n z n < ∞ or (vi ′ ) T n+N z n -T n z n /α n → 0 then H 1,N
is satisfied (again using previous remark about mixing between conditions with or without prime). In the previous case, H 1,N is thus implied by H ′ 1,N which is stated now : H ′ 1,N : For a fixed given N ≥ 1 and a given sequence {α n } which satisfies H 3,N a sequence of mappings {T n } will be said to verify

H ′ 1,N , if given bounded sequence {z n }, we have T n+N z n -T n z n ≤ ρ n with either (vi) ∞ n=0 ρ n < ∞ or (vi ′ ) ρ n /α n → 0.
H 2,p : For a given p ∈ X, a sequence {x n } will be said to verify H 2,p if we have lim sup

n→∞ f (p) -p, J(x n -p) ≤ 0 . (10) 
H 3,N : For a fixed given N ≥ 1, a sequence of real numbers {α n } will be said to verify H 3,N if the sequence {α n } is such that (i) α n ∈ (0, 1), (ii) lim n→∞ α n = 0, (iii)

∞ n=0 α n = ∞ and either (iv) ∞ n=0 |α n+N -α n | < ∞ or (iv ′ ) lim n→∞ (α n+N /α n ) = 1.
We can now formulate the main theorem of the paper :

Theorem 3 Let X be a B real Banach space, C a closed convex subset of X, T n : C → C a sequence of nonexpansive mapping, T a nonexpansive mapping and f ∈ Π C . We assume that F ix(T ) = ∅ and that for all n ∈ N F ix(T ) ⊂ F ix(T n ). Let {α n } be a sequence of real numbers for which there exists a fixed N ≥ 1 such that H 3,N is satisfied and suppose that there exists p ∈ F ix(T ) such that H 2,p is satisfied, then the sequence {x n } defined by (34) converges strongly to p.

Proof : The proof uses a set of Lemmas which are given in section 3. Since p is in F ix(T n ) for all n we can use Lemma 23 to obtain the boundedness of the sequence {x n }. Thus we can conclude using Lemma 28.

Corollary 4 Assume that the hypothesis of Theorem 3 except H 2,p are satisfied. Suppose that H 1,N or H ′ 1,N is satisfied and that for each bounded sequence {y n }, the sequence T n y n -T y n → 0. Then the conclusion of Theorem 3 remains for p = Q(f ).

Proof : We just need to prove that H 2,p is satisfied for p = Q(f ). We first show that if H ′ 1,N is satisfied then H 1,N is also satisfied. As in previous theorem {x n } is a bounded sequence. Then, let p ∈ F ix(T ), we have :

T n x n -T x n ≤ T n x n -T n p + T n p -T p + T p -T x n ≤ 2 x n -p + T n p -T p .
and since T n p -T p → 0 by hypothesis we have that {T n (x n )} is bounded. As shown in remark 2 we are within the case where H 1,N is implied by

H ′ 1,N .
Applying Lemma 24 and Corollary 25 we obtain the convergence of T x nx n . We can then apply Lemma 26 to obtain H 2,p for p = Q(f ).

Corollary 4 can be extended as follows when a constant T cannot be found.

Corollary 5 Assume that the hypothesis of Theorem 3 except H 2,p are satisfied. Suppose that H ′ 1,N is satisfied and that {T n x n } is bounded and that from each subsequence σ(n) we can extract a subsequence µ(n) and find a fixed mapping T µ such that

T µ(n) x µ(n) -T µ x µ(n) → 0.
If F = F ix (T µ ) does not depend on µ, then the conclusion of Theorem 3 remains for p = Q F (f ).

Proof : We just need to prove that H 2,p is satisfied for p = Q(f ). Using remark 2 we are in the case where H 1,N is implied by H ′ 1,N . Using H 1,N we first easily obtain that x n -T n x n → 0 by an argument similar to Corollary 25. Then H 2,p for p = Q(f ) follows from Corollary 27.

We can now consider the case of composition. Assume that {T 1 n } and {T 2 n } satisfy H ′ 1,N with sequences denoted by ρ i n . Assume also that for a bounded sequence {z n } then the sequences {T 2 n+N z n } and {T 1 n+N T 2 n+N z n } and also bounded. Then it is straightforward, since the mappings T 1 n are nonexpansive, that :

T 1 n+N T 2 n+N z n -T 1 n • • • T 2 n z n ≤ ρ 1 n + T 2 n+N z n -T 2 n z n .
Thus the composition 

T 1 n • T 2 n satisfy H ′ 1,N with ρ n def = ρ 1 n + ρ 2 n .
n • T 2 n } with p = Q F (f ) and F = F ix(T 1 µ • T 2 ρ ).
Proof :As pointed out before the statement of the corollary the composition

T 1 n • T 2 n satisfy H ′ 1,N . Consider a subsequence σ(n)
we can find first a subsequence µ 2 (n) and µ 2 such that :

T 2 µ(n) x µ(n) -T 2 µ x µ(n) → 0.
Then, using properties of the T 1 n sequence, we can re-extract a new subsequence ρ(n) and ρ such that :

T 1 ρ(n) T 2 ρ(n) x ρ(n) -T 1 ρ T 2 ρ(n) x ρ(n) → 0.
Since we have :

T 1 ρ(n) T 2 ρ(n) x ρ(n) -T 1 ρ T 2 µ x ρ(n) ≤ T 1 ρ(n) T 2 ρ(n) x ρ(n) -T 1 ρ T 2 ρ(n) x ρ(n) + T 2 ρ(n) x ρ(n) -T 2 ρ x ρ(n)
When obtain the conclusion for the composition.

Recall that a mapping T is attracting non expansive if it is nonexpansive and satisfies :

T x -p < x -p for all x ∈ F ix T and p ∈ F ix T. (11) 
In particular a firmly nonexpansive mapping, i.e T x -T y 2 ≤ xy, T x -T y is attracting nonexpansive [START_REF] Goebel | Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings[END_REF].

Remark 7

In the previous corollary, we obtain a fixed point of a composition and in practice the aim is to obtain a common fixed point of two mappings. If the mappings T 1 µ and T 2 ρ are attracting, have a common fixed point and

T 1 µ or T 2
ρ is attracting then we will have

F ix T 1 µ ∩ F ix T 2 ρ = F ix T 1 µ • T 2 ρ .
The proof is contained in [1, Proposition 2.10 (i)] and given in Lemma 32 for completeness.

Remark 8 Note that if X is a strictly convex Banach space, then for λ ∈ (0, 1) the mapping T λ def = (1λ)I + λT is attracting nonexpansive when T is nonexpansive. Extension to a set of N operators is immediate by induction. This gives a way to build attracting nonexpansive mappings and mixed with previous remark it gives [START_REF] Takahashi | Approximation of common fixed points of a family of finite nonexpansive mappings in banach spaces[END_REF]Proposition 3.1].

Remark 9 Note also that, when X is strictly convex, an other way to obtain

F = ∩ i F ix (T i ) for a sequence of nonexpansive mappings {T i } is to use T = i λ i T i with a sequence {λ i } of real positive numbers such that i λ i = 1 [2, Lemma 3].

Example 1

Theorem 10 [17, Theorem 4.2] Let X be a B real Banach space, C a closed convex subset of X, T : C → C a nonexpansive mapping with F ix(T ) = ∅, and f an α-contraction. Then when the sequence {α n } satisfies H 3,1 the sequence {x n } defined by (34) with T n def = T converges strongly to Q(f ).

Proof : Here the sequence T n does not depend on n. We just apply Corollary 4 to get the result. Of course, if the sequence

{x n } is bounded then {T n (x n ) = T x n } is bounded and equation (8) of H 1,1 is then satisfied with δ n = |α n -α n+1 |. Since {α n } satisfies H 3,1 , {δ n } satisfies H 1,1 .
We also have T n x n -T x n = 0 → 0 and the conclusion follows.

Remark 11 Suppose now that T def = i λ i T i where {λ i } is a sequence of positive real numbers such that i λ i = 1 and the T i mappings are all supposed nonexpansive. Then, we can apply Theorem 10 to obtain the strong convergence of the sequence {x n } to Q F ix T (f ). Moreover, If we assume that X is strictly convex then using remark 9 we obtain a strong convergence to

Q F (f ) with F def = ∩ i∈I F ix(T i ).
This can be extended to the case when the λ i also depends on n and recover [9, Theorem 4] as follows :

Corollary 12 Let X be a strictly convex B real Banach space, C a closed convex subset of X, T i : C → C for i ∈ I a finite family of nonexpansive mapping with ∩ i∈I F ix(T i ) = ∅, and f an α-contraction. For a sequence {α n } satisfying H 3,1 we consider the sequence {x n } defined by (34

) with T n def = i∈I λ i,n T i . Assume that for all i and n λ i,n ∈ [a, b] with a > 0 and b < ∞ either n λ i,n < ∞ or λ i,n /α n → 0 then {x n } converges strongly to Q F (f ) with F = ∩ i∈I F ix(T i )
Proof :The proof is given by an application of corollary 5. Indeed since the λ i,n are bounded T n x n remains bounded for a bounded sequence x n . Then T n satisfies H ′ 1,1 with ρ n = i∈I λ i,n . By extracting from each given subsequence σ(n) a subsequence µ(n) such that lim n→∞ λ i,µ(n) = λ i for all i ∈ I we can use corollary 5. Finally, noting that, for a strictly convex space X, the fixed points of T λ def = i∈I λ i T i does not depend on λ and is equal to ∩ i∈I F ix(T i ) we conclude the proof.

Example 1 ′

In [START_REF] Song | Viscosity approximation methods for nonexpansive nonself-mappings[END_REF] The following algorithm is considered :

y n+1 = P (α n f (y n ) + (1 -α n )T y n ) ( 12 
)
Where P : X → C is a sunny nonexpansive retraction, f : C → X an αcontraction and T : C → X a nonexpansive mapping such that F ix(T ) = ∅.

If we consider the sequence

x n+1 = α n f (y n ) + (1 -α n )T
y n then we have y n+1 = P x n+1 and thus

x n+1 = α n f (P (x n )) + (1 -α n )T (P (x n )) (13) 
Since f •P is an α-contraction from X onto X and T •P a non expansive mapping from X onto X we can use the previous theorem to obtain the strong convergence of the sequence {x n } to x a fixed point of T • P such that x = P F ix(T •P ) f (T (x)) (P S is the metric projection on S). We thus obtain now the strong convergence of the initial sequence {y n } to y = P (x) and since x is a fixed point of T • P , y is a fixed point of P • T . If we suppose in addition that X is such that J (or J φ ) is norm-to-weak ⋆ continuous (i.e X is smooth) and that T satisfy the weakly inward condition then we can use the result of [14, Lemma 1.2] which state that F ix(T ) = F ix(P • T ) to conclude that y is in fact a fixed point of T and recover the result of [14, Theorem 2.4].

Example 2

We consider now the example given in [START_REF] Kim | Strong convergence of modified mann iterations[END_REF] where the sequence {x n } is given by :

y n = β n x n + (1 -β n )T x n x n+1 = α n u + (1 -α n )y n With a sequence of mappings T n x def = β n x+(1-β n )T x.
This problem is rewritten as follows :

x n+1 = α n f (x n ) + (1 -α n )T n x n (14) 
Theorem 13 Let X be a B real Banach space, C a closed convex subset of X, T : C → C a nonexpansive mapping with F ix(T ) = ∅, and f an α-contraction.

When the sequence {α n } satisfies H 3,1 and the sequence {β n } converges to zero and satisfy either

∞ n=0 |β n+1 -β n | < ∞ or |β n+1 -β n |/α n → 0.
Then, the sequence {x n } defined by [START_REF] Song | Viscosity approximation methods for nonexpansive nonself-mappings[END_REF] 

converges strongly to Q(f ).
This theorem is very similar to [8, Theorem 1] where f was supposed to be constant. It could be covered by corollary 12 but here strict convexity is not needed.

Proof : We easily check that the fixed points p of T are fixed points of T n for all n ∈ N and T n is nonexpansive for all n. Thus by Lemma 23 the sequence {x n } is bounded . If the sequence {x n } is bounded then T n (x n ) ≤ max( x n , T x n )} is bounded too. Since :

T n y n -T y n ≤ β n ( y n + T y n ) (15) 
we have T n y n -T y n → 0 for each bounded sequence {y n }. It is easily checked that H 1,1 is satisfied with

δ n = |α n+1 -α n |+|β n+1 -β n |.
The conclusion follows from Corollary 4.

Example 3

We consider here the accretive operators example given in [START_REF] Kim | Strong convergence of modified mann iterations[END_REF] or [START_REF] Xu | Strong convergence of an iterative method for nonexpansive and accretive operators[END_REF] :

x n+1 = α n f (x n ) + (1 -α n )T n x n ( 16 
)
Where T n x = J rn x and J λ is the resolvent of an m-accretive operator A, J λ x = (I + λA) -1 . The following theorem is similar to [18, Theorem 4.2, Theorem 4.4] or [START_REF] Kim | Strong convergence of modified mann iterations[END_REF]Theorem 2].

Theorem 14 Let X be a B real Banach space, A an m-accretive operator in X such that A -1 (0) = ∅. We assume here that C def = D(A) where D(A) is the domain of A and suppose that C is convex. Suppose that H 3,1 is satisfied by the sequence {α n } and that the sequence r n is such that r n ≥ ǫ > 0 and either

∞ 0 |1-r n /r n+1 | < ∞ or |1-r n /r n+1 |/α n → 0,
then the sequence {x n } defined by [START_REF] Takahashi | Approximation of common fixed points of a family of finite nonexpansive mappings in banach spaces[END_REF] converges strongly to a zero of A.

Proof : We first note that [18, p 632], for λ > 0, F ix (J λ ) = F where F is the set of zero of A and for an m-accretive operator A, J λ is non expansive from X → D(A). Using the resolvent identity J λ x = J µ ((µ/λ)x + (1µ/λ)J λ x) we obtain :

T n+1 z n -T n z n ≤ 1 - r n r n+1 ( z n + T n z n ) ( 17 
)
and since the sequence T n y n is bounded for a bounded sequence y n (for p ∈ A -1 (0) we have T n y np ≤ y np ) we can apply remark 2 in order to obtain H 1,1,. We thus have x n+1x n → 0 by Lemma 24 and x n -T n x n → 0 by :

x n -T n x n ≤ x n -x n+1 + x n+1 -T n x n ≤ x n -x n+1 + α n ( f (x n ) + T n (x n ) )
Take now r such that 0 < r < ǫ and define T def = J r then we have :

T n x n -T x n ≤ 1 - r r n x n -T n x n (18) 
We thus obtain that x n -T x n → 0 from :

x n -T x n ≤ x n -T n x n + T n x n -T x n ( 19 
)
The conclusion is obtained through Corollary 4.

Example 4

We consider here the example given in [START_REF] Song | Strong convergence theorems on an iterative method for a family of finite nonexpansive mappings[END_REF] x

n+1 = α n f (x n ) + (1 -α n )T n y n ( 20 
)
where T n = Q n mod N , where N ≥ 1 is a fixed integer and the (Q l ) l=0,...,N -1 is a family of nonexpansive mappings.

Theorem 15 Let X be a B real Banach space, C a closed convex subset of X, Q l : C → C for l ∈ {1, . . . , N } a family of nonexpansive mappings such that

F def = ∩ N -1 l=0 F ix(Q l ) is not empty and ∩ N -1 l=0 F ix(Q l ) = F ix(T n+N T n+N -1 • • • T n+1 ) for all n ∈ N (21)
and f an α-contraction. When the sequence {α n } satisfies H 3,N then the sequence {x n } defined by (20) converges strongly to Q F (f ).

Proof : By Lemma 23, since the T n have a common fixed point, the sequence {x n } is bounded. Since the sequence of mappings T n is periodic, the sequence {T n x n } is bounded and equation ( 8) of H 1,N is obtained for δ n = |α nα n+N | using [START_REF] Kimura | Convergence to common fixed points of a finite family of nonexpansive mappings[END_REF]. Since {α n } satisfies H 3,N , {δ n } satisfies H 1,N . Thus, using Lemma 24 we obtain that x n+Nx n → 0. Since x n+1 -T n x n ≤ α n ( f (x n ) + T n x n ), we have x n+1 -T n x n → 0. We introduce the sequence of mappings

A (N,α) n def = T n+N -1 • • • T n+α for α = N and A (N,N ) n = Id. Using Lemma 16,
given just after this proof, we conclude that :

x n+N -A (N,0) n x n → 0. This combined with x n+N -x n → 0 gives x n+N -A (N,0) n
x n → 0. Note now that the mappings A (N,0) n are in finite number are all nonexpansive and share common fixed points by hypothesis. Thus we can prove that H 2,p is satisfied for p = Q F (f ). Let p = Q F (f ) we suppose that H 2,p is not satisfied, then it possible to extract a subsequence of {x σ(n) } such that :

lim n→∞ f (p) -p, J(x σ(n) -p) ≤ 0 ( 22 
)
But it is then possible to find q ∈ {0, . . . , N -1} and an extracted new subsequence µ(n) from σ(n) such that µ (n) mod N = q. We thus have

x µ(n) -T x µ(n) → 0, with T def = A (N,0) q
which is now a fixed mapping and F ix (T ) = F . Then H 2 p should be true by Lemma 26 and this leads to a contradiction. The conclusion follows by 28. 

A (N,α+1) n x n+α+1 -A (N,α) n x n+α = A (N,α+1) n x n+α+1 -A (N,α+1) n T n+α x n+α ≤ x n+α+1 -T n+α x n+α Thus : x n+N -A (N,0) n x n ≤ N -1 α=0 x n+α+1 -T n+α x n+α
and the result follows.

Example 5

Let Γ (j) n for j ∈ {1, . . . , m} be a sequence of mappings defined recursively as follows :

Γ (j) n x def = β (j) n x + (1 -β (j) n )T j Γ (j+1) n
x and Γ (m+1)

n x = x (23) 
Proof : Note first that :

Γ (j) n x ≤ x + T j (Γ (j+1) n x) (28) 
which applied recursively shows that Γ (j) n x is bounded by a constant which depends on the mappings (T p ) p≥j and x and not on n. Then, using the definition of Γ (j) n we have :

Γ (j) n+1 x -Γ (j) n ≤ |β (j) n+1 -β (j) n |( x + T j Γ (j+1) x ) + T j Γ (j+1) n+1 (x) -T j Γ (j+1) n (x) (29)
since T j is nonexpansive mappings :

Γ (j) n+1 x -Γ (j) n ≤ |β (j) n+1 -β (j) n |( x + T j Γ (j+1) x ) + Γ (j+1) n+1 (x) -Γ (j+1) n (x)
by recursion and since the last term Γ

(m+1) n+1 (x) -Γ (m+1) n
(x) = 0 we obtain the result.

Note that Lemma 19 remains valid for the sequence

Γ (j) n x def = β (j) n g(x) + (1 -β (j) n )T j Γ (j+1) n
x and Γ (m+1)

n x = x ( 30 
)
if g is a nonexpansive mapping.

Example 6

We consider here the example given in [START_REF] Chen | Viscosity approximation methods for nonexpansive mappings and monotone mappings[END_REF] x

n+1 = α n f (x n ) + (1 -α n )T n x n
where T n x def = P C (xλ n Ax) and P C is the metric projection from X to C. The aim is to find a solution of the variational inequality problem which is to find x ∈ C such that Ax, yx ≥ 0 for all y ∈ C. The set of solution of the variational inequality problem is denoted by VI(C, A). The operator A is said to be µ-inverse-strongly monotone if

xy, Ax -Ay ≥ µ Ax -Ay 2 for all x, y ∈ C

The next theorem is similar to [START_REF] Chen | Viscosity approximation methods for nonexpansive mappings and monotone mappings[END_REF]Proposition 3.1].

Theorem 20 Let X be a real Hilbert space, C a nonempty closed convex, f an α-contraction, and let A be a µ-inverse-strongly monotone mapping of H into itself such that VI(C, A) = ∅. Assume that H 3,1 is satisfied and that

{λ n } is chosen so that λ n ∈ [a, b] for some a, b with 0 < a < b < 2µ and ∞ n=1 |λ n+1 -λ n | < ∞. then the sequence {x n } generated by (31) converges strongly to Q F (f ) associated to F = F ix (T λ ) where T λ (x) def = P C (x -λAx). F = F ix (T λ )
does not depend on λ for λ > 0 and equals VI(C, A).

Proof :For λ > 0, let T λ x def = P C (x -λAx). When X is an Hilbert space we have F ix(T λ ) = VI(C, A). When A is µ-inverse-strongly monotone then for, λ ≤ 2µ, I -λA is nonexpansive. Thus the mappings T n are non expansive and F ix (T n ) = VI(C, A) = ∅. By Lemma 23 the sequence {x n } is bounded. Since T n z ≤ K( z + 2µ Az ), the sequence {T n x n } is bounded too. We also have

T n+1 z n -T n z n ≤ |λ n+1 -λ n | Az n which gives H 1,N with δ n = |λ n+1 -λ n | + |α n+1 -α n | by remark 2. The result follows now from Corollary 5. Indeed, since λ σ(n) ∈ [a, b] it is possible to extract a converging subsequence λ µ(n) → λ ∈ [a, b] and we then have T µ(n) z -T λ z ≤ |λ µ(n) -λ| Az . Thus T µ(n) x µ(n) -T λ x µ(n) → 0.
Remark 21 We can note that for λ < 2α, I -λA is in fact attracting nonexpansive since :

(I -λA)x -(I -λA)y ≤ x -y + λ(λ -2α) Ax -Ay 2 .
Thus it is also the case for P C • (I -λA) [START_REF] Bauschke | on projection algorithms for solving convex feasibility problems[END_REF]. For a nonexpansive mapping S we can consider the previous theorem with T λ x def = S • P C (x -λAx) and using Remark 7 (an Hilbert space is strcitly convex) to obtain a strong convergence to a point in F ix (T λ ) = F ix S ∩ VI(C, A) and thus fully recover [3, Proposition 3.1]

Example 7

We consider here the equilibrium problem for a bifunction F : C × C → R where C is a closed convex subset of a real Hilbert space X. The problem is to find x ∈ C such that F (x, y) ≥ 0 for all y ∈ C. The set of solutions if denoted by EP(F ). It is proved in [START_REF] Flåm | Equilibrium programming using proximal-like algorithms[END_REF] (See also [START_REF] Combettes | Equilibrium programming in hilbert spaces[END_REF]) that for r > 0, the mapping T r : X → C defined as follows :

T r (x) def = z ∈ C : F (z, y) + 1 r y -z, z -x ≥ 0, ∀y ∈ C (31) 
is such that T r is singled valued, firmly nonexpansive (i.e T r x -T r y 2 ≤ T r x -T r y, xy for any x, y ∈ X), F ix(T r ) = EP(F ) and EP(F ) is closed and convex if the bifunction F satisfies (A 1 )F (x, x) = 0 for all x ∈ C, (A 2 )F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C, (A 3 ) for each x, y, z ∈ C lim t→0 F (tz +(1-t)x, y) ≤ F (x, y) and (A 4 ) for each x ∈ C y → F (x, y) is convex and lower semicontinuous.

we can now consider the sequence {x n } given by :

x n+1 = α n f (x n ) + (1 -α n )T n x n
where T n def = T rn for a given sequence of real numbers {r n }.

Theorem 22 Let X be a real Hilbert space,C a nonempty closed convex, f an α-contraction, assume that EP(F ) = ∅, H 3,1 is satisfied and the sequence {r n } is such that lim inf n→∞ r n > 0 and either

n |r n+1 -r n | < ∞ of |r n+1 -r n |/α n → 0.
Then, the sequence {x n } generated by (32) converges strongly to Q EP(F ) (f ).

Proof : Since the r n are strictly positive the mappings T rn are non expansive and share the same fixed points EP(F ) which was supposed non empty. By Lemma 23 the sequence {x n } is bounded.

Using the definition of T r (x) and the monotonicity of F (A 2 ) easy computations leads to the following inequality [12, p 464] :

T r (x) -T s (y) ≤ x -y + 1 - s r T r (y) -y (32) 
Using r > 0 such that r n > r for all n ∈ N and y ∈ F ix (T r ) we obtain T rn (x n ) -T r (y) ≤ x ny which gives the boundedness of the sequence {T rn (x n )}. Moreover, for a bounded sequence {y n } we obtain :

T rn+1 (y n ) -T rn (y n ) ≤ |r n+1 -r n | r T rn (y n ) -y n (33) 
We thus obtain

H 1,1 with δ n = |r n+1 -r n | + |α n+1 -α n | using remark 2.
The result follows now from Corollary 5. Indeed, since r σ(n) > r it is possible to extract a converging subsequence r µ(n) → r > r and we then have

T rµ(n) z -T r z ≤ |r µ(n) -r|K. Thus T rµ(n) x µ(n) -T r x µ(n) → 0 .

A collection of Lemma

The first Lemma can be used to derive boundedness of the sequence {x n } generated by 34.

Lemma 23 Let {x n }, the sequence generated by the iterations

x n+1 = α n f (x n ) + (1 -α n )T n x n ( 34 
)
where f is contraction of parameter α, T n is a family of nonexpansive mappings and α n is a sequence in (0, 1). Suppose that there exists p a common fixed point of T n for all n ∈ N. Then, the sequence {x n } is bounded.

Proof : The proof exactly follows the proof of [17, theorem 3.2], the only difference is that here the mappings T n are indexed by n but it does not change the proof. Obviously we have :

x n+1 -p ≤ α n f (x n ) -p + (1 -α n ) T n x n -p ≤ α n (α x n -p + f (p) -p ) + (1 -α n ) x n -p ≤ (1 -α n (1 -α)) x n -p + α n (1 -α) f (p) -p (1 -α) ≤ max x n -p , f (p) -p (1 -α) .
And, by induction, {x n } is bounded.

The next lemma aims at proving that the sequence {x n } is asymptotically regular i.e for a given N ≥ 1, we have x n+Nx n → 0.

Lemma 24 With the same assumptions as in Lemma 23 and assuming that there exists N ≥ 1 such that H 1,N and H 3,N are fulfilled then, for the sequence {x n } given by iterations (34), we have x n+Nx n → 0.

Proof : Using the definition of {x n } we have :

x n+N +1 -x n+1 = α n+N (f (x n+N ) -f (x n )) + (α n+N -α n )f (x n ) +(1 -α n+N )(T n+N x n+N -T n+N x n ) + ((1 -α n+N )T n+N x n -(1 -α n )T n x n ) .
By Lemma 23 the sequence {x n } is bounded, we can therefore use H 1,N with {x n }. Since {f (x n )} is bounded too, we can find three constants such that :

x n+N +1 -x n+1 ≤ α n+N α x n+N -x n + |α n+N -α n |K 1 +(1 -α n+N ) x n+N -x n + δ n M ≤ (1 -(1 -α)α n+N ) x n+N -x n + (|α n+N -α n | + δ n )K 2
The proof then follows easily using the properties of α n i.e H 3,N and Lemma 30. The next step is to prove that we can find a fixed mapping T such that x n -T x n → 0. The next corollary gives a simple example for which the property can be derived from Lemma 24. Indeed, we have seen specific proofs in previous sections on illustrated examples.

Corollary 25 Using the same hypothesis as in Lemma 24 and assuming that {T n x n } is bounded and that T n x n -T x n → 0 we also have x n -T x n → 0.

Proof :

x n -T x n ≤ x n -x n+1 + x n+1 -T x n ≤ x n -x n+1 + α n K 1 + (1 -α n ) T n x n -T x n
and the result follows.

The next Lemma gives assumptions to obtain H 2,p for a given p.

Lemma 26 Suppose that X is a B real Banach space. Let T be a nonexpansive mapping with F ix(T ) = ∅, f an α-contraction and {x n } a bounded sequence such that T x nx n → 0. Then for x = Q(f ) we have :

lim sup n→∞ f (x) -x, J(x n -x) ≤ 0 (35)
Proof :When X is a B us or a B rug the key point is the fact that J is uniformly norm-to-weak ⋆ continuous on bounded sets. The proof of this Lemma can be found in the proof of Theorem [17, Theorem 4.2] or [START_REF] Song | Strong convergence theorems on an iterative method for a family of finite nonexpansive mappings[END_REF]Theorem 3.1]. We just summarize the line of the proof here. Let x def = σ-lim t→0 x t where x t solves x t = tf (x t ) + (1t)T x t , we thus have :

x t -x n 2 ≤ (1 -t) 2 T x t -x n 2 + 2t f (x t ) -x n , J(x t -x n ) ≤ (1 -t) 2 ( T x t -T x n + T x n -x n ) 2 +2t f (x t ) -x t , J(x t -x n ) + 2t x t -x n 2 ≤ (1 + t 2 ) x t -x n 2 + a n (t) +2t f (x t ) -x t , J(x t -x n ) ( 36 
)
where a n (t) = 2 T x nx n x tx n + T x nx n 2 → 0 when n tends to infinity. Thus :

f (x t ) -x t , J(x n -x t ) ≤ a n (t) 2t + t 2 x t -x n 2 (37) 
and we have :

lim t→0 lim sup n→∞ f (x t ) -x t , J(x n -x t ) ≤ 0 (38) 
We consider now a sequence t p → 0 and y p def = x tp , then we have y p → x and with g(x)

def = (x) -x we have g(x), J(x n -x) ≤ g(y p ), J(x n -y p ) + | g(x), J(x n -x) -J(x n -y p ) | + (1 + α) x -y p x n -y p
Since J is uniformly norm-to-weak ⋆ continuous on bounded sets and y p → x, for ǫ > 0, we can find p such that for all p ≥ p and all n ∈ N we have :

g(x), J(x n -x) ≤ g(y p ), J(x n -y p ) + ǫ(1 + α) x -y p x n -yp (39) Thus : lim sup n→∞ g(x), J(x n -x) ≤ lim sup n→∞ g(y p ), J(x n -y p ) + ǫ + x -y p K ≤ lim p→∞ (lim sup n→∞ g(y p ), J(x n -y p ) + ǫ x -y p K) ≤ ǫ Suppose now that X is a B rwsc . We follow the proof of [Theorem 2.2]song- chen-1 or [18, Theorem 3.1]. Let x = Q(f ) and consider a subsequence {x σ(n) } such that lim sup n→∞ f (x) -x, J(x n -x) = lim n→∞ f (x) -x, J(x σ(n) -x) .
It is then possible to re-extract a subsequence x µ(n) weakly converging to x ⋆ . Since we have x µ(n) -T x µ(n) → 0 then x ⋆ ∈ F ix(T ) using the key property that X satisfies Opial's condition [7, Theorem 1] and the fact that I -T is demi-closed at zero [START_REF] Song | Strong convergence theorems on an iterative method for a family of finite nonexpansive mappings[END_REF]Lemma 2.2]. Thus by definition of x we must have f (x)x, J(x ⋆x) ≤ 0.

Corollary 27 Suppose that X is a B us , or a B rug , or a B rwsc . let f a contraction and {x n } a bounded sequence such that x n -T n x n → 0. From each subsequence σ(n) we can extract a subsequence µ(n) and find a fixed mapping

T µ such that T µ(n) x µ(n) -T µ x µ(n) → 0. Then, if F = F ix T µ does not depend on µ, for x = Q(f ) associated to F , we have : lim sup n→∞ f (x) -x, J(x n -x) ≤ 0 (40) 
Proof :The proof is by contradiction using Lemma 26. Assume that the result is false, then we can find a subsequence σ(n) such that lim sup

n→∞ f (x) -x, J(x µ(n) -x) ≥ ǫ > 0 (41) by hypothesis we can extract from σ(n) a sub-sequence µ(n) such that T µ(n) x µ(n) -T x µ(n) → 0. Thus, since x µ(n) -T x µ(n) ≤ x µ(n) -T µ(n) x µ(n) + T µ(n) x µ(n) -T x µ(n) ,
we have x µ(n) -T x µ(n) → 0 we can then apply Lemma 26 to the sequence {x µ(n) } and mapping T µ to derive that :

lim sup n→∞ f (x) -x, J(x µ(n) -x) ≤ 0 for x = Q(f ) corresponding to F = F ix
T µ and since F does not depend on µ, this gives a contradiction with (41).

The next Lemma helps concluding the proof.

Lemma 28 Assume that the sequence {x n } given by iterations (34) is bounded and assume that for p, a common fixed point of the mappings T n ,H 2,p is satisfied and that (i, ii, iii) items of H 3,N is also satisfied1 . Then the sequence {x n } converges to p.

Proof :

x n+1 -p 2 ≤ (1 -α n ) 2 T n x n -p 2 + 2α n f (x n ) -p, J(x n+1 -p) ≤ (1 -α n ) 2 x n -p 2 + 2α n f (x n ) -f (p), J(x n+1 -p) +2α n f (p) -p, J(x n+1 -p) ≤ (1 -α n ) 2 x n -p 2 + 2α n α x n -p x n+1 -p) +2α n f (p) -p, J(x n+1 -p)
Note that x n+1p ≤ x np + α n K . Thus :

x n+1 -p 2 ≤ (1 -α n ) 2 x n -p 2 + 2α n α x n -p 2 +2α 2 n K + 2α n f (p) -p, J(x n+1 -p) ≤ (1 -α n (1 -α) + α 2 n ) x n -p 2 +2α 2 n K + 2α n f (p) -p, J(x n+1 -p) (42) 
And we conclude with Lemma 29. A contraction is said to be a Meir-Keeler contraction (MKC) if for every ǫ > 0 there exits δ > 0 such that xy < ǫ + δ implies Φ(x) -Φ(y) < ǫ.

Lemma 31 [START_REF] Suzuki | Moudafi's viscosity approximations with meir-keeler contractions[END_REF] Suppose that the sequence {x n } defined by equation (34) strongly converges for an α-contraction f (or a constant function f ) to the fixed point of P F • f then the results remains valid for a Meir-Keeler contraction Φ.

Proof :Suppose that we have proved that (34) converges for an α-contraction f to the fixed point of P F • f . Then indeed, the result is true when f is a constant mapping. Let Φ be a Meir-Keeler contraction, fix y ∈ C, when f is constant and equal to Φ(y) then {x n } defined by (34) converges to P F (Φ(y)). If Φ is a MKC then since P F is nonexpansive P F • Φ is also MKC (Proposition 3 of [START_REF] Suzuki | Moudafi's viscosity approximations with meir-keeler contractions[END_REF]) and has a unique fixed point [START_REF] Meir | A theorem on contraction mappings[END_REF]. We can consider z = P F (Φ(z)) and consider two sequences :

x n+1 = α n Φ(x n ) + (1 -α n )T n x n ( 44 
)
y n+1 = α n Φ(z) + (1 -α n )T n y n (45) 
Of course {y n } converges strongly to z. We now prove that {x n } also converges strongly to z following [START_REF] Suzuki | Moudafi's viscosity approximations with meir-keeler contractions[END_REF]. Fix ǫ > 0, by Proposition 2 of [START_REF] Suzuki | Moudafi's viscosity approximations with meir-keeler contractions[END_REF], we can find r ∈ (0, 1) such that xy ≤ ǫ implies Φ(x) -Φ(y) ≤ r xy . Choose now N such that y nz ≤ ǫ(1r)/r. Assume now that for all n ≥ N we have x ny n > ǫ then

x n+1 -y n+1 ≤ (1 -α n ) x n -y n + α n Φ(x n ) -Φ(y n ) + α n Φ(y n ) -z ≤ (1 -α n (1 -r)) x n -y n + α n ǫ
We cannot use here directly Lemma 29 but following the proof of this Lemma we obtain that lim sup x ny n ≤ ǫ. Assume now that for a given value of n we have x ny n ≤ ǫ. Since Φ is a MKC we have Φ(x) -Φ(y) ≤ max(r xy , ǫ) and since we have r x nz ≤ r x ny n + r y nz ≤ ǫ (46)

Corollary 6

 6 This lead us to propose the following Corollary for dealing with composition : Assume that the hypothesis of corollary 5 are satisfied for the sequence {T 1 n } with H ′ 1,N and for {T 2 n } also with H ′ 1,N . Then the conclusion of Theorem 3 remains for the sequence {T 1

Lemma 16

 16 Let N ∈ N, α ∈ {0, . . . , N } and A (N,α) n def = T n+N -1 • • • T n+α for α = N and A (N,N ) n = Id. Assume that x n+1 -T n x n → 0 then x n+N -A We have for α ∈ {0, . . . , N -1} by definition of A (N,α) n and using the fact that A (N,α) n is nonexpansive :

Lemma 29 .[ 8 ,

 8 Lemma 2.1] Let {s n } be a sequence of nonnegative real numbers satisfying the propertys n+1 ≤ (1α n )s n + α n β n for n ≥ 0 ,where α n ∈ (0, 1) and β n are sequences of real numbers such that : (i) lim n→∞ α n = 0 and∞ n=0 α n = ∞ (ii) either lim sup n→∞ β n ≤ 0 or ∞ n=0 |α n β n | < ∞. Then {s n } converges to zero.Corollary 30 Let {s n } be a sequence of nonnegative real numbers satisfying the propertys n+1 ≤ (1α n )s n + α n β n + α n γ n for n ≥ 0 ,where α n ∈ (0, 1), β n and γ n are sequences of real numbers such that :(i) lim n→∞ α n = 0 and ∞ n=0 α n = ∞ (ii) lim sup n→∞ β n ≤ 0 and (iv) ∞ n=0 |α n δ n | < ∞. Then {s n } converges to zero.Proof :The proof is similar to the proof of Lemma 29 [8, Lemma 2.1]. Fix ǫ > 0 and N such that β n ≤ ǫ/2 for n ≥ N and ∞ j=N |α n δ n | ≤ ǫ/2 . Thenfollowing[START_REF] Kim | Strong convergence of modified mann iterations[END_REF] we have for n > N : taking the limit sup when n → ∞ we obtain lim sup n→∞ s n+1 ≤ ǫ.

Note that (i, ii, iii) of H 3,N do not use the value of N

where the sequences {β (j) n } ∈ (0, 1), and {T j } for j ∈ {1, . . . , m} are nonexpansive mappings. We want to prove here the convergence of the sequence generated by the iterations : (1) n x n (24)

Theorem 17 Let X be a B real Banach space, C a closed convex subset of X, T j : C → C for j ∈ {1, . . . , m} a family of nonexpansive mappings such that ∩ m l=1 F ix(T j ) is not empty and f an α-contraction. When the sequence {α n } satisfies H 3,N and for j ∈ {1, . . . , m} the sequences {β

n |/α n → 0 then the sequence defined by (24) converges strongly to

Proof : Note first that by an elementary induction Γ [START_REF] Bauschke | on projection algorithms for solving convex feasibility problems[END_REF] n is a nonexpansive mapping. If we assume that p is a common fixed point to the mappings T i then p is a fixed point of the mappings Γ (j) n . By Lemma 23 the sequence {x n } is bounded. Then using Lemma 19 , given just after this proof, combined with the boundedness of {x n }, H 1,1 is valid with

Now if we can prove that

the conclusion will be given by Corollary 4. The last assetion can easily be obtained by induction on Γ (j)

x n , since we have :

Remark 18 For m = 1 we obtain the same result as Theorem 13.

n be the sequence of mappings defined by (23) Then we have for j ∈ {1, . . . , m} :

where K is a constant which depends on the mappings (T p ) p≥j and x.

we obtain

Thus we have in both cases lim sup n→∞ x ny n ≤ ǫ and the conclusion follows.

Lemma 32 [1, Proposition 2.10 (i)] Suppose that X is strictly convex, T 1 an attracting non expansive mapping and T 2 a non expansive mapping which have a common fixed point. Then :

.

which gives a contradiction. Thus y is a fixed point of T 2 and then also of T 1 . If now y a fixed point of T 2 • T 1 and assume that y ∈ F ix(T 1 ) then we have yx = T 2 • T 1 (y)x ≤ T 1 (y)x < yx which gives also a contradiction and same conclusion.