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Iterative schemes for computing fixed points of

nonexpansive mappings in Banach spaces

Jean-Philippe Chancelier
Cermics, École Nationale des Ponts et Chaussées, 6 et 8 avenue Blaise Pascal, 77455, Marne la

Vallée, Cedex, France

Abstract

Let X be a real Banach space with a normalized duality mapping uniformly norm-to-weak⋆

continuous on bounded sets or a reflexive Banach space which admits a weakly continuous duality
mapping JΦ with gauge φ. Let f be an α-contraction and {Tn} a sequence of nonexpansive
mapping, we study the strong convergence of explicit iterative schemes

xn+1 = αnf(xn) + (1 − αn)Tnxn (1)

with a general theorem and then recover and improve some specific cases studied in the literature
[16,7,12,13,3,8].

Key words: Nonexpansive mappings, Viscosity approximation, Fixed point, Meir-Keeler contraction

1. Introduction and preliminaries

Let X be a real Banach space, C a nonempty closed convex subset of X. Recall that
a mapping T : C 7→ C is nonexpansive if ‖T (x) − T (y)‖ ≤ ‖x − y‖ for all x, y ∈ C
and a mapping f : C 7→ C is an α-contraction if there exists α ∈ (0, 1) such that
‖f(x) − f(y)‖ ≤ α‖x − y‖ for all x, y ∈ C.

We denote by Fix(T ) the set of fixed points of T , that is

Fix(T )
def
= {x ∈ C : Tx = x} (2)

and ΠC will denote the collection of contractions on C.
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Let X be a real Banach space. The (normalized) duality map J : X 7→ X⋆, where X⋆

is the dual space of X, is defined by :

J(x)
def
=

{
x⋆ ∈ X⋆ : 〈x, x⋆〉 = ‖x‖2

= ‖x⋆‖2
}

and there holds the inequality

‖x + y‖2 ≤ ‖x‖2
+ 2 〈y, j(x + y)〉 where x, y ∈ X and j(x + y) ∈ J(x + y)

Recall that if C and F are nonempty subsets of a Banach space X such that C is
nonempty closed convex and F ⊂ C, then a map R : C 7→ F is called a retraction
from C onto F if R(x) = x for all x ∈ F . A retraction R : C 7→ F is sunny provided
R(x + t(x − R(x))) = R(x) for all x ∈ C and t ≥ 0 whenever x + t(x − R(x)) ∈ C. A
sunny nonexpansive retraction is a sunny retraction, which is also nonexpansive.

Suppose that F is the non empty fixed point set of a nonexpansive mapping T : C 7→ C,
that is F = FixT 6= ∅ and assume that F is closed. For a given u ∈ C and every t ∈ (0, 1)
there exists a fixed point, denoted xt of the (1 − t)-contraction tu + (1 − t)T . Then we

consider Q : C 7→ F = Fix(T ) by Q(u)
def
= σ- limt7→0 xt when this limit exists. Q will

also be denoted by QFix(T ) when necessary and note that it is easy to check that when
it exists Q is a nonexpansive retraction.

Consider now f an α-contraction, then QFix(T ) ◦f is also an α-contraction and admits
therefore a unique fixed point x̃ = QT ◦ f(x̃). We denote by Q(f) or QFix(T )(f) the
mapping Q(f) : ΠC → Fix (T ) such that :

Q(f)
def
= x̃ where x̃ = (QFix(T ) ◦ f)(x̃). (3)

For t ∈ (0, 1) we can also find a fixed point, denoted xf
t of the (1−(1−t)α)-contraction

tf +(1− t)T and if limt7→0 xf
t is well defined we can define a mapping Q̃ : ΠC 7→ Fix(T )

by :

Q̃(f)
def
= lim

t7→0
xf

t where xf
t = tf(xf

t ) + (1 − t)Txf
t (4)

We then gather know theorems under which Q, Q and Q̃ are defined and give relations
between them.

When X is a uniformly smooth Banach space, denoted by Bus, It is known [16, Theo-

rem 4.1] that Q̃(f) is well defined and equal to Q(f) and x̃ = Q(f) is characterized by :

〈x̃ − f(x̃), J(x̃ − p)〉 ≤ 0 for all p ∈ F = Fix (T ). (5)

A special case is when f is a constant function u(x) = u. Then [16, Theorem 4.1] shows
that Q is well defined and that Q(u) = Q(u) = PFix T u (where PS is the metric projection
on S). If X is a smooth Banach space, R : C 7→ F is a sunny nonexpansive retraction [5]
if and only if the following inequality holds :

〈x − Rx, J(y − Rx)〉 ≤ 0 for all x ∈ C and y ∈ F. (6)

Q is thus the unique sunny non expansive retraction from C to FixT . [16, Theorem
4.1] was already known in the case f constant and in the context of Hilbert spaces [16,
Theorem 3.1] and [10, Theorem 2.1].

The same existence and characterization results can be found firstly when X is a
reflexive Banach space which admits a weakly continuous duality mapping JΦ with gauge
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φ, denoted by Brwsc, in [17, Theorem 3.1] (with f constant) and [13, Theorem 2.2] (where
J is the (normalized) duality mapping). Note that the limitation of f constant in [17]
can be relaxed with [14]. Secondly when X is a reflexive and a strictly convex Banach
space with a uniformly Gâteaux differentiable norm, denoted by Brug, [12, Theorem 3.1].
Note that in this three Banach spaces cases listed here the normalized duality mapping
is shown to be single valued.

The aim of this paper is to study the strong convergence of iterative schemes :

xn+1 = αnf(xn) + (1 − αn)Tnxn (7)

when X can be a Bus, or a Brwsc, or a Brug real Banach space and {Tn} is a sequence
of nonexpansive mappings which share at least a common fixed point. We give a general
framework to show that {xn} will converge strongly to x̃ where x̃ is the unique solution of
(5) for a fixed nonexpansive mapping T related to the sequence {Tn}. The key ingredient
is the fact that Lemma 26 given in section 3 is valid in the three previous context.
Then we show that by specifying the sequence Tn we can recover and extend some
known convergence theorems [16,7,12,13,3,8]. Note also that in equation (7), f is an α-
contraction, but following [14] it is easy to show that f can be replaced by a Meir-Keeler
contraction (Lemma 31 in section 3 is devoted to this extension). The paper is organized
as follows : a main theorem is proved in section 3 using a set of lemmas which are
postponed to the last section of the paper and which are verbatim or slight extensions
of know results. Then in a collection of subsections, known convergence theorems are
revisited with shorter proofs.

2. Main theorem

In the sequel a B real Banach space, will denote when not specifically stated a real
Banach space with a normalized duality mapping uniformly norm-to-weak⋆ continuous
on bounded sets (which is the case for Bus or Brug) or a reflexive Banach space which
admits a weakly continuous duality mapping JΦ with gauge φ (Brwsc).

H1,N: For a fixed given N ≥ 1 and a given sequence {αn}, a sequence of mappings
{Tn} will be said to verify H1,N, if for a given bounded sequence {zn}, we have

‖(1 − αn+N )Tn+Nzn − (1 − αn)Tnzn‖ ≤ δnM (8)

with either (i)
∑∞

0 |δn| < ∞ or (i′) lim supn7→∞ δn/αn ≤ 0 and M a constant.
Remark 1 Note that using Lemma 30 {δn} can be replaced by {µn + ρn} where {µn}
satisfies (i) and {ρn} satisfies (i′).
Remark 2 Note that when αn ∈ (0, 1) we have :

‖(1 − αn+N )Tn+Nzn − (1 − αn)Tnzn‖ ≤ |αn+N − αn|‖Tn+Nzn‖ + ‖Tn+Nzn − Tnzn‖.
(9)

Thus, when {αn} satisfies H3,N (given below), if for each bounded sequence {zn}, {Tnzn}
is bounded and either (vi)

∑∞

n=0 ‖Tn+Nzn − Tnzn‖ < ∞ or (vi′) ‖Tn+Nzn − Tnzn‖/αn 7→
0 then H1,N is satisfied (again using previous remark about mixing between conditions

with or without prime). In the previous case, H1,N is thus implied by H
′

1,N which is
stated now :
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H
′

1,N: For a fixed given N ≥ 1 and a given sequence {αn} which satisfies H3,N a

sequence of mappings {Tn} will be said to verify H
′

1,N, if given bounded sequence {zn},
we have ‖Tn+Nzn − Tnzn‖ ≤ ρn with either (vi)

∑∞

n=0 ρn < ∞ or (vi′) ρn/αn 7→ 0.
H2,p: For a given p ∈ X, a sequence {xn} will be said to verify H2,p if we have

lim sup
n7→∞

〈f(p) − p, J(xn − p)〉 ≤ 0 . (10)

H3,N: For a fixed given N ≥ 1, a sequence of real numbers {αn} will be said to
verify H3,N if the sequence {αn} is such that (i) αn ∈ (0, 1), (ii) limn7→∞ αn = 0, (iii)∑∞

n=0 αn = ∞ and either (iv)
∑∞

n=0 |αn+N − αn| < ∞ or (iv′) limn7→∞(αn+N/αn) = 1.
We can now formulate the main theorem of the paper :

Theorem 3 Let X be a B real Banach space, C a closed convex subset of X, Tn : C 7→ C
a sequence of nonexpansive mapping, T a nonexpansive mapping and f ∈ ΠC . We assume
that Fix(T ) 6= ∅ and that for all n ∈ N Fix(T ) ⊂ Fix(Tn). Let {αn} be a sequence of
real numbers for which there exists a fixed N ≥ 1 such that H3,N is satisfied and suppose
that there exists p ∈ Fix(T ) such that H2,p is satisfied, then the sequence {xn} defined
by (34) converges strongly to p.

Proof : The proof uses a set of Lemmas which are given in section 3. Since p is in
Fix(Tn) for all n we can use Lemma 23 to obtain the boundedness of the sequence {xn}.
Thus we can conclude using Lemma 28. 2

Corollary 4 Assume that the hypothesis of Theorem 3 except H2,p are satisfied. Suppose

that H1,N or H
′

1,N is satisfied and that for each bounded sequence {yn}, the sequence
‖Tnyn − Tyn‖ → 0. Then the conclusion of Theorem 3 remains for p = Q(f).

Proof : We just need to prove that H2,p is satisfied for p = Q(f). We first show that if

H
′

1,N is satisfied then H1,N is also satisfied. As in previous theorem {xn} is a bounded
sequence. Then, let p ∈ Fix(T ), we have :

‖Tnxn − Txn‖ ≤ ‖Tnxn − Tnp‖ + ‖Tnp − Tp‖ + ‖Tp − Txn‖

≤ 2‖xn − p‖ + ‖Tnp − Tp‖.

and since ‖Tnp − Tp‖ → 0 by hypothesis we have that {Tn(xn)} is bounded. As shown

in remark 2 we are within the case where H1,N is implied by H
′

1,N. Applying Lemma 24
and Corollary 25 we obtain the convergence of ‖Txn − xn‖. We can then apply Lemma
26 to obtain H2,p for p = Q(f). 2

Corollary 4 can be extended as follows when a constant T cannot be found.
Corollary 5 Assume that the hypothesis of Theorem 3 except H2,p are satisfied. Suppose

that H
′

1,N is satisfied and that {Tnxn} is bounded and that from each subsequence σ(n)
we can extract a subsequence µ(n) and find a fixed mapping Tµ such that

‖Tµ(n)xµ(n) − Tµxµ(n)‖ 7→ 0.

If F = Fix (Tµ) does not depend on µ, then the conclusion of Theorem 3 remains for
p = QF (f).

Proof : We just need to prove that H2,p is satisfied for p = Q(f). Using remark 2 we

are in the case where H1,N is implied by H
′

1,N. Using H1,N we first easily obtain that
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‖xn − Tnxn‖ 7→ 0 by an argument similar to Corollary 25. Then H2,p for p = Q(f)
follows from Corollary 27. 2

We can now consider the case of composition. Assume that {T 1
n} and {T 2

n} satisfy H
′

1,N

with sequences denoted by ρi
n. Assume also that for a bounded sequence {zn} then the

sequences {T 2
n+Nzn} and {T 1

n+NT 2
n+Nzn} and also bounded. Then it is straightforward,

since the mappings T 1
n are nonexpansive, that :

‖T 1
n+NT 2

n+Nzn − T 1
n · · ·T 2

nzn‖ ≤ ρ1
n + ‖T 2

n+Nzn − T 2
nzn‖ .

Thus the composition T 1
n ◦ T 2

n satisfy H
′

1,N with ρn
def
= ρ1

n + ρ2
n. This lead us to propose

the following Corollary for dealing with composition :
Corollary 6 Assume that the hypothesis of corollary 5 are satisfied for the sequence

{T 1
n} with H

′

1,N and for {T 2
n} also with H

′

1,N. Then the conclusion of Theorem 3 remains
for the sequence {T 1

n ◦ T 2
n} with p = QF (f) and F = Fix(T 1

µ ◦ T 2
ρ ).

Proof :As pointed out before the statement of the corollary the composition T 1
n ◦ T 2

n

satisfy H
′

1,N. Consider a subsequence σ(n) we can find first a subsequence µ2(n) and µ2

such that :
‖T 2

µ(n)xµ(n) − T 2
µxµ(n)‖ 7→ 0.

Then, using properties of the T 1
n sequence, we can re-extract a new subsequence ρ(n)

and ρ such that :
‖T 1

ρ(n)T
2
ρ(n)xρ(n) − T 1

ρ T 2
ρ(n)xρ(n)‖ 7→ 0.

Since we have :

‖T 1
ρ(n)T

2
ρ(n)xρ(n) − T 1

ρ T 2
µxρ(n)‖ ≤ ‖T 1

ρ(n)T
2
ρ(n)xρ(n) − T 1

ρ T 2
ρ(n)xρ(n)‖

+ ‖T 2
ρ(n)xρ(n) − T 2

ρ xρ(n)‖

When obtain the conclusion for the composition. 2

Recall that a mapping T is attracting non expansive if it is nonexpansive and satisfies :

‖Tx − p‖ < ‖x − p‖ for all x 6∈ FixT and p ∈ FixT. (11)

In particular a firmly nonexpansive mapping, i.e ‖Tx − Ty‖2 ≤ 〈x − y, Tx − Ty〉 is at-
tracting nonexpansive [5].
Remark 7 In the previous corollary, we obtain a fixed point of a composition and in
practice the aim is to obtain a common fixed point of two mappings. If the mappings T 1

µ

and T 2
ρ are attracting, have a common fixed point and T 1

µ or T 2
ρ is attracting then we will

have FixT 1
µ ∩ FixT 2

ρ = FixT 1
µ ◦ T 2

ρ . The proof is contained in [1, Proposition 2.10 (i)]
and given in Lemma 32 for completeness.
Remark 8 Note that if X is a strictly convex Banach space, then for λ ∈ (0, 1) the

mapping Tλ
def
= (1−λ)I+λT is attracting nonexpansive when T is nonexpansive. Extension

to a set of N operators is immediate by induction. This gives a way to build attracting
nonexpansive mappings and mixed with previous remark it gives [15, Proposition 3.1].
Remark 9 Note also that, when X is strictly convex, an other way to obtain F =
∩i Fix (Ti) for a sequence of nonexpansive mappings {Ti} is to use T =

∑
i λiTi with a

sequence {λi} of real positive numbers such that
∑

i λi = 1 [2, Lemma 3].
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2.1. Example 1

Theorem 10 [16, Theorem 4.2] Let X be a B real Banach space, C a closed convex
subset of X, T : C 7→ C a nonexpansive mapping with Fix(T ) 6= ∅, and f an α-
contraction. Then when the sequence {αn} satisfies H3,1 the sequence {xn} defined by

(34) with Tn
def
= T converges strongly to Q(f).

Proof : Here the sequence Tn does not depend on n. We just apply Corollary 4 to get the
result. Of course, if the sequence {xn} is bounded then {Tn(xn) = Txn} is bounded and
equation (8) of H1,1 is then satisfied with δn = |αn − αn+1|. Since {αn} satisfies H3,1,
{δn} satisfies H1,1. We also have ‖Tnxn − Txn‖ = 0 7→ 0 and the conclusion follows. 2

Remark 11 Suppose now that T
def
=

∑
i λiTi where {λi} is a sequence of positive real

numbers such that
∑

i λi = 1 and the Ti mappings are all supposed nonexpansive. Then,
we can apply Theorem 10 to obtain the strong convergence of the sequence {xn} to
QFix T (f). Moreover, If we assume that X is strictly convex then using remark 9 we

obtain a strong convergence to QF (f) with F
def
= ∩i∈I Fix(Ti).

This can be extended to the case when the λi also depends on n and recover [8,
Theorem 4] as follows :
Corollary 12 Let X be a strictly convex B real Banach space, C a closed convex subset
of X, Ti : C 7→ C for i ∈ I a finite family of nonexpansive mapping with ∩i∈I Fix(Ti) 6=
∅, and f an α-contraction. For a sequence {αn} satisfying H3,1 we consider the sequence

{xn} defined by (34) with Tn
def
=

∑
i∈I λi,nTi. Assume that for all i and n λi,n ∈ [a, b]

with a > 0 and b < ∞ either
∑

n λi,n < ∞ or λi,n/αn 7→ 0 then {xn} converges strongly
to QF (f) with F = ∩i∈I Fix(Ti)

Proof :The proof is given by an application of corollary 5. Indeed since the λi,n are

bounded Tnxn remains bounded for a bounded sequence xn. Then Tn satisfies H
′

1,1 with
ρn =

∑
i∈I λi,n. By extracting from each given subsequence σ(n) a subsequence µ(n)

such that limn7→∞ λi,µ(n) = λi for all i ∈ I we can use corollary 5. Finally, noting that,

for a strictly convex space X, the fixed points of T
λ

def
=

∑
i∈I λiTi does not depend on λ

and is equal to ∩i∈I Fix(Ti) we conclude the proof. 2

2.2. Example 1′

In [13] The following algorithm is considered :

yn+1 = P (αnf(yn) + (1 − αn)Tyn) (12)

Where P : X 7→ C is a sunny nonexpansive retraction, f : C 7→ X an α-contraction and
T : C 7→ X a nonexpansive mapping such that Fix(T ) 6= ∅.

If we consider the sequence xn+1 = αnf(yn)+(1−αn)Tyn then we have yn+1 = Pxn+1

and thus
xn+1 = αnf(P (xn)) + (1 − αn)T (P (xn)) (13)

Since f ◦ P is an α-contraction from X onto X and T ◦ P a non expansive mapping
from X onto X we can use the previous theorem to obtain the strong convergence of
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the sequence {xn} to x a fixed point of T ◦ P such that x = PFix(T◦P )f(T (x)) (PS is
the metric projection on S). We thus obtain now the strong convergence of the initial
sequence {yn} to y = P (x) and since x is a fixed point of T ◦ P , y is a fixed point of
P ◦ T .

If we suppose in addition that X is such that J (or Jφ) is norm-to-weak⋆ continuous
(i.e X is smooth) and that T satisfy the weakly inward condition then we can use the
result of [13, Lemma 1.2] which state that Fix(T ) = Fix(P ◦ T ) to conclude that y is in
fact a fixed point of T and recover the result of [13, Theorem 2.4].

2.3. Example 2

We consider now the example given in [7] where the sequence {xn} is given by :

yn = βnxn + (1 − βn)Txn

xn+1 = αnu + (1 − αn)yn

With a sequence of mappings Tnx
def
= βnx + (1 − βn)Tx. This problem is rewritten as

follows :

xn+1 = αnf(xn) + (1 − αn)Tnxn (14)

Theorem 13 Let X be a B real Banach space, C a closed convex subset of X, T :
C 7→ C a nonexpansive mapping with Fix(T ) 6= ∅, and f an α-contraction. When the
sequence {αn} satisfies H3,1 and the sequence {βn} converges to zero and satisfy either∑∞

n=0 |βn+1 −βn| < ∞ or |βn+1 −βn|/αn 7→ 0. Then, the sequence {xn} defined by (14)
converges strongly to Q(f).

This theorem is very similar to [7, Theorem 1] where f was supposed to be constant.
It could be covered by corollary 12 but here strict convexity is not needed.

Proof : We easily check that the fixed points p of T are fixed points of Tn for all n ∈ N

and Tn is nonexpansive for all n. Thus by Lemma 23 the sequence {xn} is bounded .
If the sequence {xn} is bounded then ‖Tn(xn)‖ ≤ max(‖xn‖, ‖Txn‖)} is bounded too.
Since :

‖Tnyn − Tyn‖ ≤ βn(‖yn‖ + ‖Tyn‖) (15)

we have ‖Tnyn − Tyn‖ → 0 for each bounded sequence {yn}. It is easily checked that
H1,1 is satisfied with δn = |αn+1−αn|+|βn+1−βn|. The conclusion follows from Corollary
4. 2

2.4. Example 3

We consider here the accretive operators example given in [7] or [17] :

xn+1 = αnf(xn) + (1 − αn)Tnxn (16)

Where Tnx = Jrn
x and Jλ is the resolvent of an m-accretive operator A, Jλx = (I +

λA)−1. The following theorem is similar to [17, Theorem 4.2, Theorem 4.4] or [7, Theorem
2].
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Theorem 14 Let X be a B real Banach space, A an m-accretive operator in X such

that A−1(0) 6= ∅. We assume here that C
def
= D(A) where D(A) is the domain of A

and suppose that C is convex. Suppose that H3,1 is satisfied by the sequence {αn} and
that the sequence rn is such that rn ≥ ǫ > 0 and either

∑∞

0 |1 − rn/rn+1| < ∞ or
|1 − rn/rn+1|/αn 7→ 0, then the sequence {xn} defined by (16) converges strongly to a
zero of A.

Proof : We first note that [17, p 632], for λ > 0, Fix (Jλ) = F where F is the set of zero
of A and for an m-accretive operator A, Jλ is non expansive from X 7→ D(A). Using the
resolvent identity Jλx = Jµ((µ/λ)x + (1 − µ/λ)Jλx) we obtain :

‖Tn+1zn − Tnzn‖ ≤

∣∣∣∣1 −
rn

rn+1

∣∣∣∣ (‖zn‖ + ‖Tnzn‖) (17)

and since the sequence Tnyn is bounded for a bounded sequence yn (for p ∈ A−1(0) we
have ‖Tnyn − p‖ ≤ ‖yn − p‖) we can apply remark 2 in order to obtain H1,1,. We thus
have ‖xn+1 − xn‖ → 0 by Lemma 24 and ‖xn − Tnxn‖ → 0 by :

‖xn − Tnxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Tnxn‖

≤ ‖xn − xn+1‖ + αn(‖f(xn)‖ + ‖Tn(xn)‖)

Take now r such that 0 < r < ǫ and define T
def
= Jr then we have :

‖Tnxn − Txn‖ ≤

∣∣∣∣1 −
r

rn

∣∣∣∣ ‖xn − Tnxn‖ (18)

We thus obtain that xn − Txn → 0 from :

‖xn − Txn‖ ≤ ‖xn − Tnxn‖ + ‖Tnxn − Txn‖ (19)

The conclusion is obtained through Corollary 4. 2

2.5. Example 4

We consider here the example given in [12]

xn+1 = αnf(xn) + (1 − αn)Tnyn (20)

where Tn = Qn mod N , where N ≥ 1 is a fixed integer and the (Ql)l=0,...,N−1 is a family
of nonexpansive mappings.
Theorem 15 Let X be a B real Banach space, C a closed convex subset of X, Ql : C 7→

C for l ∈ {1, . . . , N} a family of nonexpansive mappings such that F
def
= ∩N−1

l=0 Fix(Ql) is
not empty and

∩N−1
l=0 Fix(Ql) = Fix(Tn+NTn+N−1 · · ·Tn+1) for all n ∈ N (21)

and f an α-contraction. When the sequence {αn} satisfies H3,N then the sequence {xn}
defined by (20) converges strongly to QF (f).

Proof : By Lemma 23, since the Tn have a common fixed point, the sequence {xn} is
bounded. Since the sequence of mappings Tn is periodic, the sequence {Tnxn} is bounded
and equation (8) of H1,N is obtained for δn = |αn−αn+N | using (9). Since {αn} satisfies
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H3,N, {δn} satisfies H1,N. Thus, using Lemma 24 we obtain that ‖xn+N − xn‖ 7→ 0. Since
‖xn+1 − Tnxn‖ ≤ αn(‖f(xn)‖ + ‖Tnxn‖), we have ‖xn+1 − Tnxn‖ 7→ 0. We introduce

the sequence of mappings A
(N,α)
n

def
= Tn+N−1 · · ·Tn+α for α 6= N and A

(N,N)
n = Id.

Using Lemma 16, given just after this proof, we conclude that : ‖xn+N − A
(N,0)
n xn‖ 7→ 0.

This combined with ‖xn+N − xn‖ 7→ 0 gives ‖xn+N − A
(N,0)
n xn‖ 7→ 0. Note now that the

mappings A
(N,0)
n are in finite number are all nonexpansive and share common fixed points

by hypothesis. Thus we can prove that H2,p is satisfied for p = QF (f). Let p = QF (f)
we suppose that H2,p is not satisfied, then it possible to extract a subsequence of {xσ(n)}
such that :

lim
n7→∞

〈
f(p) − p, J(xσ(n) − p)

〉
≤ 0 (22)

But it is then possible to find q ∈ {0, . . . , N − 1} and an extracted new subsequence
µ(n) from σ(n) such that µ(n) mod N = q. We thus have ‖xµ(n) − Txµ(n)‖ 7→ 0, with

T
def
= A

(N,0)
q which is now a fixed mapping and Fix (T ) = F . Then H2p should be true

by Lemma 26 and this leads to a contradiction. The conclusion follows by 28. 2

Lemma 16 Let N ∈ N, α ∈ {0, . . . , N} and A
(N,α)
n

def
= Tn+N−1 · · ·Tn+α for α 6= N and

A
(N,N)
n = Id. Assume that ‖xn+1 − Tnxn‖ 7→ 0 then ‖xn+N − A

(N,0)
n xn‖ 7→ 0.

Proof : We have for α ∈ {0, . . . , N − 1} by definition of A
(N,α)
n and using the fact that

A
(N,α)
n is nonexpansive :

‖A(N,α+1)
n xn+α+1 − A(N,α)

n xn+α‖= ‖A(N,α+1)
n xn+α+1 − A(N,α+1)

n Tn+αxn+α‖

≤ ‖xn+α+1 − Tn+αxn+α‖

Thus :

‖xn+N − A(N,0)
n xn‖ ≤

N−1∑

α=0

‖xn+α+1 − Tn+αxn+α‖

and the result follows. 2

2.6. Example 5

Let Γ
(j)
n for j ∈ {1, . . . ,m} be a sequence of mappings defined recursively as follows :

Γ(j)
n x

def
= β(j)

n x + (1 − β(j)
n )TjΓ

(j+1)
n x and Γ(m+1)

n x = x (23)

where the sequences {β
(j)
n } ∈ (0, 1), and {Tj} for j ∈ {1, . . . ,m} are nonexpansive

mappings. We want to prove here the convergence of the sequence generated by the
iterations :

xn+1 = αnf(xn) + (1 − αn)Γ(1)
n xn (24)

Theorem 17 Let X be a B real Banach space, C a closed convex subset of X, Tj :
C 7→ C for j ∈ {1, . . . ,m} a family of nonexpansive mappings such that ∩m

l=1 Fix(Tj) is
not empty and f an α-contraction. When the sequence {αn} satisfies H3,N and for j ∈
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{1, . . . ,m} the sequences {β
(j)
n } satisfy limn7→∞ β

(j)
n = 0 and either

∑∞

n=0 |β
(j)
n+1−β

(j)
n | <

∞ or |β
(j)
n+1−β

(j)
n |/αn 7→ 0 then the sequence defined by (24) converges strongly to QF (f)

associated to F = Fix (T1 · · ·Tm).

Proof : Note first that by an elementary induction Γ
(1)
n is a nonexpansive mapping. If

we assume that p is a common fixed point to the mappings Ti then p is a fixed point of

the mappings Γ
(j)
n . By Lemma 23 the sequence {xn} is bounded. Then using Lemma 19

, given just after this proof, combined with the boundedness of {xn}, H1,1 is valid with

δn =

m∑

p=1

|β
(p)
n+1 − β(p)

n | + |αn+1 − αn| (25)

Now if we can prove that

‖Γ(1)
n xn − T1T2 · · ·Tmxn‖ → 0 (26)

the conclusion will be given by Corollary 4. The last assetion can easily be obtained by

induction on ‖Γ
(j)
n xn − Tj · · ·Tmxn‖, since we have :

‖Γ(j)
n xn − Tj · · ·Tmxn‖ ≤ β(j)

n (‖xn‖ + ‖Tj · · ·Tmxn‖)

+(1 − βn)‖TjΓ
(j+1)
n xn − Tj · · ·Tmxn‖

≤ β(j)
n (‖xn‖ + ‖Tj · · ·Tmxn‖) + ‖Γ(j+1)

n xn − Tj+1 · · ·Tmxn‖ .

2

Remark 18 For m = 1 we obtain the same result as Theorem 13.
Lemma 19 Let Γ

(j)
n be the sequence of mappings defined by (23) Then we have for

j ∈ {1, . . . ,m} :

‖Γ
(j)
n+1x − Γ(j)

n x‖ ≤





m∑

p=j

|β
(p)
n+1 − β(p)

n |



 K (27)

where K is a constant which depends on the mappings (Tp)p≥j and x.
Proof : Note first that :

‖Γ(j)
n x‖ ≤ ‖x‖ + ‖Tj(Γ

(j+1)
n x)‖ (28)

which applied recursively shows that ‖Γ
(j)
n x‖ is bounded by a constant which depends

on the mappings (Tp)p≥j and x and not on n. Then, using the definition of Γ
(j)
n we have :

‖Γ
(j)
n+1x − Γ(j)

n ‖ ≤ |β
(j)
n+1 − β(j)

n |(‖x‖ + ‖TjΓ
(j+1)x‖)

+‖TjΓ
(j+1)
n+1 (x) − TjΓ

(j+1)
n (x)‖ (29)

since Tj is nonexpansive mappings :

‖Γ
(j)
n+1x − Γ(j)

n ‖ ≤ |β
(j)
n+1 − β(j)

n |(‖x‖ + ‖TjΓ
(j+1)x‖) + ‖Γ

(j+1)
n+1 (x) − Γ(j+1)

n (x)‖

by recursion and since the last term Γ
(m+1)
n+1 (x) − Γ

(m+1)
n (x) = 0 we obtain the result. 2
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Note that Lemma 19 remains valid for the sequence

Γ(j)
n x

def
= β(j)

n g(x) + (1 − β(j)
n )TjΓ

(j+1)
n x and Γ(m+1)

n x = x (30)

if g is a nonexpansive mapping.

2.7. Example 6

We consider here the example given in [3]

xn+1 = αnf(xn) + (1 − αn)Tnxn

where Tnx
def
= PC(x − λnAx) and PC is the metric projection from X to C. The aim is

to find a solution of the variational inequality problem which is to find x ∈ C such that
〈Ax, y − x〉 ≥ 0 for all y ∈ C. The set of solution of the variational inequality problem is
denoted by VI(C,A). The operator A is said to be µ-inverse-strongly monotone if

〈x − y,Ax − Ay〉 ≥ µ‖Ax − Ay‖2
for all x, y ∈ C

The next theorem is similar to [3, Proposition 3.1].
Theorem 20 Let X be a real Hilbert space, C a nonempty closed convex, f an α-
contraction, and let A be a µ-inverse-strongly monotone mapping of H into itself such
that VI(C,A) 6= ∅. Assume that H3,1 is satisfied and that {λn} is chosen so that λn ∈
[a, b] for some a, b with 0 < a < b < 2µ and

∑∞

n=1 |λn+1 − λn| < ∞. then the sequence
{xn} generated by (31) converges strongly to QF (f) associated to F = Fix (Tλ) where

Tλ(x)
def
= PC(x−λAx). F = Fix (Tλ) does not depend on λ for λ > 0 and equals VI(C,A).

Proof :For λ > 0, let Tλx
def
= PC(x − λAx). When X is an Hilbert space we have

Fix(Tλ) = VI(C,A). When A is µ-inverse-strongly monotone then for, λ ≤ 2µ, I −λA is
nonexpansive. Thus the mappings Tn are non expansive and Fix (Tn) = VI(C,A) 6= ∅.
By Lemma 23 the sequence {xn} is bounded. Since ‖Tnz‖ ≤ K(‖z‖ + 2µ‖Az‖), the
sequence {Tnxn} is bounded too. We also have ‖Tn+1zn − Tnzn‖ ≤ |λn+1 − λn|‖Azn‖
which gives H1,N with δn = |λn+1 − λn| + |αn+1 − αn| by remark 2. The result follows
now from Corollary 5. Indeed, since λσ(n) ∈ [a, b] it is possible to extract a converging

subsequence λµ(n) 7→ λ ∈ [a, b] and we then have ‖Tµ(n)z − T
λ
z‖ ≤ |λµ(n)−λ|‖Az‖. Thus

‖Tµ(n)xµ(n) − T
λ
xµ(n)‖ → 0. 2

Remark 21 We can note that for λ < 2α, I − λA is in fact attracting nonexpansive
since :

‖(I − λA)x − (I − λA)y‖ ≤ ‖x − y‖ + λ(λ − 2α)‖Ax − Ay‖2
.

Thus it is also the case for PC ◦ (I − λA) [1]. For a nonexpansive mapping S we can

consider the previous theorem with Tλx
def
= S ◦ PC(x − λAx) and using Remark 7 (an

Hilbert space is strcitly convex) to obtain a strong convergence to a point in Fix (Tλ) =
FixS ∩ VI(C,A) and thus fully recover [3, Proposition 3.1]
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2.8. Example 7

We consider here the equilibrium problem for a bifunction F : C ×C 7→ R where C is
a closed convex subset of a real Hilbert space X. The problem is to find x ∈ C such that
F (x, y) ≥ 0 for all y ∈ C. The set of solutions if denoted by EP(F ). It is proved in [4]
that for r > 0, the mapping Tr : X 7→ C defined as follows :

Tr(x)
def
=

{
z ∈ C : F (z, y) +

1

r
〈y − z, z − x〉 ≥ 0,∀y ∈ C

}
(31)

is such that Tr is singled valued, firmly nonexpansive (i.e ‖Trx − Try‖
2 ≤ 〈Trx − Try, x − y〉

for any x, y ∈ X), Fix(Tr) = EP(F ) and EP(F ) is closed and convex if the bifunction
F satisfies (A1)F (x, x) = 0 for all x ∈ C, (A2)F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C,
(A3) for each x, y, z ∈ C limt7→0 F (tz + (1 − t)x, y) ≤ F (x, y) and (A4) for each x ∈ C
y 7→ F (x, y) is convex and lower semicontinuous.

we can now consider the sequence {xn} given by :

xn+1 = αnf(xn) + (1 − αn)Tnxn

where Tn
def
= Trn

for a given sequence of real numbers {rn}.
Theorem 22 Let X be a real Hilbert space,C a nonempty closed convex, f an α-
contraction, assume that EP(F ) 6= ∅, H3,1 is satisfied and the sequence {rn} is such
that lim infn7→∞ rn > 0 and either

∑
n |rn+1 − rn| < ∞ of |rn+1 − rn|/αn 7→ 0. Then, the

sequence {xn} generated by (32) converges strongly to QEP(F )(f).

Proof : Since the rn are strictly positive the mappings Trn
are non expansive and share

the same fixed points EP(F ) which was supposed non empty. By Lemma 23 the sequence
{xn} is bounded.

Using the definition of Tr(x) and the monotonicity of F (A2) easy computations leads
to the following inequality [11, p 464] :

‖Tr(x) − Ts(y)‖ ≤ ‖x − y‖ +
∣∣∣1 −

s

r

∣∣∣ ‖Tr(y) − y‖ (32)

Using r > 0 such that rn > r for all n ∈ N and y ∈ Fix (Tr) we obtain ‖Trn
(xn) − Tr(y)‖ ≤

‖xn − y‖ which gives the boundedness of the sequence {Trn
(xn)}. Moreover, for a bounded

sequence {yn} we obtain :

‖Trn+1
(yn) − Trn

(yn)‖ ≤
|rn+1 − rn|

r
‖Trn

(yn) − yn‖ (33)

We thus obtain H1,1 with δn = |rn+1 − rn| + |αn+1 − αn| using remark 2. The result
follows now from Corollary 5. Indeed, since rσ(n) > r it is possible to extract a converging
subsequence rµ(n) 7→ r > r and we then have ‖Trµ(n)z − Trz‖ ≤ |rµ(n) − r|K. Thus

‖Trµ(n)xµ(n) − Trxµ(n)‖ → 0 .

2
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3. A collection of Lemma

The first Lemma can be used to derive boundedness of the sequence {xn} generated
by 34.
Lemma 23 Let {xn}, the sequence generated by the iterations

xn+1 = αnf(xn) + (1 − αn)Tnxn (34)

where f is contraction of parameter α, Tn is a family of nonexpansive mappings and αn

is a sequence in (0, 1). Suppose that there exists p a common fixed point of Tn for all
n ∈ N. Then, the sequence {xn} is bounded.
Proof : The proof exactly follows the proof of [16, theorem 3.2], the only difference is that
here the mappings Tn are indexed by n but it does not change the proof. Obviously we
have :

‖xn+1 − p‖ ≤ αn‖f(xn) − p‖ + (1 − αn)‖Tnxn − p‖

≤ αn (α‖xn − p‖ + ‖f(p) − p‖) + (1 − αn)‖xn − p‖

≤ (1 − αn(1 − α))‖xn − p‖ + αn(1 − α)
‖f(p) − p‖

(1 − α)

≤max

(
‖xn − p‖,

‖f(p) − p‖

(1 − α)

)
.

And, by induction, {xn} is bounded. 2

The next lemma aims at proving that the sequence {xn} is asymptotically regular i.e
for a given N ≥ 1, we have ‖xn+N − xn‖ → 0.
Lemma 24 With the same assumptions as in Lemma 23 and assuming that there exists
N ≥ 1 such that H1,N and H3,N are fulfilled then, for the sequence {xn} given by
iterations (34), we have ‖xn+N − xn‖ → 0.

Proof : Using the definition of {xn} we have :

xn+N+1 − xn+1 = αn+N (f(xn+N ) − f(xn)) + (αn+N − αn)f(xn)

+(1 − αn+N )(Tn+Nxn+N − Tn+Nxn)

+ ((1 − αn+N )Tn+Nxn − (1 − αn)Tnxn) .

By Lemma 23 the sequence {xn} is bounded, we can therefore use H1,N with {xn}. Since
{f(xn)} is bounded too, we can find three constants such that :

‖xn+N+1 − xn+1‖ ≤ αn+Nα‖xn+N − xn‖ + |αn+N − αn|K1

+(1 − αn+N )‖xn+N − xn‖ + δnM

≤ (1 − (1 − α)αn+N )‖xn+N − xn‖ + (|αn+N − αn| + δn)K2

The proof then follows easily using the properties of αn i.e H3,N and Lemma 30. 2

The next step is to prove that we can find a fixed mapping T such that ‖xn − Txn‖ →
0. The next corollary gives a simple example for which the property can be derived
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from Lemma 24. Indeed, we have seen specific proofs in previous sections on illustrated
examples.
Corollary 25 Using the same hypothesis as in Lemma 24 and assuming that {Tnxn} is
bounded and that ‖Tnxn − Txn‖ → 0 we also have ‖xn − Txn‖ → 0.
Proof :

‖xn − Txn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Txn‖

≤ ‖xn − xn+1‖ + αnK1 + (1 − αn)‖Tnxn − Txn‖

and the result follows. 2

The next Lemma gives assumptions to obtain H2,p for a given p.
Lemma 26 Suppose that X is a B real Banach space. Let T be a nonexpansive map-
ping with Fix(T ) 6= ∅, f an α-contraction and {xn} a bounded sequence such that
‖Txn − xn‖ 7→ 0. Then for x̃ = Q(f) we have :

lim sup
n7→∞

〈f(x̃) − x̃, J(xn − x̃)〉 ≤ 0 (35)

Proof :When X is a Bus or a Brug the key point is the fact that J is uniformly norm-to-
weak⋆ continuous on bounded sets.

The proof of this Lemma can be found in the proof of Theorem [16, Theorem 4.2] or

[12, Theorem 3.1]. We just summarize the line of the proof here. Let x̃
def
= σ- limt7→0 xt

where xt solves xt = tf(xt) + (1 − t)Txt, we thus have :

‖xt − xn‖
2 ≤ (1 − t)2‖Txt − xn‖

2
+ 2t 〈f(xt) − xn, J(xt − xn)〉

≤ (1 − t)2(‖Txt − Txn‖ + ‖Txn − xn‖)
2

+2t 〈f(xt) − xt, J(xt − xn)〉 + 2t‖xt − xn‖
2

≤ (1 + t2)‖xt − xn‖
2

+ an(t)

+2t 〈f(xt) − xt, J(xt − xn)〉

(36)

where an(t) = 2‖Txn − xn‖‖xt − xn‖+‖Txn − xn‖
2 7→ 0 when n tends to infinity. Thus :

〈f(xt) − xt, J(xn − xt)〉 ≤
an(t)

2t
+

t

2
‖xt − xn‖

2
(37)

and we have :

lim
t7→0

lim sup
n7→∞

〈f(xt) − xt, J(xn − xt)〉 ≤ 0 (38)

We consider now a sequence tp 7→ 0 and yp
def
= xtp

, then we have yp 7→ x̃ and with

g(x)
def
= (x) − x we have

〈g(x̃), J(xn − x̃)〉 ≤ 〈g(yp), J(xn − yp)〉

+ | 〈g(x̃), J(xn − x̃) − J(xn − yp)〉 | + (1 + α)‖x̃ − yp‖‖xn − yp‖
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Since J is uniformly norm-to-weak⋆ continuous on bounded sets and yp 7→ x̃, for ǫ > 0,
we can find p̃ such that for all p ≥ p̃ and all n ∈ N we have :

〈g(x̃), J(xn − x̃)〉 ≤ 〈g(yp), J(xn − yp)〉 + ǫ(1 + α)‖x̃ − yp‖‖xn − yp‖ (39)

Thus :

lim sup
n7→∞

〈g(x̃), J(xn − x̃)〉 ≤ lim sup
n7→∞

〈g(yp), J(xn − yp)〉 + ǫ + ‖x̃ − yp‖K

≤ lim
p7→∞

(lim sup
n7→∞

〈g(yp), J(xn − yp)〉 + ǫ‖x̃ − yp‖K) ≤ ǫ

Suppose now that X is a Brwsc. We follow the proof of [Theorem 2.2]song-chen-1
or [17, Theorem 3.1]. Let x̃ = Q(f) and consider a subsequence {xσ(n)} such that

lim supn7→∞ 〈f(x̃) − x̃, J(xn − x̃)〉 = limn7→∞

〈
f(x̃) − x̃, J(xσ(n) − x̃)

〉
. It is then possible

to re-extract a subsequence xµ(n) weakly converging to x⋆. Since we have xµ(n)−Txµ(n) →
0 then x⋆ ∈ Fix(T ) using the key property that X satisfies Opial’s condition [6, Theorem
1] and the fact that I − T is demi-closed at zero [12, Lemma 2.2]. Thus by definition of
x̃ we must have 〈f(x̃) − x̃, J(x⋆ − x̃)〉 ≤ 0. 2

Corollary 27 Suppose that X is a Bus, or a Brug, or a Brwsc. let f a contraction and
{xn} a bounded sequence such that xn−Tnxn 7→ 0. From each subsequence σ(n) we can ex-
tract a subsequence µ(n) and find a fixed mapping Tµ such that ‖Tµ(n)xµ(n) − Tµxµ(n)‖ 7→
0. Then, if F = FixTµ does not depend on µ, for x̃ = Q(f) associated to F , we have :

lim sup
n7→∞

〈f(x̃) − x̃, J(xn − x̃)〉 ≤ 0 (40)

Proof :The proof is by contradiction using Lemma 26. Assume that the result is false,
then we can find a subsequence σ(n) such that

lim sup
n7→∞

〈
f(x̃) − x̃, J(xµ(n) − x̃)

〉
≥ ǫ > 0 (41)

by hypothesis we can extract from σ(n) a sub-sequence µ(n) such that ‖Tµ(n)xµ(n) − Txµ(n)‖ 7→
0. Thus, since

‖xµ(n) − Txµ(n)‖ ≤ ‖xµ(n) − Tµ(n)xµ(n)‖ + ‖Tµ(n)xµ(n) − Txµ(n)‖,

we have xµ(n) − Txµ(n) → 0 we can then apply Lemma 26 to the sequence {xµ(n)} and
mapping Tµ to derive that :

lim sup
n7→∞

〈
f(x̃) − x̃, J(xµ(n) − x̃)

〉
≤ 0

for x̃ = Q(f) corresponding to F = FixTµ and since F does not depend on µ, this gives
a contradiction with (41). 2

The next Lemma helps concluding the proof.
Lemma 28 Assume that the sequence {xn} given by iterations (34) is bounded and
assume that for p, a common fixed point of the mappings Tn,H2,p is satisfied and that
(i, ii, iii) items of H3,N is also satisfied 1 . Then the sequence {xn} converges to p.

1 Note that (i, ii, iii) of H3,N do not use the value of N
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Proof :

‖xn+1 − p‖2 ≤ (1 − αn)2‖Tnxn − p‖2
+ 2αn 〈f(xn) − p, J(xn+1 − p)〉

≤ (1 − αn)2‖xn − p‖2
+ 2αn 〈f(xn) − f(p), J(xn+1 − p)〉

+2αn 〈f(p) − p, J(xn+1 − p)〉

≤ (1 − αn)2‖xn − p‖2
+ 2αnα‖xn − p‖‖xn+1 − p)‖

+2αn 〈f(p) − p, J(xn+1 − p)〉

Note that ‖xn+1 − p‖ ≤ ‖xn − p‖ + αnK . Thus :

‖xn+1 − p‖2 ≤ (1 − αn)2‖xn − p‖2
+ 2αnα‖xn − p‖2

+2α2
nK + 2αn 〈f(p) − p, J(xn+1 − p)〉

≤ (1 − αn(1 − α) + α2
n)‖xn − p‖2

+2α2
nK + 2αn 〈f(p) − p, J(xn+1 − p)〉

(42)

And we conclude with Lemma 29. 2

Lemma 29 .[7, Lemma 2.1] Let {sn} be a sequence of nonnegative real numbers satis-
fying the property

sn+1 ≤ (1 − αn)sn + αnβn for n ≥ 0 ,

where αn ∈ (0, 1) and βn are sequences of real numbers such that : (i) limn7→∞ αn = 0
and

∑∞

n=0 αn = ∞ (ii) either lim supn7→∞ βn ≤ 0 or
∑∞

n=0 |αnβn| < ∞. Then {sn}
converges to zero.
Corollary 30 Let {sn} be a sequence of nonnegative real numbers satisfying the property

sn+1 ≤ (1 − αn)sn + αnβn + αnγn for n ≥ 0 ,

where αn ∈ (0, 1), βn and γn are sequences of real numbers such that : (i) limn7→∞ αn =
0 and

∑∞

n=0 αn = ∞ (ii) lim supn7→∞ βn ≤ 0 and (iv)
∑∞

n=0 |αnδn| < ∞. Then {sn}
converges to zero.

Proof :The proof is similar to the proof of Lemma 29 [7, Lemma 2.1]. Fix ǫ > 0 and N
such that βn ≤ ǫ/2 for n ≥ N and

∑∞

j=N |αnδn| ≤ ǫ/2 . Then following [7] we have for
n > N :

sn+1 ≤
n∏

j=N

(1 − αj)sN +
ǫ

2
(1 −

n∏

j=N

(1 − αj)) +

n∑

j=N

|αnδn|

≤
n∏

j=N

(1 − αj)sN +
ǫ

2
(1 −

n∏

j=N

(1 − αj)) +
ǫ

2
(43)

and then by taking the limit sup when n 7→ ∞ we obtain lim supn7→∞ sn+1 ≤ ǫ. 2

A contraction is said to be a Meir-Keeler contraction (MKC) if for every ǫ > 0 there
exits δ > 0 such that ‖x − y‖ < ǫ + δ implies ‖Φ(x) − Φ(y)‖ < ǫ.
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Lemma 31 [14] Suppose that the sequence {xn} defined by equation (34) strongly con-
verges for an α-contraction f (or a constant function f) to the fixed point of PF ◦ f then
the results remains valid for a Meir-Keeler contraction Φ.

Proof :Suppose that we have proved that (34) converges for an α-contraction f to the
fixed point of PF ◦f . Then indeed, the result is true when f is a constant mapping. Let Φ
be a Meir-Keeler contraction, fix y ∈ C, when f is constant and equal to Φ(y) then {xn}
defined by (34) converges to PF (Φ(y)). If Φ is a MKC then since PF is nonexpansive
PF ◦ Φ is also MKC (Proposition 3 of [14]) and has a unique fixed point [9]. We can
consider z = PF (Φ(z)) and consider two sequences :

xn+1 = αnΦ(xn) + (1 − αn)Tnxn (44)

yn+1 = αnΦ(z) + (1 − αn)Tnyn (45)

Of course {yn} converges strongly to z. We now prove that {xn} also converges strongly
to z following [14]. Fix ǫ > 0, by Proposition 2 of [14], we can find r ∈ (0, 1) such that
‖x − y‖ ≤ ǫ implies ‖Φ(x) − Φ(y)‖ ≤ r‖x − y‖. Choose now N such that ‖yn − z‖ ≤
ǫ(1 − r)/r. Assume now that for all n ≥ N we have ‖xn − yn‖ > ǫ then

‖xn+1 − yn+1‖ ≤ (1 − αn)‖xn − yn‖ + αn‖Φ(xn) − Φ(yn)‖ + αn‖Φ(yn) − z‖

≤ (1 − αn(1 − r))‖xn − yn‖ + αnǫ

We cannot use here directly Lemma 29 but following the proof of this Lemma we obtain
that lim sup ‖xn − yn‖ ≤ ǫ. Assume now that for a given value of n we have ‖xn − yn‖ ≤
ǫ. Since Φ is a MKC we have ‖Φ(x) − Φ(y)‖ ≤ max(r‖x − y‖, ǫ) and since we have

r‖xn − z‖ ≤ r‖xn − yn‖ + r‖yn − z‖ ≤ ǫ (46)

we obtain

‖xn+1 − yn+1‖ ≤ (1 − αn)‖Tnxn − Tnyn‖ + αn max(r‖xn − z‖, ǫ) ≤ ǫ . (47)

Thus we have in both cases lim supn7→∞ ‖xn − yn‖ ≤ ǫ and the conclusion follows. 2

Lemma 32 [1, Proposition 2.10 (i)] Suppose that X is strictly convex, T1 an attracting
non expansive mapping and T2 a non expansive mapping which have a common fixed
point. Then :

Fix(T1 ◦ T2) = Fix(T2 ◦ T1) = Fix(T2) ∩ Fix(T1) .

Proof :We have Fix(T2)∩Fix(T1) ⊂ Fix(T2◦T1) and Fix(T2)∩Fix(T1) ⊂ Fix(T1◦T2).
Let x be a common fixed point of T1 and T2. If y, a fixed point of T1 ◦ T2, is such that
y 6∈ Fix(T2) then since T1 is attracting non expansive we have :

‖y − x‖ = ‖T1 ◦ T2(y) − x‖ < ‖T2(y) − x‖ ≤ ‖y − x‖

which gives a contradiction. Thus y is a fixed point of T2 and then also of T1. If now y a
fixed point of T2 ◦ T1 and assume that y 6∈ Fix(T1) then we have

‖y − x‖ = ‖T2 ◦ T1(y) − x‖ ≤ ‖T1(y) − x‖ < ‖y − x‖

which gives also a contradiction and same conclusion. 2
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