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[terative schemes for computing fixed points of
nonexpansive mappings in Banach spaces

Jean-Philippe Chancelier

Cermics, Ecole Nationale des Ponts et Chaussées, 6 et 8 avenue Blaise Pascal, 77455, Marne la
Vallée, Cedex, France

Abstract

Let X be a real Banach space with a normalized duality mapping uniformly norm-to-weak*
continuous on bounded sets or a reflexive Banach space which admits a weakly continuous duality
mapping Je with gauge ¢. Let f be an a-contraction and {T,} a sequence of nonexpansive
mapping, we study the strong convergence of explicit iterative schemes

Tpt+1 = Ctnf(lfn) + (1 - an)Tnmn (1)

with a general theorem and then recover and improve some specific cases studied in the literature
[16,7,12,13,3,8].

Key words: Nonexpansive mappings, Viscosity approximation, Fixed point, Meir-Keeler contraction

1. Introduction and preliminaries

Let X be a real Banach space, C' a nonempty closed convex subset of X. Recall that
a mapping T : C — C is nonezpansive if ||T(x) — T(y)|| < ||z —y|| for all z, y € C
and a mapping f : C — C is an «-contraction if there exists a € (0,1) such that

I1f(z) = f(W)ll < allz —y| for all z, y € C.
We denote by Fiz(T) the set of fixed points of T', that is

Fiz(T)E {z e C : Ta =z} (2)
and IIo will denote the collection of contractions on C.
Email address: jpc@cermics.enpc.fr (Jean-Philippe Chancelier).
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Let X be a real Banach space. The (normalized) duality map J : X — X* where X*
is the dual space of X, is defined by :

def * 2 2
J@) o e x* 5 (@) = |lo)* = 2"}
and there holds the inequality

lz +y[1* < [|2]* + 2 (y.j(x + y)) where z,y € X and j(z +y) € J(z +y)

Recall that if C' and F are nonempty subsets of a Banach space X such that C is
nonempty closed convex and F' C C, then a map R : C' — F' is called a retraction
from C onto F if R(x) = x for all x € F. A retraction R : C' — F is sunny provided
R(x + t(z — R(x))) = R(x) for all z € C and ¢t > 0 whenever z + t(x — R(z)) € C. A
sunny nonexpansive retraction is a sunny retraction, which is also nonexpansive.

Suppose that F is the non empty fixed point set of a nonexpansive mapping T : C +— C,
that is F = Fiz T # () and assume that F is closed. For a given u € C and every ¢ € (0,1)

there exists a fixed point, denoted x; of the (1 — ¢)-contraction tu + (1 — ¢)T". Then we

consider Q : C — F = Fiz(T) by Q(u) % o-limy_oz; when this limit exists. Q will

also be denoted by Q i, (1) When necessary and note that it is easy to check that when
it exists () is a nonexpansive retraction.

Consider now f an a-contraction, then Q g, (1) o f is also an a-contraction and admits
therefore a unique fixed point Z = Q7 o f(Z). We denote by Q(f) or Qpiz(r)(f) the
mapping Q(f) : He — Fiz (T) such that :

Q(f) =z where 7= (Qrir) o f)(%). (3)

For ¢ € (0,1) we can also find a fixed point, denoted 7 of the (1— (1 —t)a)-contraction
tf + (1 —t)T and if limy_o 2 is well defined we can define a mapping Q : Il — Fiz(T)
by :

Q(f) € lima!  where af =tf(xf)+ (1 - t)Ta] (4)

We then gather know theorems under which @, Q and Q are defined and give relations
between them.

When X is a uniformly smooth Banach space, denoted by Buys, It is known [16, Theo-
rem 4.1] that Q(f) is well defined and equal to Q(f) and & = Q(f) is characterized by :

(z— f(2),J(T—p)) <0forallpe F = Fix(T). (5)
A special case is when f is a constant function u(x) = u. Then [16, Theorem 4.1] shows
that @ is well defined and that Q(u) = Q(u) = Pp;,ru (where Pg is the metric projection
on S). If X is a smooth Banach space, R : C'+— F is a sunny nonexpansive retraction [5]
if and only if the following inequality holds :

(x — Rz, J(y — Rx)) <0Oforallz € C and y € F. (6)

Q is thus the unique sunny non expansive retraction from C to Fixz T. [16, Theorem
4.1] was already known in the case f constant and in the context of Hilbert spaces [16,
Theorem 3.1] and [10, Theorem 2.1].

The same existence and characterization results can be found firstly when X is a
reflexive Banach space which admits a weakly continuous duality mapping Jg with gauge
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¢, denoted by Byysc, in [17, Theorem 3.1] (with f constant) and [13, Theorem 2.2] (where
J is the (normalized) duality mapping). Note that the limitation of f constant in [17]
can be relaxed with [14]. Secondly when X is a reflexive and a strictly convex Banach
space with a uniformly Géteaux differentiable norm, denoted by Bryg, [12, Theorem 3.1].
Note that in this three Banach spaces cases listed here the normalized duality mapping
is shown to be single valued.

The aim of this paper is to study the strong convergence of iterative schemes :

Tpi1 = anf(Tn) + (1 — an)Than (7)

when X can be a Bus, or a Byysc, or a Byyg real Banach space and {7),} is a sequence
of nonexpansive mappings which share at least a common fixed point. We give a general
framework to show that {z,} will converge strongly to & where Z is the unique solution of
for a fixed nonexpansive mapping T related to the sequence {7}, }. The key ingredient
is the fact that Lemma given in section [3 is valid in the three previous context.
Then we show that by specifying the sequence T, we can recover and extend some
known convergence theorems [16,7,12,13,3/8]. Note also that in equation (7), f is an a-
contraction, but following [14] it is easy to show that f can be replaced by a Meir-Keeler
contraction (Lemmal[31]in section [3is devoted to this extension). The paper is organized
as follows : a main theorem is proved in section (3] using a set of lemmas which are
postponed to the last section of the paper and which are verbatim or slight extensions
of know results. Then in a collection of subsections, known convergence theorems are
revisited with shorter proofs.

2. Main theorem

In the sequel a B real Banach space, will denote when not specifically stated a real
Banach space with a normalized duality mapping uniformly norm-to-weak* continuous
on bounded sets (which is the case for Bus or Byug) or a reflexive Banach space which
admits a weakly continuous duality mapping Je with gauge ¢ (Brwsc)-

H; n: For a fixed given N > 1 and a given sequence {a,}, a sequence of mappings
{T,} will be said to verify H; n, if for a given bounded sequence {z, }, we have

(1 = g N)Tnsnzn — (1 — an) Tozn|| < 6, M (8)

with either (¢) " [0,] < co or (') limsup,,, o 0n/a, < 0 and M a constant.
Remark 1 Note that using Lemma[30 {6,} can be replaced by {pn + pn} where {u,}
satisfies (i) and {pn} satisfies (i').

Remark 2 Note that when o, € (0,1) we have :

(1 = an+N) T nzn — (1= an)Tnzall < lantn — anl|Tognznll + Tz — Tnzn”( )
9
Thus, when {ay,} satisfies Hg w (given below), if for each bounded sequence {zp}, {Tzn}
is bounded and either (vi) Y 0" o || Tninzn — Tnzn| < 00 or (vi') [|Thsnzn — Tnznl|/an —
0 then Hj N is satisfied (again using previous remark about mizing between conditions
with or without prime). In the previous case, Hi N is thus implied by Hll,N which is
stated now :



H/l,N: For a fixed given N > 1 and a given sequence {c,} which satisfies Hg n a
sequence of mappings {7}, } will be said to verify Hll,N? if given bounded sequence {z,},
we have || T4 n2n — Ty || < pp with either (vi) Yo" pn < 00 or (vi') pp/ay, — 0.

H ,: For a given p € X, a sequence {x,} will be said to verify Hs j, if we have

limsup (f(p) — p, J(z, —p)) < 0. (10)

n—oo

Hjs n: For a fixed given N > 1, a sequence of real numbers {a,} will be said to
verify Hg v if the sequence {ay,} is such that (7) o, € (0,1), (#) limyoo py = 0, (440)
Yoo o o = 00 and either (1) Y7 |anen — an| < 00 or (iv') limy o (g v /an) = 1.

We can now formulate the main theorem of the paper :
Theorem 3 Let X be a B real Banach space, C' a closed conver subset of X, T,, : C +— C
a sequence of nonexpansive mapping, T a nonexpansive mapping and f € llc. We assume
that Fiz(T) # 0 and that for all n € N Fiz(T) C Fix(T,). Let {a,} be a sequence of
real numbers for which there exists a fited N > 1 such that Hg N is satisfied and suppose
that there exists p € Fix(T) such that Ha , is satisfied, then the sequence {z,} defined

by (84) converges strongly to p.

Proof : The proof uses a set of Lemmas which are given in section 3l Since p is in
Fix(T,) for all n we can use Lemma 23 to obtain the boundedness of the sequence {z,, }.
Thus we can conclude using Lemma 28. O

Corollary 4 Assume that the hypothesis of Theorem!|3| except Ha p are satisfied. Suppose

that Hy N or H;’N is satisfied and that for each bounded sequence {yn}, the sequence
ITyn — Tynl| — 0. Then the conclusion of Theorem|3 remains for p = Q(f).
Proof : We just need to prove that Hg ;, is satisfied for p = Q(f). We first show that if

Hll’N is satisfied then Hj N is also satisfied. As in previous theorem {z,} is a bounded
sequence. Then, let p € Fiz(T), we have :

[Tnwn = Ton || < Totn — Tapll + [ Top = Tpl| + [ Tp — Tz ||
<2z = pll + [ Top — Tl

and since ||T,,p — T'p|| — 0 by hypothesis we have that {T,,(x,)} is bounded. As shown

in remark 2] we are within the case where Hy n is implied by H/l,N' Applying Lemma [24]
and Corollary [25 we obtain the convergence of || Tz, — x,||. We can then apply Lemma
26 to obtain Hy p, for p = Q(f). O

Corollary [4] can be extended as follows when a constant T cannot be found.
Corollary 5 Assume that the hypothesis of Theorem|3 except Ha p, are satisfied. Suppose

that H,1,N is satisfied and that {T,x,} is bounded and that from each subsequence o(n)
we can extract a subsequence p(n) and find a fized mapping T, such that

1Ty Tp(ny — Tu@pumyll — 0.

If F = Fixz (T,) does not depend on u, then the conclusion of Theorem[3 remains for

p=Qr(f)
Proof : We just need to prove that Hy j, is satisfied for p = Q(f). Using remark [2 we

are in the case where H; i is implied by H/l,N' Using H; n we first easily obtain that

4



|zn, — Thzyn]| — 0 by an argument similar to Corollary [25. Then Hy , for p = Q(f)
follows from Corollary [27. O

We can now consider the case of composition. Assume that {T'}} and {T2} satisfy Hll’N
with bequenceb denoted by p,; Assume also that for a bounded sequence {z,} then the
sequences {772 et nzn}t and {1 yT?2, vz} and also bounded. Then it is straightforward,
since the mappings T1 are nonexpansive, that :

”Té-i-NTv%-&-NZn - T TQZn” < pn + || n+NZn TﬁZnH .

Thus the composition T} o T? satisfy Hll,N with pp, & pL + p2. This lead us to propose
the following Corollary for dealing with composition :

Corollary 6 Assume that the hypothesis of corollary 5 are satisfied for the sequence
{T}} with HlLN and for {T2} also with H/I,N Then the conclusion of Theorem/3 remains
for the sequence {T,, o T3} with p = Qp(f) and F = Fiz(T) o T}).

Proof :As pointed out before the statement of the corollary the composition T}} o T2
satisfy Hl,N' Consider a subsequence o(n) we can find first a subsequence us(n) and po
such that :

1Ty Zutn) = Ta@uyll = 0.
Then, using properties of the T,} sequence, we can re-extract a new subsequence p(n)
and p such that :
1Ty Tty T p(n) — Tp Ty T oy | = 0.
Since we have :

12 1 2
IT), o)L, (n)“/’p( )~ TpTuxP(ﬂ)||<|lT )L on)Tp(n) — T, Tp(n)xp(’ﬂ)H
Ty Totm) = Tpzpem |

When obtain the conclusion for the composition. O

Recall that a mapping T is attracting non expansive if it is nonexpansive and satisfies :
T2 —p|| < ||z —pl|| for all z € FizT and p € Fix T. (11)

In particular a firmly nonezpansive mapping, i.e |Ta — Ty||> < (x —y, Tz — Ty) is at-
tracting nonexpansive [5].

Remark 7 In the previous corollary, we obtain a fixed point of a composition and in
practice the aim is to obtain a common fixed point of two mappings. If the mappings T1
and Tg are attracting, have a common fized point and T1 or T2 is attracting then we wzll
have Fiz Ty N FizT; = Fiz T\ o T2. The proof is contained in [1, Proposition 2.10 (i)]
and given m Lemma!ifor completeness

Remark 8 Note that if X is a strictly convex Banach space, then for A € (0,1) the

mapping Tx & (1=X)I+AT is attracting nonexpansive when T' is nonexpansive. Extension
to a set of N operators is immediate by induction. This gives a way to build attracting
nonexpansive mappings and mized with previous remark it gives [15, Proposition 3.1].
Remark 9 Note also that, when X is strictly convex, an other way to obtain F =
N Fiz (T;) for a sequence of nonexpansive mappings {T;} is to use T = Y. N\, T; with a
sequence {\;} of real positive numbers such that ), \; =1 [2, Lemma 3].
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2.1. Ezxample 1

Theorem 10 [16, Theorem 4.2] Let X be a B real Banach space, C' a closed convex
subset of X, T : C — C a nonexpansive mapping with Fiz(T) # 0, and f an a-
contraction. Then when the sequence {cw,} satisfies Hg 1 the sequence {z,} defined by

(34) with T, “r converges strongly to Q(f).

Proof : Here the sequence T;, does not depend on n. We just apply Corollary[4 to get the
result. Of course, if the sequence {z,} is bounded then {7}, (z,) = Tx,} is bounded and
equation (8) of Hy 1 is then satisfied with d,, = |a, — ap1]. Since {«,} satisfies Hs 1,
{0, } satisfies Hy 1. We also have ||T,,z,, — Tx,,|| = 0 — 0 and the conclusion follows. O

Remark 11 Suppose now that T & > ATy where {\;} is a sequence of positive real

numbers such that )", X\ = 1 and the T; mappings are all supposed nonexpansive. Then,
we can apply Theorem 10 to obtain the strong convergence of the sequence {x,} to
Qriz7(f). Moreover, If we assume that X is strictly convex then using remark (9 we
obtain a strong convergence to Qp(f) with F Y s Fix(T;).

This can be extended to the case when the )\; also depends on n and recover [8,
Theorem 4] as follows :
Corollary 12 Let X be a strictly convex B real Banach space, C a closed convex subset
of X, T; : Cw C foriel a finite family of nonexpansive mapping with N;ey Fix(T;) #

0, and f an a-contraction. For a sequence {cv,} satisfying Hs 1 we consider the sequence
def

{xn} defined by (34) with T, = >, NinTi. Assume that for all i and n A, € [a,b]
with a > 0 and b < oo either Y A < 00 or Ajy/ay — 0 then {x,} converges strongly
to Qpr(f) with F = N;er Fix(T;)

Proof The proof is given by an application of corollary [5. Indeed since the A; , are
bounded T}, z,, remains bounded for a bounded sequence x,,. Then T;, satisfies Hll,l with
Pn = D _ier M- By extracting from each given subsequence o(n) a subsequence p(n)

such that limp,.co A jun) = ; for all i € I we can use corollary [5. Finally, noting that,

for a strictly convex space X, the fixed points of T5 &ef Y ic 7 MiT; does not depend on A

and is equal to N;e; Fix(T;) we conclude the proof. O

2.2. Ezample 1/

In [13] The following algorithm is considered :
Ynt+1 = Planf(yn) + (1 — an)Tyn) (12)

Where P : X — C is a sunny nonexpansive retraction, f : C'— X an a-contraction and
T : C +— X a nonexpansive mapping such that Fiz(T) # (.
If we consider the sequence 2,11 = ap f(yn)+ (1 —ap) Ty, then we have y,, 11 = Pyt
and thus
Tnt1 = anf(P(zn)) + (1 — an)T(P(zs)) (13)
Since f o P is an a-contraction from X onto X and 7T o P a non expansive mapping
from X onto X we can use the previous theorem to obtain the strong convergence of
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the sequence {z,} to x a fixed point of T'o P such that = Ppiy(rop)f(T(x)) (Ps is
the metric projection on S). We thus obtain now the strong convergence of the initial
sequence {y,} to y = P(z) and since z is a fixed point of T o P, y is a fixed point of
PoT.

If we suppose in addition that X is such that J (or Jy) is norm-to-weak* continuous
(i.e X is smooth) and that T satisfy the weakly inward condition then we can use the
result of [13, Lemma 1.2] which state that Fiz(T) = Fiz(P oT) to conclude that y is in
fact a fixed point of T" and recover the result of [13, Theorem 2.4].

2.3. Example 2

We consider now the example given in [7] where the sequence {z,} is given by :

Tpg1 = apu+ (1 — o) yn

With a sequence of mappings T,z et Brnx + (1 = B,)Tx. This problem is rewritten as
follows :

Tn+1 = anf(-rn) + (1 - an)Tnmn (14)

Theorem 13 Let X be a B real Banach space, C a closed convexr subset of X, T :
C +— C a nonexpansive mapping with Fiz(T) # 0, and f an a-contraction. When the
sequence {a,} satisfies Hg 1 and the sequence {3, } converges to zero and satisfy either
>0 o 1Bnt1— Bul < 00 or |Bnt1 — Bul/an — 0. Then, the sequence {x,} defined by (14)
converges strongly to Q(f).

This theorem is very similar to [7, Theorem 1] where f was supposed to be constant.
It could be covered by corollary [12 but here strict convexity is not needed.

Proof : We easily check that the fixed points p of T" are fixed points of T}, for all n € N
and T, is nonexpansive for all n. Thus by Lemma [23 the sequence {z,} is bounded .
If the sequence {z,} is bounded then || T}, (z,)| < max(||x.||, ||Txx])} is bounded too.
Since :

[Tyn — Tynll < Bn(llynll + [ Tynl) (15)

we have ||T,,yn — Tyn|| — 0 for each bounded sequence {y,}. It is easily checked that
H; 1 is satisfied with 6,, = |41 —0n|+|Bn+1—0n|- The conclusion follows from Corollary

4. O

2.4. Fxample 3

We consider here the accretive operators example given in [7] or [17] :

Tpp1 = A f(xn) + (1 — an)Thay, (16)

Where T,z = J,, = and Jy is the resolvent of an m-accretive operator A, Jyz = (I +
AA)~1. The following theorem is similar to [17, Theorem 4.2, Theorem 4.4] or [7, Theorem
2].



Theorem 14 Let X be a B real Banach space, A an m-accretive operator in X such

that A=1(0) # 0. We assume here that C o D(A) where D(A) is the domain of A
and suppose that C' is convex. Suppose that Hg 1 is satisfied by the sequence {a,,} and
that the sequence ry, is such that r, > € > 0 and either > o |1 — rp/rp41] < 0o or
|1 — rn/rnt1l/an — 0, then the sequence {x,} defined by (16) converges strongly to a
zero of A.

Proof : We first note that [17] p 632], for A > 0, Fiz (J)) = F where F is the set of zero
of A and for an m-accretive operator A, Jy is non expansive from X — D(A). Using the
resolvent identity Jyx = J,((/N)x + (1 — p/X)Jaz) we obtain :

Tn

1Tnt12n — Toznll < '1 T (lznll + 1 Tnznll) (17)

n+1

and since the sequence T}y, is bounded for a bounded sequence ¥, (for p € A71(0) we
have || Tyn — pl| < |lyn — pl|) we can apply remark 2 in order to obtain Hy 3, We thus
have ||€n+1 — Zn|| — 0 by Lemma 24 and ||z, — Tpz,| — 0 by :

[#n = Tnan || < [[#n = Tnga || + lTntr — Toan|
<l[en = gl + anllf (@)l + 1 Tn(za)l)

Take now r such that 0 < r < ¢ and define T %' J, then we have :

| Tn — Tl < (1= —| [0 — T (18)
Tn

We thus obtain that x,, — Tx,, — 0 from :
|zn = Tan|| < [[#n = Tazall + | Town — Tan|| (19)
The conclusion is obtained through Corollary 4l O

2.5. Example 4
We consider here the example given in [12]

Tni41 = Oénf(xn) + (1 - an)Tnyn (20)

where T, = @y, mod N, Where N > 1 is a fixed integer and the (Q;);=o,... n—1 is a family
of nonexpansive mappings.

Theorem 15 Let X be a B real Banach space, C a closed convex subset of X, Q; : C' —

C forle{1,...,N} a family of nonexpansive mappings such that F & ﬁlligl Fix(Q)) is

not empty and
ﬁl]igl Fix(Q;) = Fix(ToyNTniN-1 " Tny1) for alln e N (21)

and f an a-contraction. When the sequence {«,} satisfies Hs v then the sequence {x,}

defined by (20) converges strongly to Qr(f).

Proof : By Lemma 23, since the T,, have a common fixed point, the sequence {z,} is
bounded. Since the sequence of mappings T, is periodic, the sequence {7}z, } is bounded
and equation (8) of Hy N is obtained for é,, = |, — oy | using (9). Since {ov, } satisfies
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Hs N, {6, } satisfies Hy . Thus, using Lemmal[24/we obtain that ||z, +n — @, | + 0. Since
|2nt1 — Thzn| < an(||f(xn)]] + || Thznl), we have ||p1 — Than| — 0. We introduce
the sequence of mappings A%N’a) dof miN—1-" Thta for @ # N and ASIN’N) = Id.
Using Lemmall6, given just after this proof, we conclude that : ||z,+n — A%N’O)an — 0.
This combined with ||zp+n — @yn|| — 0 gives ||Tptn — A%N’O):EnH — 0. Note now that the
mappings A%N’O) are in finite number are all nonexpansive and share common fixed points
by hypothesis. Thus we can prove that Hy }, is satisfied for p = Qg (f). Let p = Qr(f)
we suppose that Hz p, is not satisfied, then it possible to extract a subsequence of {z )}
such that :

lim (f(p) = p,J(To(n) —p)) <0 (22)

But it is then possible to find ¢ € {0,...,N — 1} and an extracted new subsequence
p(n) from o(n) such that g,y mod N = q. We thus have [|x,,) — T, || — 0, with

T A((ZN’O) which is now a fixed mapping and Fiz (T') = F. Then Hap should be true
by Lemma [26 and this leads to a contradiction. The conclusion follows by 28] O

Lemma 16 Let N € N, a € {0,...,N} and AN Ol:ean+N_1---Tn+a for a # N and

AN = 1d. Assume that |€nt1 — Thxn|| — O then ||xpen — A%N’O)an — 0.

Proof : We have for « € {0,...,N — 1} by definition of AP and using the fact that
A%N’O‘) is nonexpansive :
||A51N7a+1)xn+a+1 - Aq(zN’a)fnJra” = ||A7(1N’a+1)mn+a+1 - A;N7Q+I)Tn+axn+a”
< ||xn+a+1 - Tn+axn+aH
Thus :
N-1
|Tnen — AE«LMO)CCHH < Z |Zntat1 — ThtaTniall
a=0
and the result follows. O
2.6. Ezample 5
Let F%j ) for j €{1,...,m} be a sequence of mappings defined recursively as follows :
Iz < g0z 4 (1 - UNT TV and TV = (23)

where the sequences {ﬂy(f)} € (0,1), and {T;} for j € {1,...,m} are nonexpansive
mappings. We want to prove here the convergence of the sequence generated by the
iterations :

Tn+l = anf(xn) + (1 - an)FS)xn (24)

Theorem 17 Let X be a B real Banach space, C a closed convex subset of X, T :
Cw— C forje{l,...,m} a family of nonexpansive mappings such that N* | Fix(T};) is
not empty and f an a-contraction. When the sequence {ay,} satisfies Hg N and for j €

9



{1,. m} the sequences {ﬁ(j)} satisfy limy, o0 BY) = 0 and either S |B£f_|)rl - ,(f)\
oo or |Bn+1 (j)|/an — 0 then the sequence defined by (24) converges strongly to Qr(f)
associated to F' = Fix (Ty -+ - Ty,).

Proof : Note first that by an elementary induction FS) is a nonexpansive mapping. If
we assume that p is a common fixed point to the mappings 7T; then p is a fixed point of
the mappings I' 2 By Lemmal23 the sequence {z,} is bounded. Then using Lemma[19]
, given just after this proof, combined with the boundedness of {z,}, Hy 1 is valid with

=187 = 8P| + Jangs — ol (25)
p=1
Now if we can prove that
ITDa,, — TVTy - Trpwp|| — 0 (26)

the conclusion will be given by Corollary [4. The last assetion can easily be obtained by
induction on Hfg)xn — T -+ Ty, since we have :

0@ = Ty - - Tl < B (nll + 175 - - Trnnll)
_ﬁn)HT F(J+1) TJ menH
< BD (nll + 1T - Trnwnll) + 10TV = Tjga - Tl

a

Remark 18 For m = 1 we obtain the same result as Theorem[13.
Lemma 19 Let T be the sequence of mappings defined by (23) Then we have for

je{l,...,m} :

It e~ TPz < § 3|88, — 8P| 3 K (27)
p=j

where K is a constant which depends on the mappings (T,)p>; and x.
Proof : Note first that :

IT el < |z + T3+ V)| (28)
which applied recursively shows that \|1“$3 )a:H is bounded by a constant which depends

on the mappings (7},),>; and « and not on n. Then, using the definition of 'Y we have :

IT) e — D) < 189), = 8P|l + | 7T+ V)

+1 i
HTEE (@) = TR (@) (20)
since Tj is nonexpansive mappings :

IT9) e — T < 18Y), = 8P| + | 1T+ Vz])) + [T () — TG+ ()

by recursion and since the last term Fgﬂ‘fl)(x) - F%m"’l)(x) = 0 we obtain the result. O

10



Note that Lemma [19 remains valid for the sequence
)2 & 49 g(a) + (1 - BP)TTY e and Tz = o (30)

if g is a nonexpansive mapping.

2.7. Example 6
We consider here the example given in [3]
Tnyl = anf(xn) + (]- - an)Tnxn

where T,z def Po(x — Ay Azx) and Pe is the metric projection from X to C. The aim is
to find a solution of the variational inequality problem which is to find x € C' such that
(Az,y —x) > 0 for all y € C. The set of solution of the variational inequality problem is
denoted by VI(C, A). The operator A is said to be u-inverse-strongly monotone if

(x —y, Az — Ay) > p||Az — Ay|)® for all z,y € C

The next theorem is similar to |3, Proposition 3.1].
Theorem 20 Let X be a real Hilbert space, C' a monempty closed convex, f an a-
contraction, and let A be a p-inverse-strongly monotone mapping of H into itself such
that VI(C, A) # 0. Assume that Hs 1 is satisfied and that {\,} is chosen so that \, €
[a,b] for some a, b with 0 < a <b < 2u and > 1 [Ant1 — An| < 00. then the sequence
{zn} generated by (31) converges strongly to Qr(f) associated to F = Fix (T) where
T (x) o Po(x—AAzx). F = Fix (T») does not depend on X for A > 0 and equals VI(C, A).
Proof :For A > 0, let Thx &t Po(x — MAx). When X is an Hilbert space we have
Fix(Ty) = VI(C, A). When A is p-inverse-strongly monotone then for, A < 2u, I — A is
nonexpansive. Thus the mappings T, are non expansive and Fiz (T,,) = VI(C, A) # (.
By Lemma 23 the sequence {x,} is bounded. Since ||T},z|] < K(||z| + 2u||Az||), the
sequence {T,,2,} is bounded too. We also have ||Th+12n — Tnznll < |Ant1 — Anll|Aznl|
which gives Hy n with 6,, = [Apt1 — An| + |@nt+1 — | by remark 2l The result follows
now from Corollary (5. Indeed, since A\, () € [a,b] it is possible to extract a converging
subsequence A,,(,) — A € [a,b] and we then have ||T},(,)z — T5z|| < [Au(n) — All|Az]]. Thus
1T Tu(n) — Txu(mll — 0. .

Remark 21 We can note that for A\ < 2a, I — AA is in fact attracting nonexpansive
since :

I(7 = AA)a — (I = AA)y|| < [z = yll + XA = 20)]| Az — Ay]*.

Thus it is also the case for Poc o (I — AA) [1]. For a nonexpansive mapping S we can

consider the previous theorem with Tha = S o Po(z — MAz) and using Remark 7 (an

Hilbert space is strcitly convex) to obtain a strong convergence to a point in Fix (Ty) =
Fix SN VI(C,A) and thus fully recover [3, Proposition 3.1]
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2.8. Example 7

We consider here the equilibrium problem for a bifunction F' : C' x C' — R where C' is
a closed convex subset of a real Hilbert space X. The problem is to find € C such that
F(z,y) > 0 for all y € C. The set of solutions if denoted by EP(F). It is proved in [4]
that for r > 0, the mapping T, : X +— C defined as follows :

def

Tr(z){zEC’:F(z,y)+i<yz,z:L’)ZO,VyEC’} (31)

is such that T;. is singled valued, firmly nonexpansive (i.e || T,z — Try||2 < (Trxz—-Try,z—y)
for any z,y € X), Fiz(T,) = EP(F) and EP(F) is closed and convex if the bifunction
F satisfies (A1)F(z,z) = 0 for all x € C, (A2)F(z,y) + F(y,x) < 0 for all z, y € C,
(A3) for each z, y, z € C limyo F(tz + (1 — t)z,y) < F(z,y) and (Ay) for each z € C
y — F(z,y) is convex and lower semicontinuous.

we can now consider the sequence {z,} given by :

Tnyr = anf(@n) + (1 — an)Than

where T, &' T, for a given sequence of real numbers {r, }.

Theorem 22 Let X be a real Hilbert space,C' a monempty closed convex, f an -
contraction, assume that EP(F) # 0, Hs 1 is satisfied and the sequence {r,} is such
that liminf,, .. r, > 0 and either ) |rni1 —1n| < 00 of [rng1 —7nl/an — 0. Then, the
sequence {x,} generated by converges strongly to QEP(F)(f)'

Proof : Since the 7, are strictly positive the mappings T;. are non expansive and share
the same fixed points EP(F') which was supposed non empty. By Lemmal[23 the sequence
{z,} is bounded.

Using the definition of T.(x) and the monotonicity of F' (A3) easy computations leads
to the following inequality [11, p 464] :

1T (@) = Tuw)l < 1o =yl + |1 = 2| 1T — ol (32)

Using r > 0 such that r,, > r foralln € N and y € Fiz (T,) we obtain || T, (z,) — T, (y)|| <
|z — y|| which gives the boundedness of the sequence {7, (x,)}. Moreover, for a bounded
sequence {y,} we obtain :

|rn+1 - rn| ||

||Trn+1(yn) =T, (yn)|| < Ty, (Yn) — nll (33)

We thus obtain Hj 1 with 6, = |[rp+1 — rn| + |n+1 — | using remark [2] The result
follows now from Corollary|5. Indeed, since 74,y > 7 it is possible to extract a converging
subsequence 7,y +— T > r and we then have ||T}. )z — Trz| < [rum) — 7|K. Thus

1T, () Tpan) — Trpmyll — 0

12



3. A collection of Lemma

The first Lemma can be used to derive boundedness of the sequence {z,} generated
by [34.

Lemma 23 Let {x,}, the sequence generated by the iterations
Tn41 = anf(xn) + (]- - an)Tnxn (34)

where [ is contraction of parameter o, T,, is a family of nonexpansive mappings and o,
is a sequence in (0,1). Suppose that there exists p a common fized point of T, for all
n € N. Then, the sequence {x,} is bounded.

Proof : The proof exactly follows the proof of [16, theorem 3.2], the only difference is that
here the mappings T;, are indexed by n but it does not change the proof. Obviously we
have :

201 = pll < anllf(zn) = pll + (1 = an)[[ Tz — pl
<an (@flzn —pll + £ () —pll) + (1 — an)llzn = pl|

<= an(t = alay ol +ant - ) D2
< (fz, - pl, 2P
And, by induction, {z,} is bounded. O

The next lemma aims at proving that the sequence {z,} is asymptotically regular i.e
for a given N > 1, we have ||xp+n — 2] — 0.
Lemma 24 With the same assumptions as in Lemmal23 and assuming that there exists
N > 1 such that Hi N and Ha N are fulfilled then, for the sequence {z,} given by
iterations (34), we have ||xnyn — 2n| — 0.

Proof : Using the definition of {z,,} we have :

TpyN+1 — Tni1 = O N (f(@nan) — f(20)) + (Qny N — an) f(2n)
+(1 - an+N)(Tn+an+N - Tn-l—Nmn)
+ (1 = apaN)TnaenTn — (1 — apn)Thay)

By Lemmal[23 the sequence {x,,} is bounded, we can therefore use Hy 5 with {z,}. Since
{f(z,)} is bounded too, we can find three constants such that :

lznsn+1 — Tnt1l] S @nena||Tnen — Tn|| + Qe N — an| K
< (1 - (1 - O‘)O‘n-‘rN)”xn-‘rN - mn” + (|O‘n+N - O‘n‘ + 57L)K2

The proof then follows easily using the properties of a, i.e Hg n and Lemma[30. O

The next step is to prove that we can find a fixed mapping T such that ||z, — Tx,| —
0. The next corollary gives a simple example for which the property can be derived
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from Lemma 24] Indeed, we have seen specific proofs in previous sections on illustrated
examples.

Corollary 25 Using the same hypothesis as in Lemma|24 and assuming that {T,zy} is
bounded and that || Tpxn — Tzy| — 0 we also have ||z, — Tx,| — 0.

Proof :

|20 — Ton|| < [|zn — Togal| + [ Tag1 — Tan ||
< H-rn - xn-i-l” +a, K1 + (1 - an)”Tnxn - Tan

and the result follows. O

The next Lemma gives assumptions to obtain Hs ;, for a given p.
Lemma 26 Suppose that X is a B real Banach space. Let T be a nonexpansive map-
ping with Fix(T) # 0, f an a-contraction and {x,} a bounded sequence such that
Tz, — x| — 0. Then for & = Q(f) we have :

limsup (f(%) — &, J(z, — 7)) <0 (35)

nH—oo

Proof :When X is a Byg or a B, the key point is the fact that J is uniformly norm-to-
weak* continuous on bounded sets.
The proof of this Lemma can be found in the proof of Theorem [16, Theorem 4.2] or

[12) Theorem 3.1]. We just summarize the line of the proof here. Let & Ly limy, .o ¢
where x; solves x; = tf(x¢) + (1 — t)Tz¢, we thus have :

1 = @all? < (1= 21T — wal® + 26 (F(20) — 2, I (00 — 20))
<A =) (|Txy — Tan| + | Tzn — 20])?
12 (f (1) — @0, J (21 — ) + 2|2 — )
< (L4 |lze = zal” + an(t)
+2t (f(xy) — x4, J (2 — )
(36)

where ay (t) = 2|| Tz, — @ |||zt — 20|+ | T2 — 20]|* — 0 when n tends to infinity. Thus :

(@) — e T~ 20) < 2D L 2 (37)
and we have :
lim lim sup (f(xt) — ¢, J(x — 1)) <0 (38)

=0 n—oo

. def ~ .
We consider now a sequence ¢, — 0 and y, = zy,, then we have y, — T and with

g(z) ¥ (2) — z we have

(9(2), J(zn — 7)) <{9(yp), I (2n — vp))
+1(9(2), J(@n =) = J(@n = yp)) [ + (1 + )7 = yplll|2n = vy
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Since J is uniformly norm-to-weak* continuous on bounded sets and y, — &, for € > 0,
we can find p such that for all p > p and all n € N we have :

(9(2), J (2 — 7)) <(9(Wp)s I (¥ — yp)) + (L + )7 — yplllzn — ypll (39)
Thus :

limsup (g(z), J (z,, — %)) <limsup (g(yp), J (Tn — Yp)) + €+ T — ypl| K

< Jim (limsup (g(y,), J (20 = yp)) + €& = 4ol ) < €

Suppose now that X is a Byysc. We follow the proof of [Theorem 2.2]song-chen-1
or [17, Theorem 3.1]. Let Z = Q(f) and consider a subsequence {z,(,)} such that
limsup,,, o (f(Z) — 2, J (2 — %)) = limpoo (f(Z) — &, J(@(n) — &)). It is then possible
to re-extract a subsequence x,,(,,) weakly converging to 2*. Since we have x,,(p,) =T, (n) —
0 then 2* € Fiz(T) using the key property that X satisfies Opial’s condition [6, Theorem
1] and the fact that I — T is demi-closed at zero [12, Lemma 2.2]. Thus by definition of
Z we must have (f(z) — &, J(z* — 2)) <0. O

Corollary 27 Suppose that X is a Bys, or a Brug, or @ Bryse. let f a contraction and
{zn} a bounded sequence such that x,—T,x,, — 0. From each subsequence o(n) we can ex-
tract a subsequence pi(n) and find a fived mapping T), such that || T2 ) — Tpzpum)l —
0. Then, if F = FixT,, does not depend on p, for & = Q(f) associated to F, we have :
limsup (f(z) — &, J(x,, — %)) <0 (40)

nH—oo

Proof :The proof is by contradiction using Lemma [26. Assume that the result is false,
then we can find a subsequence o(n) such that

limsup (f(&) — &, J(Tpm) — &) =€ >0 (41)

n—oo

by hypothesis we can extract from o(n) a sub-sequence i (n) such that || 7,2 ) — TTuemll —
0. Thus, since

”x,u(n) - Txu(n)” < ku(n) - Tu(n)mu(n)” + ”T,u(n)xu(n) - Tl'u(n)”a
we have z,(,) — T, () — 0 we can then apply Lemma 26 to the sequence {,,)} and
mapping T}, to derive that :
limsup (f(Z) — &, J(z,n) — &)) <0

n—oo

for = Q(f) corresponding to F' = Fiiz T,, and since F' does not depend on , this gives
a contradiction with (41). O

The next Lemma helps concluding the proof.
Lemma 28 Assume that the sequence {x,} given by iterations (34)) is bounded and
assume that for p, a common fized point of the mappings T,,,Ha p is satisfied and that
(1,41, 1i1) items of Hag N s also satisﬁe(ﬁ. Then the sequence {x,} converges to p.

I Note that (4, i, 4ii) of H3 n do not use the value of N
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Proof :

|n41 —p||2 <(1- an)2HTnxn - p”2 + 20 (f(zn) — P, J(@n41 — p))
< (1= an)? @ = pl* + 200 (f(n) = f(), T (@ni1 — D))
+2a (f(p) = P, J(Tn41 — p))
< (1= an)’l|zn = p|I* + 20n0l|z = plllzni1 = p)|
+2a, (f(p) = P, J (41 — p))

Note that ||z,+1 —p|| < ||zn — p|| + @K . Thus :

|21 = plI” < (1= an)?[len = pl|* + 2000, — p||*

+2aiK + 2, <f(p) - D J(anrl - p)>
<(1-an(l-a)+a})lz, —p|’

—I—QQZK + 2, <f(p) - D J(anrl - p)>

And we conclude with Lemma [29. O

Lemma 29 .[7, Lemma 2.1] Let {s,} be a sequence of nonnegative real numbers satis-
fying the property

Sn+1 S (1 - an)sn + anﬁn fO’f‘ n Z 0;
where ay, € (0,1) and B, are sequences of real numbers such that : (i) limp—eo oy = 0
and Y07 g, = oo (i) either limsup,, . Bn < 0 or > 7 |anfn| < co. Then {s,}
converges to zero.
Corollary 30 Let {s,} be a sequence of nonnegative real numbers satisfying the property

Spt1 < (1 - an)sn + CVnﬁn + anYn fOT n>0,

where a,, € (0,1), B, and 7, are sequences of real numbers such that : (i) limyeo @y =
0 and Y 07y, = oo (ii) limsup,, o B < 0 and (iv) > .7 |londs| < co. Then {s,}
converges to zero.

Proof :The proof is similar to the proof of Lemma[29][7] Lemma 2.1]. Fix € > 0 and N
such that 8, < €/2 for n > N and > 72 y [0, < €/2 . Then following [7] we have for
n>N:

(1 - aj)) + Z |an6n‘

=

(1 — Oéj)SN =+ E(l —

.

Spt1 <

2 , ,
j=N j=N j=N
- € - €
<JI0-apsw+50-J[0-a))+5 (43)
j=N j=N
and then by taking the limit sup when n — oo we obtain limsup,,, ., Snt+1 < €. O

A contraction is said to be a Meir-Keeler contraction (MKC) if for every € > 0 there
exits § > 0 such that ||z — y|| < e + ¢ implies ||®(x) — P(y)|| < €.
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Lemma 31 [14] Suppose that the sequence {xz,} defined by equation (34) strongly con-
verges for an a-contraction f (or a constant function f) to the fized point of Pro f then
the results remains valid for a Meir-Keeler contraction ®.

Proof :Suppose that we have proved that converges for an a-contraction f to the
fixed point of Pro f. Then indeed, the result is true when f is a constant mapping. Let ®
be a Meir-Keeler contraction, fix y € C, when f is constant and equal to ®(y) then {z,}
defined by (34) converges to Pr(®(y)). If ® is a MKC then since Pp is nonexpansive
Pr o @ is also MKC (Proposition 3 of [14]) and has a unique fixed point [9]. We can
consider z = Pp(®(z)) and consider two sequences :

Tn+l = Oén@(mn) + (1 - an)Tn-Tn (44)

Ynt1 = n®(2) + (1 — an)Thyn (45)
Of course {y,} converges strongly to z. We now prove that {z,} also converges strongly
to z following [14]. Fix € > 0, by Proposition 2 of [14], we can find r € (0,1) such that
|z —yl < e implies ||®(x) — ®(y)|| < r[lz —y[|. Choose now N such that ||y, — 2| <
€(1 —r)/r. Assume now that for all n > N we have ||, — yn|| > € then

[2n+1 = Yntall < (1 = an)[|2n = ynll + an[[@(20) = 2(yn)l| + an[[(yn) — 2|
< (I —an(l=r)lzn — yull + ane
We cannot use here directly Lemma [29 but following the proof of this Lemma we obtain

that limsup ||z, — yn|| < €. Assume now that for a given value of n we have ||z, — y,| <
e. Since ® is a MKC we have ||®(z) — ®(y)|| < max(r||z — y||,€) and since we have

rllan = zll S vllen = ynll + rllyn — 2 < € (46)

we obtain
[2nt1 = ynall < (= an)[Tnzn — Toynll + an max(rllz, — 2, e) <e. (47)
Thus we have in both cases limsup,, ., ||zn — yn|| < € and the conclusion follows. O

Lemma 32 [I, Proposition 2.10 (i)] Suppose that X is strictly convez, T\ an attracting
non expansive mapping and T a non expansive mapping which have a common fized
point. Then :

FZl'(Tl o TQ) = FZSL‘(TQ o Tl) = FZ.T,(TQ) n FZZ‘(Tl) .

Proof :-We have Fix(Ty)NFix(Ty) C Fiz(TyoTy) and Fiz(Te)NFiz(Ty) C Fiz(Ti0Ts).
Let x be a common fixed point of 77 and T5. If y, a fixed point of T} o T, is such that
y & Fixz(T) then since T; is attracting non expansive we have :

ly —all = Ty o Ta(y) — 2| < [[Ta(y) — 2| <ly — ||

which gives a contradiction. Thus y is a fixed point of T5 and then also of T;. If now y a
fixed point of Ty o T} and assume that y & Fix(Ty) then we have

ly —all = T2 0 Ta(y) — 2| < [[Ta(y) — 2| <lly — ||

which gives also a contradiction and same conclusion. ]
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