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Model Reduction of Chemical Reaction Systems using

Elimination

François Boulier, Marc Lefranc, François Lemaire and Pierre-Emmanuel Morant

Abstract. There exist different schemes of model reduction for parametric ordinary differential
systems arising from chemical reaction systems. In this paper, we focus on some schemes which
rely on quasi-steady states approximations. We show that these schemes can be formulated by
means of differential and algebraic elimination. Our formulation is simpler than the classical
ones. It permitted us to obtain an approximation of the basic enzymatic reaction system which
is different from those of Henri-Michaëlis-Menten and Briggs-Haldane.

1. Introduction

Chemical reaction systems provide a formalism to describe dynamical systems in contexts more
general than the traditional chemically reacting mixtures. The dynamics of these systems is usually
studied by translating them to systems of parametric ordinary differential equations by means of
the mass action law. Observe that the strict setting of chemical reactions is usually not sufficient to
describe many behaviours and needs to be generalized [11]. For instance, in the process of modeling
gene regulatory networks, it is common to allow unbalanced reactions, or reactions which do not
conserve the mass of the reactants to describe, among other phenomenons, mRNA translation or
protein degradation. See e.g. [24].

The parametric ODE systems derived from these generalized chemical reaction systems are
often too complicated for further analysis and need to be reduced. They are often overparam-
eterized, which makes fitting methods to determine the parameters values heavy to carry out
and unreliable. Moreover, for the important purpose of understanding which parts of the system
contribute the most to some property of interest [15], it is preferable to deal with smaller systems.

For these reasons, model reduction of chemical reaction systems have become a central prob-
lem in their study, as explained in the survey [20]. Among all the existing model reduction methods
(lumping, sensitivity analysis, . . . ) this paper is only concerned by the quasi-steady state approx-
imation, which relies on the assumption that some of the chemical reactions are much faster than
the other ones.

The idea of quasi-steady state approximation is simple: study the dynamics of the slow
reactions, assuming that the fast ones are at quasi-equilibrium, thereby removing from the ODE
system, the differential equations which describe the evolution of the variables at quasi-equilibrium.
Many authors [23, 20, 25, 2] state that carrying out rigorously this approximation is far from
straightforward. We would rather say that there are different ways to perform this approximation
and that it is the problem of ascertaining the domain of validity of each kind of approximation
which is not straightforward.

A basic quasi-steady state approximation may very well apply if one is only interested by
a basic property of the model under study (e.g. the presence of a Poincaré-Andrononv-Hopf bi-
furcation) possibly under some extra assumptions [24, 3, 6]. A more subtle one may be needed if
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one is interested by the timescales over which the system equilibrates or by the period and the
amplitude of the oscillations, in the case of an oscillating system [2].

This paper focuses on the quasi-steady state approximations considered in [23, 25, 2], which
are equivalent and which assume that reactions can be separated in only two categories: the
“fast” ones and the “slow” ones (there are no, say, “very fast” or “medium” reactions). It shows
how differential elimination methods [4, 5, 14] can be used to perform the model reduction. The
presented method is brute force. A more subtle use of non differential elimination methods, based
on [17], was implemented by the third author and will be described in a future paper. Observe
however that this paper is not concerned by the problem of checking some validity conditions such
as conditions C3 and C4 of [23].

We stress the fact that using automatic elimination methods makes the task of the modeller
much easier. In particular, [23, 25] do not simplify their reduced dynamical systems by taking into
account the conservation laws. Simplifying a dynamical system modulo algebraic equations is not
easy to perform by hand while it is very important since it sometimes permits to decrease the
number of variables of the resulting dynamical system.

2. The method over the basic enzymatic reaction system

The following classical system of chemical reactions (1) and (2) describes the transformation of a
substrate S into a product P under the action of the enzyme E. An intermediate complex C is
produced.

E + S
k1−−⇀↽−−
k
−1

C (1)

C
k2−→ E + P (2)

There is a straightforward way to transform this chemical system into a system of four parametric
ordinary differential equations. The so obtained model (3) is often called the initial model of the
chemical system:

Ė = −k1 E S + k−1 C + k2 C (3a)

Ṡ = −k1 E S + k−1 C (3b)

Ċ = k1 E S − k−1 C − k2 C (3c)

Ṗ = k2 C (3d)

The hypothesis which permits to perform all the model reductions is that the reversible reaction (1)
is much faster than the reaction (2). With other words, one assumes that k1, k−1 ≫ k2.

Two different reductions of this chemical system were given in the early twentieth century by
Henri, Michaëlis and Menten [13, 18] on the one hand, Briggs and Haldane [9] on the other hand.

2.1. The Henri-Michaëlis-Menten and Briggs-Haldane reductions

In all cases, the reduced model, which describes the evolution of the product concentration from
the substrate concentration, writes:

Ṗ (t) =
Vm S(t)

K + S(t)
, Ṡ(t) = − Vm S(t)

K + S(t)
(4)

but with different assumptions and different values for the parameter K.
Both reductions rely on a few extra assumptions i.e. (the 0 subscript indicating initial con-

centrations) S0 ≫ E0, P ≃ 0, C0 = 0 [1, page 9]. In the case of the Henri-Michaëlis-Menten
reduction, one assumes equation (1) is constantly at equilibrium (the pre-equilibrium condition),

which means k1 C ≃ k−1 E S. Thus Ṡ is assumed to be small. Performing some extra compu-

tations, one is led to Vm = k2 E0 and K = k
−1

k1

· In the case of the Briggs-Haldane reduction,

one assumes that the intermediate complex does not vary much i.e. that Ċ ≃ 0 which implies
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k1 E S ≃ (k−1 + k2)C (the quasi-stationary state hypothesis). Doing some further computations,

one is led to Vm = k2 E0 (as in the Henri-Michaëlis-Menten case) and K = k
−1+k2

k1

·

2.2. Reduction using differential elimination

The first idea that a casual reader would have for performing such reductions could consist in
translating the “≃” into a “=”. In the Briggs-Haldane case, the hypothesis Ċ ≃ 0 would be
treated by enlarging the initial model equations with the new equation Ċ = 0. However, this
equation implies that C is a constant, which implies that S is a also a constant. The reduced
model so obtained can certainly be considered as useless.

The right way to proceed consists in separating the “fast” variables from the “slow” ones
and in transforming the ODE defining the evolution of each fast variable ẋ = rhs by the algebraic
equation 0 = rhs. But what is a “fast” variable ? An intuitive definition would be: a variable
is fast if it is involved in a fast chemical reaction. Over some examples [24] this definition is
sufficient. However, it would clearly lead to a useless reduced model over our example since E, S
and C would then be considered as fast variables and one would end up with the reduced model
Ṗ = Ṡ = 0. As explained in [2, page 3502], a variable x such that ẋ depends on a mixture of slow
and fast reactions should not be considered as slow. The fast and slow variables of a system are
not necessarily the model variables but functions of them. They can be computed by a rigorous
two timescales analysis, as shown by [23] but, as stated by [25, 2], this is not always necessary.

The reduction that we present here is equivalent to those of [23, 25, 2] but differs in its presen-
tation. As for the Henri-Michaëlis-Menten reduction, one uses the pre-equilibrium approximation
on the first reaction but this is (for the moment) the only assumption we make:

k1 E S = k−1 C (5)

As for the initial model, one translates the two chemical reactions as parametric ordinary
differential equations expressing the evolution of the concentrations of E, S, C and P . However
one handles the reactions which are assumed to be at equilibrium (the fast reactions) in a different
manner than the other reactions (the slow reactions): the variation of the concentration of each
chemical species is the sum of the contributions of each reaction. The contribution of each slow
reaction is derived from the law of mass action as usual. The contribution of each fast reaction is
represented by a new variable.

The underlying idea is that the dynamic of the fast reaction is (for the moment) considered
as unknown. This means that one adds a degree of freedom for each fast reaction. This freedom in
fact allows the system to stay on the equilibrium conditions. Performing elimination on the extra
unwanted variables, one gets a set of differential equations in the reactants only. Over the example,
the contribution of the fast reaction is denoted F1 (for fast reaction 1) and the contribution of the
slow reaction is k2 C:

Ė = −F1 + k2 C (6a)

Ṡ = −F1 (6b)

Ċ = F1 − k2 C (6c)

Ṗ = k2 C (6d)

Using elimination on (5) and (6) with the ranking R = [F1] ≫ [P,C,E, S] [16, chap. I, §8], one
eliminates the unknown F1. Elimination is performed below using the MAPLE diffalg package. The
parameters are put in the base field F of the equations to avoid discussions over their values (they
are then considered as algebraically independent). An inequation is added to avoid considering
the degenerate case of C(t) being the zero function. The output is pretty printed.

with(diffalg):

sys := [ E[t] - (-F1 + k2*C), S[t] - (-F1), C[t] - (F1 - k2*C), P[t] - k2*C,

k1*E*S - km1*C ]:

F := field_extension (transcendental_elements=[k2,k1,km1]):

R := differential_ring (ranking=[ [F1], [C,E,P,S] ],



4 François Boulier, Marc Lefranc, François Lemaire and Pierre-Emmanuel Morant

derivations=[t], field_of_constants=F):

Ineqs := [ C ]:

Ids := Rosenfeld_Groebner (sys,Ineqs,R);

Ids := [characterizable]

rules := rewrite_rules( Ids[1] );
[

F1 =
k2 k1 E S (k1 S + k−1)

k−1 (k1 S + k1 E + k−1)
, Ė =

k1
2E2k2 S

k−1 (k1 S + k1 E + k−1)
, Ṗ =

k2 k1 E S

k−1

,

Ṡ = − k2 k1 E S (k1 S + k−1)

k−1 (k1 S + k1 E + k−1)
, C =

k1 E S

k−1

]

In the above system, one gets the value of F1. The reduced model is made of three paramet-
ric ordinary differential equations. It is exactly that obtained by [25, page 2327, (33), denoting
A, B, C, D, κ for S, E, C, P, k1/k−1].

2.3. Refinements

One can simplify further the reduced model by replacing the two parameters k1 and k−1 by a
single parameter K = k−1/k1. Indeed, k1 and k−1 only appear in the equation (5) for which one
can substitute K = k−1/k1. This simplification makes sense: the values of k−1 and k1 describe the
speed of the fast reaction. Since this reaction is assumed to be constantly at the equilibrium, only
the ratio of the two constants matters. Continuing the example, one gets:

map (normal, subs (km1=K*k1, rules));
"

F1 =
k2 E S (S + K)

K (S + E + K)
, Ė =

k2 E2 S

K (S + E + K)
, Ṗ =

k2 E S

K
, Ṡ = −

k2 E S (S + K)

K (S + E + K)
, C =

E S

K

#

.

The second simplification consists in using the two conservations laws below (that one can
automatically deduce from the system (6) by means of linear algebra):

E + C = E0 + C0 (7a)

S + C + P = S0 + C0 + P0 (7b)

plus the hypothesis C0 = P0 = 0 (as for the classical reductions). One can then eliminate E from
the ODE describing the evolution of S. This can be done by means of elimination. For instance,
one can rerun the above commands, enlarging the field F with the two new symbols E0 and S0

and the list sys with the two equations E + C = E0 and S + C + P = S0. Performing the same
elimination as above and denoting k2 E0 = Vm as usual, one eventually gets:

Ṡ = − Vm S (K + S)

K E0 + (K + S)2
· (8)

As far as we know, this formula is new. If one neglects the term K E0 in equation (8), one
gets equation (4). Thus equation (8) and (4) are almost equal when the term K E0 is negligible, for
example when S ≫ E0. What happens when S and E0 are in the same range, a phenomenon likely
to occur in vivo according to [10, §2.1.1] ? Equation (8) turns out to be more precise, Figure 1
shows.

3. The algorithm

The main algorithm DifferentialModelReduction is composed of two main steps: the transformation
of the list of reactions into a dynamical system, and the elimination part. Its main interest is that
it is fully automatic and performs automatic case splitting when needed.

The DifferentialModelReduction algorithm described in section 3.2 relies on a few auxiliary
functions described in section 3.1. In all algorithms presented in this section, the parameter L
denotes a list of chemical reactions, and X denotes a vector of all chemical species of L (i.e. all
the reactants and products involved in L). Except in the function DifferentialModelReduction, the
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Figure 1. When the initial enzyme concentration is close to that of the substrate,
the curve S(t) computed from the initial model (3) (red, coming from the top of
the diagram) is better approximated by formula (8) (green) than by formula (4)
(blue). The two reduced formulas were integrated for an initial value picked on
the non reduced curve, after the transient step, at t = 0.005. Parameters values
were borrowed from [25].

order of the elements of X is not important. As explained later in section 3.2, the order of X
encodes the chemical species to be eliminated.

Each reaction is represented by a list of reactants, a list of products, a boolean flag indicating
if the reaction is considered fast, a boolean flag indicating if the reaction is reversible, and one
(or two) rate constant(s) (depending on whether the reaction is reversible or not). Reactants and
products are represented by lists with two elements: a symbol and a stoechiometric coefficient. For
example, the two reactions (1) and (2) in section 2 could be coded in MAPLE, in the humanly
readable format:

[ reactants=[ [E,1], [S,1] ], products=[ [C,1] ],

rateConstants=[k1, km1], fast=true, reversible=true ];

[ reactants=[ [C,1] ], products=[ [E,1], [P,1] ],

rateConstants=[k2], fast=false, reversible=false ]

Observe that, in our algorithm, a reversible reaction is not equivalent to two irreversible
reactions. The task of indicating that a reaction is reversible is left to the user. It could be made
automatic by computing the rank of a stoechiometry matrix as [25, page 2323].

A basic way to define slow and fast reactions consists in splitting the set of rate constants
into two sets: the large ones and the small ones. A reaction is considered as fast if it involves at
least one large rate constant. Stricly speaking, the notion of fast reaction should take into account
the concentrations.

3.1. The auxiliary functions

In this section, one denotes a reaction as

∑

ajXj
k1−→

∑

bjXj if R is irreversible, otherwise
∑

ajXj

k1−⇀↽−
k2

∑

bjXj .
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This formulation involves all the chemical species present in the list of reactions, by setting aj = 0
(resp bj=0) when Xj is not a reactant (resp a product).

The function Equilibria. It returns a list of algebraic relations. It simply converts each fast reaction
into a single algebraic equation coding the pre-equilibrium. On our example in section 2, it simply
returns [k1ES − k−1C], which is the equation (5).

Algorithm 1 Equilibria(L,X)

Input: a list of reactions L, a vector X of all reactants and products involved in L
Output: the list of equilibrium relations for the fast reactions
1: equis := {}
2: for each fast reaction R of L do

3: denote R as
∑

ajXj
k1−→ ∑

bjXj if R is irreversible, otherwise
∑

ajXj

k1−⇀↽−
k2

∑

bjXj

4: if R is reversible then

5: eq := k1

∏

Xj
aj − k2

∏

Xj
bj

6: else

7: eq := k1

∏

Xj
aj

8: end if

9: equis := equis ∪ {eq}
10: end for

11: return equis

The function ListReactionsToODE. It returns a dynamical system Ẋ = H(X,Θ, F ), where Θ
denotes the set of all rate constants in the list of reactions, and F denotes the set of the extra
variables Fi introduced for the fast reactions. On our example in section 2, if L is the list composed

Algorithm 2 ListReactionsToODE(L,X)

Input: L = [R1, . . . , Rp] is a list of reactions, X = t(X1, . . . ,Xn) is a vector of all reactants and
products involved in L

Output: a dynamical system Ẋ = H(X,Θ, F ) describing L
1: {let us first construct the vector of rate V }
2: let V = t(v1, . . . , vn)
3: for each reaction li do

4: denote li as
∑

ajXj
k1−→

∑

bjXj if R is irreversible, otherwise
∑

ajXj

k1−⇀↽−
k2

∑

bjXj

5: if li is a fast reaction then

6: vi := Fi

7: else

8: if li is irreversible then

9: vi := k1

∏

Xj
aj

10: else

11: vi := k1

∏

Xj
aj − k2

∏

Xj
bj

12: end if

13: end if

14: end for

15: {let us compute the stoechiometric matrix}
16: let M = (mij)1≤i≤p, 1≤j≤n

17: for each reaction li do

18: denote reaction li as above
19: mij = bj − aj for each 1 ≤ j ≤ n
20: end for

21: return Ẋ = tM.V
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of the two reactions (1) and (2) (in that order), and if X = t(E,S,C, P ), then the vector V and
the matrix M computed inside ListReactionsToODE are

V =

(

F1

k2C

)

M =

(

−1 −1 1 0
1 0 −1 1

)

Thus ListReactionsToODE returns

Ẋ =









Ė

Ṡ

Ċ

Ṗ









=









−1 1
−1 0
1 −1
0 1









(

F1

k2C

)

=









−F1 + k2C
−F1

F1 − k2C
k2C









which is exactly the system (6).
The ConservationLaws function. It aims at finding linear combinations of the Xi which are constant
along solutions. To compute them, one just needs to compute a basis of the kernel of M (i.e. a
basis of the solutions of M.Y = 0). This is a linear algebra problem over Q. The argument is

straightforward: if y satisfies M.y = 0, then ty.Ẋ = t(M.y).V = 0, so y.X is constant on any
solution, which implies y.X is a conservation law.

Algorithm 3 ConservationLaws(L,X)

Input: a list of reactions L, a vector X of all reactants and products involved in L
Output: a list of (linear) conservation laws
1: denote M the stoechiometric matrix as defined in ListReactionsToODE

2: compute a basis [y1, . . . , ys] of M.Y = 0
3: return the list [y1.X, . . . , ys.X]

On the example of section 2, a basis of the kernel of M is for example t(−1, 1, 0, 1) and
t(1, 0, 1, 0). This leads to −E + S + P = −E0 + S0 + P0 and E + C = E0 + C0. Although different
to the two conservation laws (7), one easily checks that they are equivalent. If instead, one takes
the other basis t(0, 1, 1, 1) and t(1, 0, 1, 0), one exactly obtains the conservation laws (7).

3.2. The DifferentialModelReduction algorithm

The function DifferentialModelReduction. It transforms a list of reactions into a list of dynamical
systems encoding the reduced models. The chemical species to be eliminated are to be put first
in the vector X. The number of chemical species that can be eliminated depends on several
criteria: the more fast reactions and conservation laws there are, the more chemical species get
eliminated. However, this number also depends on the form of the equations themselves, as shown
in section 4.1.

After building the system S of equations, DifferentialModelReduction builds the ranking R to
be used by Rosenfeld-Gröbner over the system S. The ranking [F ] ≫ [X] means that all derivatives
of F are greater than those of X, the derivatives of F are ordered w.r.t. an orderly ranking, and
the derivatives of X also.

The algorithm Rosenfeld-Gröbner performs the so called differential elimination. It returns a
list of systems of polynomial differential equations called characteristic sets. Each characteristic
set Ci defines some differential ideal Ai in the differential polynomial ring R which contains the
model equations. Using the set Ci, one is able to perform computations (such as the normal form
computation) modulo the ideal Ai. The italicized words above come from the differential algebra
[21, 16].

Applied to any differential polynomial p and Ci, the NormalForm algorithm returns a rational
fraction which is a canonical representative of the residue class of p in the factor ring R/A. See
[7] or [8, Figure 1] for a presentation of the NormalForm algorithm1. In our case, the goal of

NormalForm is straightforward: it consists in expressing each derivative Ẋi or each unknown Fj

1In very rare cases, the NormalForm algorithm may split the characteristic set Ci as finitely many smaller charac-

teristic sets, refining thereby the list returned by Rosenfeld-Gröbner.
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Algorithm 4 DifferentialModelReduction(L,X)

Input: a list of reactions L, a vector X = t(X1, . . . ,Xn) of all reactants and products involved in
L

Output: a list of reduced dynamical systems in the variables X
1: Sys := ListReactionsToODE(L,X)
2: Cons := ConservationLaws(L,X)
3: Equi := Equilibria(L,X)
4: S := Sys ∪ Cons ∪ Equi
5: R the ranking [F ] ≫ [X] where F is the set of the unknowns Fi introduced for each fast

reaction
6: [C1, . . . , Ct] := Rosenfeld-Gröbner(S,R)
7: if NormalForm(Fi, Ck) is not a rational fraction in the variables X (for all Fi and all 1 ≤ k ≤ t)

then FAIL.
8: return the list [S1, . . . , St]

where each Si is equal to [Ẋ1 = NormalForm(Ẋ1, Ci), . . . , Ẋn = NormalForm(Ẋn, Ci)]

as a rational fraction in the variables X only. If this goal is reachable, the normal form function
performs it, thanks to the rankings properties.

Rosenfeld-Gröbner returns a list of characteristic sets because it is a case splitting algorithm,
so it may need to consider different cases (say) Xj = 0 and Xj 6= 0 for some j. Such splittings
might introduce some spurious outputs, since the case Xj = 0 is usually not very interesting.
Indeed in section 2, the case C = P = E = S = 0 is not interesting. However, those splittings are
needed when fast irreversible reactions are involved. For example, if one assumes that the reaction

A + B
k−→ C is fast, then the pre-equilibrium hypothesis yields kAB = 0, which implies A = 0 or

B = 0. Those two cases need to be treated differently since the dynamic in each case is different.
Over our example in section 2, the function DifferentialModelReduction (up to the renaming

K = k−1/k1) performs the same computations as in sections 3.2 and 2.3.

3.3. Failures

Strictly speaking, it may happen that some unknowns Fi cannot be expressed as rational fractions
of the variables X. In this case, our algorithm fails. Examples for which our method fails include
many examples which make no sense (e.g. fast unbalanced reactions such as A → A + B). A
meaningful example for which our method does not readily apply is given by the Robertson’s
example [12, chap. IV.1] when the fast and the very fast reactions are considered both fast.

Translating our technical condition in terms of properties of the chemical reaction systems is
an interesting problem, left for a future paper. Observe that our condition plays a role equivalent
to the “kinetic” linear independence condition combined to the singularity testing for algebraic
equations described in [25, pages 2324-2326] but our method seems to be more straightforward: it
can be directly formulated in the setting of algebraic geometry (ideal theory) instead of a matrix
inversion problem over a residue class ring [25, eq. (27)].

Sufficient conditions for the two methods to apply are described in [25, page 2326] (e.g. case
of fast reactions with pairwise disjoint sets of reactants and products).

3.4. Optimisations

First, as said in section 2, one can decrease the number of rate constants in the reduced model,
when there are reversible fast reactions. Indeed, for each fast reversible reaction

∑

ajXj

k1−⇀↽−
k2

∑

bjXj ,

the function Equilibria could simply compute eq :=
∏

Xj
aj − K

∏

Xj
bj where K is a new symbol

equal to k2/k1. This leads to simpler equations. To handle this algorithmically, one would need to
modify the function Equilibria so that it also returns a description of the new K symbols.
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Second, although the differential elimination is conceptually simpler, it appears that the
elimination process is mainly a linear algebra problem over some residue class ring. This can be
achieved by using regular chains and regularity tests, as can be done with the RegularChains [17]
package (and its subpackage MatrixTools) in MAPLE. Here is some insight of this claim (another
paper will discuss that point).

Over the example of section 2, differentiate (5):

k1ĖS + k1EṠ = k−1Ċ (9)

Putting (6) and (9) together, one gets a system of five linear equations in F1, Ė, Ṡ, Ċ and

Ṗ , over the residue class of K[E,S,C, P, k1, k−1, k2] by (5). This system can be solved w.r.t. F1.
Taking conservation laws into account preserves the linearity of the problem.

4. Examples

In section 4.1, we carry out a basic polymer degradation system. We checked that our method
applies to more complicated systems such as a polymerisation cascade or a variant of the ozone
decomposition system (dropping temperature considerations) [25, page 2328].

4.1. Polymer degradation

One considers a simple dimerisation between a protein P and itself. One also assumes that the
protein is degraded. The dimerisation is assumed to be fast, the degradation being slow.

2P
k1−−⇀↽−−
k
−1

P2 (10a)

P
k2−→ ∅ (10b)

Let us introduce K = k1/k−1 and take X = t(P, P2). If L represents the two reactions (10a) and
(10b), the call to DifferentialModelReduction(L,X) performs the following computations. The list
Sys simply consists of

Ṗ = −2F1 − k2P (11a)

Ṗ2 = F1 (11b)

The list Cons is empty, and Equi is [KP 2 − P2]. Let us detail the computations using diffalg:

Sys := [ P[t] - (-2*F1 - k2*P), P2[t] - F1 ];

Cons := [];

Equi := [ K*P^2-P2];

F := field_extension (transcendental_elements=[K,k2]):

R := differential_ring (ranking=[ [F1], [P,P2] ],

derivations=[t], field_of_constants=F):

Ineqs := [ P ]:

Ids := Rosenfeld_Groebner ( [op(Sys),op(Cons),op(Equi)] ,Ineqs,R);

rules := rewrite_rules( Ids[1] );

[

F1 = −2
k2 P2 (4KP − 1)

16KP2 − 1
, Ṗ2 = −2

k2 P2 (4KP − 1)

16KP2 − 1
, P 2 =

P2

K

]

Computing the normal forms of Ṗ and Ṗ2, one gets:

Ṗ = − k2 P2 (4KP − 1)

KP (16KP2 − 1)
(12a)

Ṗ2 = −2
k2 P2(4KP − 1)

16KP2 − 1
(12b)
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In this case, one could not eliminate P since it still appears in the equation (12b). However, over

this simple example, one could eliminate P by using the (non algebraic) relation P =
√

P2/K.
This would lead to:

Ṗ2 = − 2k2P2

4
√

KP2 + 1
(13)

However, this cannot be generalized easily (since an algebraic equation cannot be symbolically
solved when its degree is greater than 5). If one changes the order and takes X = t(P2, P ), one
obtains a different system:

Ṗ2 = − 2k2KP 2

4KP + 1
(14a)

Ṗ = − k2P

4KP + 1
(14b)

In that case, P2 is eliminated.

4.2. Equivalence of our method with [25, 23, 2]

Our method is essentially the same as that of [25]. The main differences are: we do not introduce
any ǫ but the unknown Fi instead, we perform differential elimination instead of linear algebra
and we directly handle reversible reactions instead of splitting them into two irreversible reactions
(this affects the rate vector in the ListReactionsToODE function).

The above comments also apply to [23] since this paper is a basis for [25]. The paper [23]
considers more general systems with external supply and withdrawal of species. For this reason,
they do not obtain our formula (8) which is a consequence of conservation laws which do not exist
in this general setting. They provide a strong theoretical basis for all methods. They transform the
initial system into the so called two-time scale standard form by expliciting the true slow variables
in order to apply the Tikhonov theorem. Our method (as well as that of [25]) is equivalent but
more direct since it avoids this change of coordinates.

Our method is also essentially the same as that of [2]. The paper [2] presents an approximation
scheme using the so called prefactors. Though we do not introduce this concept, our algorithm
DifferentialModelReduction gives exactly the same reduced systems as [2] for the examples listed
in [2, tables 1 and 2]. A major difference is that our method is fully algorithmic: it does not
need to explicit the true slow variables and relies on elimination to perfom the computations. On
the opposite, [2] does need to explicit the true slow variables (which might actually be computed
automatically, following [25] for example). Computations are then performed by hand.

In order to illustrate the equivalence of our reduction method with that of [2], let us consider
a simplified version of the example provided in [2, tables 1]: the case of the simple dimerisation
given in section 4.1. Mutatis mutandis, the argumentation of [2] writes as follows.

One assumes that the dimerisation is fast compared to the degradation. This means that
one has P2 = K P 2. Let us introduce nP the total number of proteins P , which is simply
nP = P +2P2 (since a dimer P2 contains two proteins P ). This new variable is in fact a
slow variable, because this quantity does not change even when the fast reaction occurs.
The total degradation on P is simply the degradation on P , since P2 is not degraded.
Therefore one has ṅP = −k2P . By using the three previous equations, one can deduce
Ṗ = − k2 P

4 K P+1
by doing the following computations.

One has ṅP = −k2P . One also has nP = P + 2P2, which implies ṅP = Ṗ + 2Ṗ2.
Using P2 = KP 2, one gets using a differentiation Ṗ2 = 2KPṖ . Therefore, one has
−k2P = Ṗ + 4KPṖ , which yields Ṗ = − k2P

4KP+1

Indeed, the approach developed in [2] introduces the three equations

P2 = KP 2 (15a)

nP = P + 2P2 (15b)

ṅP = −k2P (15c)
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whereas our approach introduces:

P2 = KP 2 (16a)

Ṗ = −2F1 − k2P (16b)

Ṗ2 = F1 (16c)

Although based on different variables, systems (15) and (16) are in fact very similar since they
both imply:

P2 = KP 2 (17a)

Ṗ + 2Ṗ2 = −k2P (17b)

Indeed equation (17b) is obtained either by combining (16b) and (16c), or by combining

(15b) and (15c). Since system (17) implies Ṗ = − k2P
4KP+1

, both systems (15) and (16) also do.

5. Conclusion

We have presented an algorithmic method for reducing systems of chemical reactions using elimi-
nation and we have shown the relationship between the approaches of [25, 2] and ours.

The main interest of our method is that it is fully automated (once the set of fast reactions has
been chosen). Moreover the setting of our algorithm could easily be integrated in software based
on the SBML format since recent versions of SBML (level 2 version 3 for example) include the
flags reversible and fast that we need in order to apply our method. Still in this computational
context, the reduction of the number of rate constants based on symmetries [22] could also be
used.

The replacement of the differential elimination step by linear algebra methods over residue
class rings is left for a future paper as well as a formulation of the failure conditions in chemical
terms.

The application of DifferentialModelReduction to the systems of [6, 19] and the analysis of
the reduced models are also left for a future paper. In the case of [6], the new reduced system is
more complicated to handle than the previous one but proves to be a better approximation of the
initial model it comes from.
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absence of oscillations in models of genetic circuits. In Proceedings of Algebraic Biology 2007 (2007),
K. H. H. Anai and T. Kutsia, Eds., vol. 4545 of LNCS, Springer Verlag Berlin Heidelberg, pp. 66–80.
http://hal.archives-ouvertes.fr/hal-00139667.



12 François Boulier, Marc Lefranc, François Lemaire and Pierre-Emmanuel Morant

[7] Boulier, F., and Lemaire, F. Computing canonical representatives of regular differential ideals.
In ISSAC’00: Proceedings of the 2000 international symposium on Symbolic and algebraic compu-
tation (New York, NY, USA, 2000), ACM Press, pp. 38–47. http://hal.archives-ouvertes.fr/
hal-00139177.

[8] Boulier, F., and Lemaire, F. A computer scientist point of view on Hilbert’s differential theorem
of zeros. Submitted to Applicable Algebra in Engineering, Communication and Computing (2007).
http://hal.archives-ouvertes.fr/hal-00170091.

[9] Briggs, G. E., and Haldane, J. B. S. A note on the kinetics of enzyme action. Biochemical Journal
19 (1925), 338–339. available on http://www.biochemj.org/bj/019/0338/bj0190338_browse.htm.

[10] Crampin, E. J., Schnell, S., and Mac Sharry, P. E. Mathematical and computational techniques
to deduce complex biochemical reaction mechanisms. Progress in Biophysics & Molecular Biology 86
(2004), 77–112.

[11] F. Horn, R. J. General mass action kinetics. Archive for Rational Mechanics and Analysis 47 (1972),
81–116.

[12] Hairer, E., and Wanner, G. Solving ordinary differential equations II. Stiff and Differential–
Algebraic Problems, 2 ed., vol. 14 of Springer Series in Computational Mathematics. Springer–Verlag,
New York, 1996.

[13] Henri, V. Lois générales de l’Action des Diastases. Hermann, Paris, 1903.
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