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Abstract

We give an elementary derivation of the entropy productiommiila of [JP1]. Using
this derivation we show that the entropy production of angmad, stationary state is zero.

1 Introduction

Let O be aC*- algebra,E(O) the set of all states off andw € E(O). We assume that there
exists a referenc€*- dynamicso’, on O such thatv is a (o, —1)-KMS state. We denote by
6., the generator ot (i.e. ¢! = e®) and byD(é,) its domain. Let(H,,r,, ) be the
GNS-representation of the algelffaassociated to the state

A staten € E(O) is calledw- normal if there exists a density matrx onH,, such that, for all
A€ O,n(A) = Tr(p,m.(A)). Let N, be the set of allb- normal states of.



Forn € N, we denote byEnt(n|w) the relative entropy of Araki [Arl, Ar2]. (We use the
notational convention for relative entropy of [BR, Don]f)7l ¢ N, we setEnt(n|w) = —oo.
For unitaryU € O andn € E(O), we denote by, the state);(A) = n(U*AU). The main
result of this note is:

Theorem 1.1 For any unitaryU € O ND(¢,) andanyn € E(O),

Ent(]w) = Ent(n)w) — in(U*6,(0)). (1)

As we shall explain below, Theorem 1.1 is a natural geneataim of the entropy production
formula derived in [JP1, JP2]. The method of proof we will us¢his note, however, is quite
different from the one in [JP1]. We will reduce the proof ofelinem 1.1 to a fairly elementary
application of some well known identities in Araki’'s theas¥/perturbation of KMS structure.
The proof in [JP1], based on Araki-Connes cocycles, wasniealty more involved and re-
stricted tofaithful states; € N,

We now relate Equ. (1.1) to the entropy production formul@J&fl, JP2]. Assume that there
exists aC*- dynamicsr’ on O and thatw is 7- invariant. LetV (¢) be a time-dependent local
perturbation, that isi(¢) is norm-continuous, self-adjoinf)- valued function orR (the time-
independent case of [JP1] of course follows by settiig = V). The perturbed time evolution
is the strongly continuous family ef automorphisms of given by the formula

t t1 tn—1
(A =T+ )T / dh / At / At [ (V (8a)), [+ [P (V (), 7 ()]
1 0 0 0
In the interaction representatiorf; is given by
Tv(A) =Ty (AT,
wherel™, € O is a family of unitaries satisfying the differential equti

%rtv — i (V(), Ty =1.

Theorem 1.1 then has the following immediate corollary @ee Theorem 4.8 in [JP2]):

Corollary 1.2 Assumethat w is7- invariant and that T%, € D(4,,). Then, for any n € E(O),

Ent(n o 7/|w) = Ent(n|w) — in(T%d, (I%)). (1.2)



From now on we will consider the time-independent ctse) = V. If V' € D(4,), then
I't, € D(4,) and

d . ,
&Fﬁfcsw(ri/) = —17‘3(5(4,(‘/)). (1.3)
Hence, (1.2) reduces to the entropy production formula@1]J

Ent(n o 7/|w) = Ent(n|w) — /0 no Tty (6,(V))ds. (1.4)

We emphasize that the above derivation of (1.4) allows for-faithful 7.

The entropy production of a statey € E(O) was defined in [JP1, JP2] Bp, () = n(d.(V)),
see also [OHI, O1, 02, Ru, Sp]. On physical grounds, it ismatio conjecture that if) is w-
normal andry - invariant, thenEpy () = 0. For faithful 5, this was proven in [JP1]. Here, we
establish this result in full generality.

Theorem 1.3 Assumethat w is 7- invariant, that V' € D(é,,) and that n is 7/~ invariant and
w-normal. Then,

Epy(n) = 0.

Remark. If Ent(n|w) > —oo, then Theorem 1.3 is an immediate consequence of Equ. (1.4).
The casdint(n|w) = —oo requires a separate and somewhat delicate argument.

The results of this note were announced in the recent re\dB&][where the interested reader
may find additional information and references about egtqmoduction and its role in non-
equilibrium quantum statistical mechanics.

Acknowledgment. The research of the first author was partly supported by NSERé@art of
this work has been done during the visit of the second authtivd McGill University which
was supported by NSERC.

2 Proof of Theorem 1.1

We assume that the reader is familiar with basic results ofifee Takesaki modular theory as
discussed, for example, in [BR, DJP, Don, OP].

Let M, = 7,(O)” be the enveloping von Neumann algebra. Siads (o,,, —1)-KMS state,
the vector,, is separating fo?)t,, and we denote b, J, A, the corresponding natural cone,
modular conjugation and modular operator. We recall that= e’~, whereL,, is the unique
self-adjoint operator ofi{,, such that

m,(0! (A)) = eer (A)e e L., =0.



In particular,o!, extends naturally to &@*- dynamics ord)t,, which we again denote hy/,. In
this contexis! is called modular dynamics.

Any staten € N, has a unique normal extension®,, which we denote by the same letter.
Obviously,n is w- normal iff ny; is w- normal for all unitaried/ € O and so, in the proof of
Theorem 1.1, we may restrict ourselvesitonormaln’s.

We will use the fact that ify : 2, — 91, is ax- automorphism, then
Ent(n o y|w o y) = Ent(n|w).
In particular,
Ent(ny|w) = Ent(n|wy-).

Let Wy« be the unique vector representative of the statein the coneP. A simple computa-
tion shows that
Uy = m,(U") I, (U

We will considerP = r,(—iU*},,(U)) as a local perturbation of the modular grotip Leta!
be the locally perturbed *- dynamics,

al(A) = eltlletP) po=itllutP) — gl 5t (A)04,
wheree(le+P)e=ithe = @, ¢ 901, is a family of unitaries satisfying

d
S =il (P),  h=1. (2.5)

Let ¢ be the uniquéa, —1)-KMS state ord)t,,. By the Araki theory(2,, € D(er«*")/2) and
the unique vector representativeofn the natural con® is

o(LutP)/2Q)

V= [eCtP)2Q ||

Another fundamental result of Araki’s theory is the relatio

Ent(n|y) = Ent(n|w) + n(P) — log [e 0720 |%, (2.6)

which holds for allu- normal stateg. (Forn faithful, this relation was provenin [Arl, Ar2], see
also [BR]. Its extension to generalwas obtained in [Don], see also the next section). Hence,
to finish the proof it suffices to show thelt«+7)/2Q,, = W..

We setT" = U*c! (U) and observe that

d
ET’f =iT"o! (—iU*0,,(U)), T° =1.



Comparison with Equ. (2.5) immediately leadsitg7") = ©°% and therefore

eit(Lw+P)Qw =7, (Tt)eith Qw
. (2.7)
= 7, (U")e 7, (U)Q,.

Since the vector-valued functian— e**(:+P)Q)_is analytic inside the strip1/2 <Imz <0
and strongly continuous on its closure, analytic contiimmadf the identity (2.7) to: = —i/2,
yields

Lt P)2Q) = 1 (U AY 7, (D),
= 71,(U")Jm,(U")Q,
= \IIU*a

which is the desired relation.

3 Proof of Theorem 1.3

Let 2, be the vector representative:pin the natural con®. The standard Liouvillean associ-
ated to the dynamics, is Ly = L + 7,,(V) — Jn,(V)J, whereL is the standard Liouvillean
associated te’. We recall thatl and Ly, are uniquely specified by

T, (TH(A)) = e, (A)e LQ, =0,
and
To(TH(A)) = eV, (A)e v, LyQ, = 0.
We denote by, the support of the statgand set) = Js, J. Obviously
Syly = 5,0y = Qy,
and since; is 1 - invariant
itLy itLy

i / /
e v, e”tLVST7 =35 e""V,

itLy .
e Vs, =s 0

n

Let A, be the relative modular operator. We recall that A, = Ker s, ,
1/2 . *
JA,AQ, = s, A,
forall A € M, and thatA,, is essentially self-adjoint o, 2, + (1 — s;)Hw. Hence

A

_ —itLy itLy
worl, [nort, = € Au1|77e )



and sincey is 7y - invariant,

itL —itL
€ VAW‘TZe V= AwOT‘;t\n - AWU*M’

whereU* =T',.

As in the proof of Theorem 1.1, we sEt= 7, (—iU*,(U)) and denote by the perturbation
of the modular dynamics,, by P. It follows thatwy - is the uniqug«, —1)-KMS state. Since
also |leL«+P)/2Q || = 1, the basic perturbation formula of Araki-Donald (see Lenfriain
[Don]) yields

517 log Ayyeln = 3;7 log Ay, — S;P.

Hence,
itL —itL
e' Vs; log A e = Sln log A, — S%P,
and we conclude that for any real numbef 0,

QitLy (3;7 log Aw|77 i i)\)fl e itLv _ (s;7 log Aw|77 — s%P + i)\)*l .

Sincee v (), = Q,, the second resolvent identity yields that for all r&a¥ 0,
(€, (s log Ayjy +1X) s P(s) log Ay — s, P +10)71€Q,) = 0.

Since )
s — lim i\ (s) log A, +10) =1,

A—00

and
s — lim i\ (s log A,y — s, P + i)\)fl =1,

A—00

we derive that
(€, PQ,) = (Q s’ PQ,) = 0.

m <n

On the other hand, using Equ. (1.3), we get

P = mUGV) = = [ mlrp (V) ds.

and since; is 7y - invariant we conclude that

0= (% PR) = = [ nomi6.(V)ds = —m(E(V),

for all t. This yields the statement.
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