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Abstract

We give an elementary derivation of the entropy production formula of [JP1]. Using
this derivation we show that the entropy production of any normal, stationary state is zero.

1 Introduction

Let O be aC∗- algebra,E(O) the set of all states onO andω ∈ E(O). We assume that there
exists a referenceC∗- dynamicsσt

ω onO such thatω is a (σω,−1)-KMS state. We denote by
δω the generator ofσt

ω (i.e. σt
ω = etδω ) and byD(δω) its domain. Let(Hω, πω,Ωω) be the

GNS-representation of the algebraO associated to the stateω.

A stateη ∈ E(O) is calledω- normal if there exists a density matrixρη onHω such that, for all
A ∈ O, η(A) = Tr(ρηπω(A)). LetNω be the set of allω- normal states onO.
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For η ∈ Nω, we denote byEnt(η|ω) the relative entropy of Araki [Ar1, Ar2]. (We use the
notational convention for relative entropy of [BR, Don].) If η 6∈ Nω, we setEnt(η|ω) = −∞.
For unitaryU ∈ O andη ∈ E(O), we denote byηU the stateηU(A) ≡ η(U∗AU). The main
result of this note is:

Theorem 1.1 For any unitary U ∈ O ∩D(δω) and any η ∈ E(O),

Ent(ηU |ω) = Ent(η|ω) − iη(U∗δω(U)). (1.1)

As we shall explain below, Theorem 1.1 is a natural generalization of the entropy production
formula derived in [JP1, JP2]. The method of proof we will usein this note, however, is quite
different from the one in [JP1]. We will reduce the proof of Theorem 1.1 to a fairly elementary
application of some well known identities in Araki’s theoryof perturbation of KMS structure.
The proof in [JP1], based on Araki-Connes cocycles, was technically more involved and re-
stricted tofaithful statesη ∈ Nω.

We now relate Equ. (1.1) to the entropy production formula of[JP1, JP2]. Assume that there
exists aC∗- dynamicsτ t onO and thatω is τ - invariant. LetV (t) be a time-dependent local
perturbation, that is,V (t) is norm-continuous, self-adjoint,O- valued function onR (the time-
independent case of [JP1] of course follows by settingV (t) ≡ V ). The perturbed time evolution
is the strongly continuous family of∗- automorphisms ofO given by the formula

τ t
V (A) ≡ τ t(A) +

∑

n≥1

in
∫ t

0

dt1

∫ t1

0

dt2 · · ·

∫ tn−1

0

dtn [τ tn(V (tn)), [· · · , [τ t1(V (t1)), τ
t(A)]]].

In the interaction representation,τ t
V is given by

τ t
V (A) = Γt

V τ
t(A)Γt∗

V ,

whereΓt
V ∈ O is a family of unitaries satisfying the differential equation

d

dt
Γt

V = iΓt
V τ

t(V (t)), Γ0
V = 1.

Theorem 1.1 then has the following immediate corollary (seealso Theorem 4.8 in [JP2]):

Corollary 1.2 Assume that ω is τ - invariant and that Γt
V ∈ D(δω). Then, for any η ∈ E(O),

Ent(η ◦ τ t
V |ω) = Ent(η|ω) − iη(Γt

V δω(Γt∗
V )). (1.2)



3

From now on we will consider the time-independent caseV (t) ≡ V . If V ∈ D(δω), then
Γt

V ∈ D(δω) and
d

dt
Γt

V δω(Γt∗
V ) = −iτ t

V (δω(V )). (1.3)

Hence, (1.2) reduces to the entropy production formula of [JP1]:

Ent(η ◦ τ t
V |ω) = Ent(η|ω) −

∫ t

0

η ◦ τ s
V (δω(V )) ds. (1.4)

We emphasize that the above derivation of (1.4) allows for non-faithful η.

The entropy production of a stateη ∈ E(O) was defined in [JP1, JP2] byEpV (η) ≡ η(δω(V )),
see also [OHI, O1, O2, Ru, Sp]. On physical grounds, it is natural to conjecture that ifη is ω-
normal andτV - invariant, thenEpV(η) = 0. For faithfulη this was proven in [JP1]. Here, we
establish this result in full generality.

Theorem 1.3 Assume that ω is τ - invariant, that V ∈ D(δω) and that η is τV - invariant and
ω- normal. Then,

EpV (η) = 0.

Remark. If Ent(η|ω) > −∞, then Theorem 1.3 is an immediate consequence of Equ. (1.4).
The caseEnt(η|ω) = −∞ requires a separate and somewhat delicate argument.

The results of this note were announced in the recent review [JP2] where the interested reader
may find additional information and references about entropy production and its role in non-
equilibrium quantum statistical mechanics.

Acknowledgment. The research of the first author was partly supported by NSERC. A part of
this work has been done during the visit of the second author to the McGill University which
was supported by NSERC.

2 Proof of Theorem 1.1

We assume that the reader is familiar with basic results of Tomita-Takesaki modular theory as
discussed, for example, in [BR, DJP, Don, OP].

Let Mω ≡ πω(O)′′ be the enveloping von Neumann algebra. Sinceω is (σω,−1)-KMS state,
the vectorΩω is separating forMω, and we denote byP, J , ∆ω the corresponding natural cone,
modular conjugation and modular operator. We recall that∆ω = eLω , whereLω is the unique
self-adjoint operator onHω such that

πω(σt
ω(A)) = eitLωπω(A)e−itLω , LωΩω = 0.
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In particular,σt
ω extends naturally to aW ∗- dynamics onMω which we again denote byσt

ω. In
this contextσt

ω is called modular dynamics.

Any stateη ∈ Nω has a unique normal extension toMω which we denote by the same letter.
Obviously,η is ω- normal iff ηU is ω- normal for all unitariesU ∈ O and so, in the proof of
Theorem 1.1, we may restrict ourselves toω- normalη’s.

We will use the fact that ifγ : Mω 7→ Mω is a∗- automorphism, then

Ent(η ◦ γ|ω ◦ γ) = Ent(η|ω).

In particular,
Ent(ηU |ω) = Ent(η|ωU∗).

Let ΨU∗ be the unique vector representative of the stateωU∗ in the coneP. A simple computa-
tion shows that

ΨU∗ = πω(U∗)Jπω(U∗)Ωω.

We will considerP ≡ πω(−iU∗δω(U)) as a local perturbation of the modular groupσt
ω. Letαt

be the locally perturbedW ∗- dynamics,

αt(A) ≡ eit(Lω+P )Ae−it(Lω+P ) = Θt
Pσ

t
ω(A)Θt∗

P ,

whereeit(Lω+P )e−itLω ≡ Θt
P ∈ Mω is a family of unitaries satisfying

d

dt
Θt

P = iΘt
Pσ

t
ω(P ), Θ0

P = 1. (2.5)

Let ψ be the unique(α,−1)-KMS state onMω. By the Araki theory,Ωω ∈ D(e(Lω+P )/2) and
the unique vector representative ofψ in the natural coneP is

Ψ =
e(Lω+P )/2Ωω

‖e(Lω+P )/2Ωω‖
.

Another fundamental result of Araki’s theory is the relation

Ent(η|ψ) = Ent(η|ω) + η(P ) − log ‖e(Lω+P )/2Ωω‖
2, (2.6)

which holds for allω- normal statesη. (Forη faithful, this relation was proven in [Ar1, Ar2], see
also [BR]. Its extension to generalη was obtained in [Don], see also the next section). Hence,
to finish the proof it suffices to show thate(Lω+P )/2Ωω = ΨU∗.

We setT t ≡ U∗σt
ω(U) and observe that

d

dt
T t = iT tσt

ω(−iU∗δω(U)), T 0 = 1.
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Comparison with Equ. (2.5) immediately leads toπω(T t) = Θt
P and therefore

eit(Lω+P )Ωω = πω(T t)eitLωΩω

= πω(U∗)eitLωπω(U)Ωω.
(2.7)

Since the vector-valued functionz 7→ eiz(Lω+P )Ωω is analytic inside the strip−1/2 < Im z < 0
and strongly continuous on its closure, analytic continuation of the identity (2.7) toz = −i/2,
yields

e(Lω+P )/2Ωω = πω(U∗)∆1/2
ω πω(U)Ωω

= πω(U∗)Jπω(U∗)Ωω

= ΨU∗ ,

which is the desired relation.

3 Proof of Theorem 1.3

Let Ωη be the vector representative ofη in the natural coneP. The standard Liouvillean associ-
ated to the dynamicsτ t

V is LV = L+ πω(V ) − Jπω(V )J , whereL is the standard Liouvillean
associated toτ t. We recall thatL andLV are uniquely specified by

πω(τ t(A)) = eitLπω(A)e−itL, LΩω = 0,

and
πω(τ t

V (A)) = eitLV πω(A)e−itLV , LV Ωη = 0.

We denote bysη the support of the stateη and sets′η = JsηJ . Obviously

sηΩη = s′ηΩη = Ωη,

and sinceη is τV - invariant

eitLV sη = sηe
itLV , eitLV s′η = s′ηe

itLV .

Let ∆ω|η be the relative modular operator. We recall thatKer ∆ω|η = Ker s′η,

J∆
1/2
ω|ηAΩη = s′ηA

∗Ωω,

for all A ∈ Mω and that∆ω|η is essentially self-adjoint onMωΩη + (1 − s′η)Hω. Hence

∆ω◦τ t

V
|η◦τ t

V
= e−itLV ∆ω|ηe

itLV ,



6

and sinceη is τV - invariant,

eitLV ∆ω|ηe
−itLV = ∆ω◦τ−t

V
|η = ∆ωU∗ |η,

whereU∗ ≡ Γt
V .

As in the proof of Theorem 1.1, we setP ≡ πω(−iU∗δω(U)) and denote byα the perturbation
of the modular dynamicsσω by P . It follows thatωU∗ is the unique(α,−1)-KMS state. Since
also‖e(Lω+P )/2Ωω‖ = 1, the basic perturbation formula of Araki-Donald (see Lemma5.7 in
[Don]) yields

s′η log ∆ωU∗ |η = s′η log ∆ω|η − s′ηP.

Hence,
eitLV s′η log ∆ω|ηe

−itLV = s′η log ∆ω|η − s′ηP,

and we conclude that for any real numberλ 6= 0,

eitLV

(

s′η log ∆ω|η + iλ
)−1

e−itLV =
(

s′η log ∆ω|η − s′ηP + iλ
)−1

.

Sincee−itLV Ωη = Ωη, the second resolvent identity yields that for all realλ 6= 0,

(Ωη, (s
′
η log ∆ω|η + iλ)−1s′ηP (s′η log ∆ω|η − s′ηP + iλ)−1Ωη) = 0.

Since
s − lim

λ→∞
iλ

(

s′η log ∆ω|η + iλ
)−1

= 1,

and
s − lim

λ→∞
iλ

(

s′η log ∆ω|η − s′ηP + iλ
)−1

= 1,

we derive that
(Ωη, PΩη) = (Ωη, s

′
ηPΩη) = 0.

On the other hand, using Equ. (1.3), we get

P = πω(−iU∗δω(U)) = −

∫ t

0

πω(τ s
V (δω(V ))) ds,

and sinceη is τV - invariant we conclude that

0 = (Ωη, PΩη) = −

∫ t

0

η ◦ τ s
V (δω(V )) ds = −tη(δω(V )),

for all t. This yields the statement.
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