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Abstract. Koopmanism – the spectral theory of dynamical systems – re-
duces the study of dynamical properties of a classical or quantum system
S to the spectral analysis of its LiouvilleanLS . By definition, the opera-
tor LS implements the dynamics on a suitable representation of the observ-
able algebra ofS. Near thermal equilibrium, this representation can often
be constructed explicitely. Recent developments have shown that, in this
situation, spectral analysis becomes a powerful tool in the study of thermal
relaxation processes. Far from thermal equilibrium, the explicit construction
of stationary states and of the corresponding representations is usually not
possible. Nevertheless, important physical properties of the systemS can be
obtained from a fairly simple mathematical analysis. In this work, I inves-
tigate entropy production in open systems driven away from equilibrium by
thermodynamic forces.
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1 Introduction

Important efforts have recently been focussed on the rigorous development of
nonequilibrium statistical mechanics. Roughly speaking wecan distinguish two
main streams in this growing body of works:

◮ Thermostated systems.A Hamiltonian systemΣ, with a large but finite
number of degrees of freedom, is driven away from equilibrium by non-
hamiltonian and/or time dependent forces and constrained to a compact en-
ergy surface by a Gaussian thermostat.
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◮ Open systems.The same systemΣ is allowed to interact with infinite reser-
voirs R1,R2, ..., Rn, the coupled systemS = Σ + R1 + · · · remaining
Hamiltonian.

In both cases nonequilibrium states of the systemΣ (also called dynamical en-
sembles) are obtained as weak limits, under time evolution,of appropriate initial
states. From a methodological point of view, these two ways of defining a dy-
namics onΣ should be understood as two different schemes modelizing the same
physical situation. More precisely, thethermostat vs. reservoir alternative gen-
eralizes to nonequilibrium themicrocanonical vs. canonical (or grand canonical)
ensembles of equilibrium statistical mechanics. We expectthat, asΣ becomes
large, the dynamical ensembles defined by the two dynamics become equivalent.
We are still far from a precise formulation of this extended equivalence principle.
However, see [R5] and references therein for related results.

Recent investigations of thermostated systems are based on the «chaotic hypoth-
esis» of Gallavotti and Cohen [CG], an adaptation of the «Ruelleprinciple» of
turbulent fluid dynamics [R1]. In the spirit of Boltzmann’s ergodic hypothesis,
the dynamics ofΣ is assumed to be strongly chaotic (uniformly hyperbolic). Un-
der the chaotic hypothesis, dynamical ensembles can be identified with SRB mea-
sures. This fact brings the powerful machinery of Axiom A systems into the game.
The reader can find an excellent survey of this subject in [R3].

The fact that there is no natural way to quantize thermostated systems makes the
alternative approach trough open systems unavoidable in quantum statistical me-
chanics. From a more philosophical point of view, a unified treatment of classi-
cal and quantum nonequilibrium dynamics requires the parallel development of a
classical theory of open systems. Recent results in these directions can be subdi-
vided in three classes according to the initial state of the reservoirs.

If there is only one reservoirR at thermal equilibrium, thermodynamic stability
requires the full systemS = Σ+R to approach thermal equilibrium with the same
values of intensive parameters. This has been proved for quite general classical
Hamiltonian systemsΣ coupled to a harmonic radiation fieldR in [JP1]. The first
quantum mechanical result can be found in [JP2], where return to equilibrium
of the spin-boson model (a 2-level atom coupled to a free boson field) at high
temperature is proved. More recently, this result has been extended to a N-level
atom coupled to the electromagnetic field at arbitrary temperature in [BFS]. For
further extensions to more general Pauli-Fierz systems, see [DJ] and [DJP].
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If the systemΣ is coupled to several reservoirs in thermal equilibrium at different
temperatures, one expects the corresponding dynamical ensembles to describe a
steady heat flow trough the system. In this situation, the first mathematical prob-
lem is the existence of dynamical ensembles. This question was considered in
[EPR1], where the existence of a steady state is proved for a finite chain of clas-
sical, weakly anharmonic oscillators coupled at its two ends to reservoirsR1 and
R2. The unicity and mixing property of this stationary state are proved in [EPR2],
where the existence of a steady heat flow through the system isalso established.
More recently, these results have been extended to the strongly anharmonic regime
in [EH]; moreover a detailed study of the asymptotic behavior of the stationary
state at low temperature can be found in [RT].

Finally, the systemΣ can also be driven away from thermal equilibrium if the
reservoirs themselves are initially far from equilibrium.In [FL], weakly anhar-
monic perturbations of an infinite quantum harmonic chain are considered. A
large family of quasi-free, nonequilibrium stationary states of the chain is proved
to be stable under local perturbations, providing a wealth of nonequilibrium states
for the anharmonic chain. In a more axiomatic setup, under a strong ergodicity
assumption, natural nonequilibrium states for a N-level atom coupled to several
reservoirs and subject to external time-dependent forces are constructed in [R4].
The linear response formula is also proved to remain valid far from equilibrium.

Many of the above results on open systems have been proved by first constructing
a «normal form» of the system,i.e. a distinguished representation of its algebra
of observables in a Hilbert space where the dynamics is implemented by a unitary
groupUt = e−iLt, and the stationary state by a unit vectorΩ. In such a representa-
tion, ergodic properties of the system can be obtained from spectral and scattering
theory of the self-adjoint generatorL. For example, return to equilibrium fol-
lows from the fact thatL has purely absolutely continuous spectrum, except for a
simple eigenvalue at0.

This circle of ideas is well known in the ergodic theory of dynamical systems,
going under the name «Koopmanism». At or near thermal equilibrium, the normal
form can often be constructed explicitely since we have a good candidate for the
stationary state: The classical or quantum Gibbs Ansatz. This explains the success
of the method in this regime. Far from equilibrium the stationary state is not
explicitely known. It is constructed as a weak limit, under the time evolution, of
suitable initial states. Moreover it is singular with respect to these initial states
(technically, its normal form live in a different folium of representations).
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In this paper I adopt a somewhat different point of view, and work in the normal
form associated with the initial state. For a large class of models describing a
small systemΣ driven away from equilibrium by temperature gradients, I define
entropy production and show that it is non-negative. I also describe the relation
between entropy production and the heat currents flowing through the system.

The paper is organized as follows. Section 2 is a brief surveyof the normal forms
of the simple systems which will be the building blocks of ouropen systemS.
Section 3 introduces the technical tool used in this paper: the modular structure
of normal forms. In Section 4, I define the model, and prove that its entropy
production is non-negative.

2 Normal Forms

Definition 1 The systemS is in normal form if it is described by a Hilbert space
H, a von Neumann algebraM ⊂ B(H), a unit vectorΩ ∈ H and a self-adjoint
operatorL onH with the following properties.

(a)Ω is cyclic forM: MΩ = H.

(b) Ω is separating forM: X ∈ M,XΩ = 0 ⇒ X = 0.

(c)LΩ = 0.

(d) eiLtMe−iLt = M for all t ∈ R.

The algebraM is the set of observables ofS. The operatorL, the Liouvillean of
S, generates the dynamics onM: τ t(X) = eiLtXe−iLt. The vectorΩ defines the
stationary state:M ∋ A 7→ ω(X) = (Ω, XΩ).

The normal form is unique, up to unitary equivalence. If the systemS decomposes
into non-interacting subsystems,S =

∑

α Sα, its normal form is the tensor prod-
uct of the normal forms of its components:H = ⊗αHα, ... There is a completely
general method to bring a system into its normal form: The GNSconstruction.
However, this is a rather abstract construction. The following examples display
explicit representations of the normal form of systems witha finite number of
degrees of freedom. They will play the role ofΣ in our model.

Example 2 A classical Hamiltonian system with finite dimensional phase space
G, Poisson bracket{·, ·}, HamiltonianH and invariant measureµ has a normal
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form given by: H = L2(G, dµ), M = L∞(G, dµ), Ω = 1 andL = i{H, ·}.
The group generated byL is eiLtf = f ◦ Φt

H , whereΦH is the Hamiltonian flow
generated byH onG. Thermal equilibrium at inverse temperatureβ corresponds
to dµ = Z−1

β e−βHdℓ whereℓ is the Liouville measure onG.

Example 3 Let S be a quantum system with finitely many degrees of freedom,
Hilbert spaceh, HamiltonianH and density matrixρ =

∑

n pn |ϕn >< ϕn|.
Assumingρ > 0 and[H, ρ] = 0, the normal form ofS is given by:H = h ⊗ h,
M = B(h) ⊗ I, Ω =

∑

n p
1/2
n ϕn ⊗ ϕn andL = H ⊗ I − I ⊗ H. Thermal

equilibrium at inverse temperatureβ corresponds toρ = Z−1
β e−βH .

Thermal equilibrium of systems with infinitely many degreesof freedom is most
conveniently characterized by the KMS condition.

Definition 4 A quantum systemS, in normal form, is in thermal equilibrium at
inverse temperatureβ if there exists aσ-weakly denseτ -invariant∗-subalgebra
Uβ ⊂ M, such that

◮ UβΩ ⊂ D(e−βL/2);

◮ (e−βL/2XΩ, e−βL/2Y Ω) = (Y ∗Ω, X∗Ω) for X,Y ∈ Uβ.

See [BR2] for a more general definition and a complete discussion of the quantum
KMS condition. For a classical systemS, the symplectic structure of phase space
induces a Poisson bracket{·, ·} on sufficiently «regular» observables.

Definition 5 A classical systemS, in normal form, is in thermal equilibrium at
inverse temperatureβ if there exists aσ-weakly denseτ -invariant∗-subalgebra
Uβ ⊂ M, such that

◮ UβΩ ⊂ Q(L) (the form domain ofL);

◮ β(XΩ, LY Ω) = (Ω, i{X∗, Y }Ω) for X,Y ∈ Uβ.
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See [A1] and [A2] for a detailed study of the classical KMS condition.

Notation. Let h be a complex Hilbert space.Γ(h) denotes the symmetric Fock
space overh. Forf ∈ h, a∗(f) anda(f) are the associated creation and annihila-
tion operators andφ(f) = 1√

2
(a∗(f) + a(f)) is the Segal field operator. IfA is an

operator onh, dΓ(A) denotes its second quantization.

The following examples give the normal form of infinite systems wich will play
the role of the reservoirsRα in our model.

Example 6 A classical harmonic field is an infinite dimensional Hamiltonian
system whose phase space is a real Hilbert spaceh with the symplectic struc-
ture induced by a non-singular skew-adjoint operatorl 1. The Hamiltonian is
H(φ) = 1

2
‖φ‖2, and the flow it generates onh is the unitary groupelt.

For example, the classical scalar wave-field onR
3 whose dynamics is

given by the wave equation̈ϕ = ∆ϕ is described by the Hilbert space
of real functions

φ(x) =

(

ϕ(x)
π(x)

)

,

with the norm‖φ‖2 =
∫

(|∇ϕ|2 + π2) dx and the symplectic struc-
ture induced by

l =

(

0 1
∆ 0

)

.

The thermal equilibrium state at inverse temperatureβ of a classical harmonic
field is the Gaussian measure with covarianceβ−1(·, ·). The normal form asso-
ciated with this state is given by:H = Γ(hC), wherehC is the complexification
of h. Ω is the Fock vacuum.M is the commutative von Neumann algebra gener-
ated by the family{eiφβ(f)|f ∈ h}, whereφβ(f) = β−1/2φ(f) are canonical field
operators, andL = idΓ(l).

Example 7 The normal form of a free, scalar, Bose field inR
3, at thermal equilib-

rium (without condensate) at inverse temperatureβ is given by the Araki-Woods
representation [AWo]:H = Γ(h) ⊗ Γ(h), whereh = L2(R3) is the one-particle
Hilbert space.Ω = ΩF ⊗ ΩF , whereΩF is the Fock vacuum.L = dΓ(h) ⊗ I −

1i.e., the Poisson bracket is{F,G} = (∇F, l∇G).
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I ⊗ dΓ(h), whereh is the one particle Hamiltonian. Withρ = (eβh − 1)−1, M is
the von Neumann algebra generated by the family{eiφρ(f)|f ∈ D(ρ1/2)}, where
φρ(f) = φ(

√
1 + ρf) ⊗ I + I ⊗ φ(

√
ρf̄) is the Araki-Woods field operator. A

similar representation exists for fermions [AWy].

Example 8 The normal form of a classical ideal gas of identical particles of mass
m in R

3 is given by:H = Γ(h), whereh = L2(R3 × R
3, dq dp). Ω is the Fock

vacuum andL = idΓ(p/m · ∇q). M is the commutative von Neumann algebra
generated by the family{eiNρ(f)|f ∈ C∞

0 (R3 × R
3)}, where

Nρ(f) =

∫

f(q, p)(a∗(q, p) +
√

ρ(p))(a(q, p) +
√

ρ(p))dq dp,

andρ(p) = (2πm/β)−3/2e−βp
2/2m is the Maxwell distribution.

3 Modular structures

The main advantage of the normal form of a systemS is the existence of a rich
mathematical structure which, in the quantum case, brings the modular theory of
von Neumann algebra into the playground. In the classical case, this structure is
far less understood. In this section I briefly recall the basics of modular theory
and its relation to statistical mechanics.

3.1 Quantum KMS states and Tomita-Takesaki theory

Let S = (H,M,Ω, L) be a quantum system in normal form. The densely defined
anti-linear involution

MΩ → H
XΩ 7→ X∗Ω

has a closureS such that, for anyΨ ∈ D(S), there exists a closed operatorC,
affiliated toM, with Ψ = CΩ andSΨ = C∗Ω. The polar decomposition of
S, written asS = JeL/2, defines an anti-unitary operatorJ called the modular
conjugation and a self-adjoint operatorL called the modular generator. It follows
easily from these definitions thatJ is an involution (J2 = I) which anti-commutes
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with L: JL + LJ = 0. Moreover, the adjointS∗ = Je−L/2 is characterized by
S∗XΩ = X∗Ω for anyX ∈ M′. These objects define an involutionj and a group
of automorphismsσt onB(H) via the formulae

j(X) = JXJ,
σt(X) = eitLXe−itL.

The Tomita-Takesaki Theorem states that

j(M) = M′,
σt(M) = M,

so that, in particular,σt defines an automorphism ofM which is called the modu-
lar group ofM. This group commutes with the dynamics,i.e.,

[L, L] = 0.

Moreover, Takesaki’s Theorem states thatσ is the only dynamics onM for which
ω is a KMS state at temperature−1. It follows immediately thatS is at thermal
equilibrium at inverse temperatureβ if and only if

L = −βL, (1)

(compare with the KMS condition in Section 2. See [BR1] for details and proofs).

Another important object associated with the modular structure is the natural cone

P ≡ eL/4M+Ω = {Xj(X)Ω|X ∈ M},

whereM+ denotes the set of positive elements ofM. For any normal stateµ on
M, there is a unique unit vectorΩµ ∈ P such thatµ(X) = (Ωµ, XΩµ) for all
X ∈ M. Moreover,µ is faithful ⇔ Ωµ is separating forM ⇔ Ωµ is cyclic for
M. If µ andν are two faithful normal states onM, the densely defined anti-linear
map

MΩν → MΩµ

XΩν 7→ X∗Ωµ

has a closureSµ|ν . Its polar decomposition, written asSµ|ν = Jµ|ν∆
1/2
µ|ν , defines a

positive operator∆µ|ν called relative modular operator.
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3.2 Classical KMS states and Gallavotti-Pulvirenti modular struc-
ture

Due to the abelian nature of the algebraM, the Tomita-Takesaki modular theory
is trivial for a classical system. It was first noticed in [GP]that, under suitable
regularity conditions on the stateω, another structure exists in this case. Its rela-
tion with Tomita-Takesaki theory is probably best understood by considering the
classical limit of a quantum system. Instead, I shall take Takesaki’s Theorem as a
starting point.

Definition 9 The state of the classical systemS = (H,M,Ω, L) is regular if there
exists a unique Hamiltonian flowσt on M for which it is an equilibrium state a
temperature−1.

By the classical KMS condition,S is in a regular state if there exists a self-adjoint
operatorL and aσ-weakly dense∗-subalgebraU ⊂ M such thatL is essentially
self-adjoint onUΩ, and

(Ω, i{X∗, Y }Ω) = −(XΩ,LY Ω), (2)

for all X,Y ∈ U. The required flow is then given byσt(X) = eiLtXe−iLt (see
[GP] for a proof of this fact). I shall say thatσ is the modular group andL the
modular generator ofS. From the definition (2), a number of important properties
of L are easily obtained:

◮ L is a derivation:LXY Ω = XLY Ω + Y LXΩ.

◮ In particular:LΩ = 0.

◮ [L,L] = 0.

◮ The modular group is symplectic:[L, {X,Y }] = {[L, X], Y }+{X, [L, Y ]}.

For the finite system of example 2, the stateω is regular if it is given by a measure
of the formdµ = eϕdℓ, whereϕ is smooth enough to generate a Hamiltonian flow
Φϕ. Then the modular group isσt(X) = X ◦ Φt

ϕ andL = i{ϕ, ·}. Note also that
S is at thermal equilibrium at inverse temperatureβ, if and only if it is in a regular
state and

L = −βL.
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Remark 10 If the system decomposes into non-interacting subsystems,
∑

α Sα,
its modular structure factorizes in a simple way:J = ⊗αJα in the quantum case
andeLt = ⊗αe

Lαt in both, the classical and the quantum case. In particular, if all
subsystems are at thermal equilibrium, with possibly different temperatures, the
modular generator is given by

L = −
∑

α

βαLα.

4 Far from equilibrium

I shall consider a simple class of models where a «small» systemΣ, with a finite
number of degrees of freedom, is driven away from equilibrium by reservoirs
R1, · · · ,Rn in thermal equilibrium at inverse temperaturesβ1, · · · , βn. Let me
denote byS the uncoupled systemΣ +

∑n
α=1 Rα. Its normal form is given by

H = (⊗n
α=1Hα) ⊗HΣ,

Ω = (⊗n
α=1Ωα) ⊗ ΩΣ,

M = (⊗n
α=1Mα) ⊗ MΣ,

L = (
∑n

α=1 Lα) + LΣ.

The modular generator ofS is

L =
n

∑

α=1

Lα + LΣ,

where
Lα = −βαLα. (3)

In the quantum case, the modular conjugation isJ = (⊗n
α=1Jα) ⊗ JΣ. The cou-

pling ofΣ with the reservoirs is described by the interactionV =
∑n

α=1 Vα, where
Vα = V ∗

α ∈ Mα ⊗ MΣ. In the quantum case, the dynamics is defined by

τ tV (X) = e−i(L+V )tXei(L+V )t.

In the classical case, the existence of the coupled dynamicsis a more delicate
question which I will not consider here (see however Section3 in [JP1] for a soft
approach to this problem). I assume that the HamiltonianHV ≡ ∑n

α=1Hα+HΣ+
V induces a global flowΦt

V on phase space,i.e., that the operator

LV : XΩ 7→ LXΩ + i{V,X}Ω,
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generates a strongly continuous group onH. Then

τ tV (X) ≡ X ◦ Φt
V = eiLV tXe−iLV t,

defines the dynamics onM.

In both, classical and quantum case, I also assume that for some normal faithful
stateν of S

ν+
V (X) ≡ lim

t→+∞
ν ◦ τ tV (X), (4)

defines a natural nonequilibrium state on some subalgebraU+ ⊂ M containing
MΣ. Finally, I need a more technical regularity assumption on the interaction,

i[L, V ] ∈ U+. (5)

Note that, at the current level of generality, the existenceof the limit (4) is a very
challenging mathematical problem (see [EPR1] and [JP3] for simpler examples).

4.1 Relative entropy and entropy production

In the study of thermostated systems, the rate of phase spacecontraction and its
relation to entropy production play an important role. Since we are dealing with
infinite dimensional Hamiltonian systems, it is not clear what remains of this re-
lation in our model. I will start with a discussion of classical systems, and then
proceed by analogy to the quantum case.

4.1.1 Classical systems

Using the definition (2) and the properties of the modular generatorL, one easily
gets the formula

L∗
V = LV + iσV ,

whereσV ≡ i[L, V ] is an observable (the derivative ofV along the modular
group). It immediately follows that

J tV ≡ e−iL
∗

V teiLV t = e
R t

0
τ−s
V

(σV )ds.

From the fact thatLV Ω = 0, we further get

ω ◦ τ tV (X) = (Ω, eiLV tXe−iLV tΩ) = (Ω, e−iL
∗

V teiLV tXΩ) = ω(J tVX),
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which shows thatJ tV is the Radon-Nikodym derivative

J tV =
dω ◦ τ tV
dω

.

Let us now start the system in an arbitrary normal stateω0. Computing the relative
entropy of the state at timet, ωt ≡ ω0 ◦ τ tV , with respect to our reference stateω,
we obtain

S(ωt|ω) ≡ −ωt(log
dωt
dω

) = S(ω0|ω) −
∫ t

0

ωs(σV )ds. (6)

It is therefore natural to define the entropy production ratein the stateµ, as

eV (µ) ≡ µ(σV ).

Since by assumption (5) the limit (4) exists onσV , we get

lim
t→+∞

S(ν|ω) − S(νt|ω)

t
= eV (ν+

V ).

Furthermore, the fact thatS(·|ω) is bounded above, shows that the entropy pro-
duction is non-negative in a natural equilibrium state

eV (ν+
V ) ≥ 0.

Proving strict positivity of the entropy production is another challenging mathe-
matical problem (see [EPR2] for an example).

4.1.2 Quantum systems

Since there is no natural way to define phase space contraction in quantum me-
chanics, I proceed directly to the computation of relative entropy. Letµ, ν be two
faithful normal states, their relative entropy is defined by

S(µ|ν) ≡ (Ωµ, log ∆ν|µΩµ),

whereΩµ is the unique vector representative of the stateµ in the natural coneP
and∆ν|µ is the relative modular operator. To compute the relative entropyS(ωt|ω)
of the stateωt ≡ ω0◦τ tV with respect to the reference stateω, we use the following
simple facts:
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1. If U ∈ M is unitary, then the vector representative of the stateψU(X) ≡
ω(U∗XU) is Uj(U)Ω ∈ P. Moreover the relative modular operators are
given by∆ψU |ω = UeLU∗ and∆ω|ψU

= j(U)eLj(U∗).

2. τ tV (X) = τ t(U∗
t XUt), whereτ t is the non-interacting dynamics andUt ≡

e−i(L+V )teiLt is a unitary element ofM.

The result is again expressed by formula (6), withσV ≡ i[L, V ]. Since the quan-
tum relative entropy is non-positive, we can repeat the argument of the previous
subsection to proveeV (ν+

V ) ≥ 0.

4.2 Heat flows

We expect the non-equilibrium stateν+
V to describe steady heat currentsΦα, flow-

ing from Rα into the small systemΣ. Formally, we would like to defineΦα by
τ tV (Φα) = ∂tτ

t
V (Hα), whereHα is the energy ofRα. Since this quantity is not

observable we set

∂tτ
t
V (HΣ + V ) = −

n
∑

α=1

τ tV (Φα),

whereΦα ∈ MΣ ⊗ Mα. Note thatΦα is positive when energy is flowing fromΣ
intoRα. A simple calculation leads to the formula

Φα = −i[Lα, Vα].
Since by definition

∑

α Φα is a total derivative, we have in the stationary state
n

∑

α=1

ν+
V (Φα) = 0. (7)

On the other hand, using (3), we get

σV = i[L, V ] =
n

∑

α=1

βαΦα + i[LΣ, V ],

where the last term can be further expressed asi[LΣ, L+ V ], which is also a total
derivative. Hence, assumingΦα ∈ M+, we can relate entropy production to the
usual phenomenological expression for the entropy flux

n
∑

α=1

βαν
+
V (Φα) = eV (ν+

V ), (8)
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As a final remark, note that forn = 2, the formulae (7) and (8) combine to

(β1 − β2)ν
+
V (Φ1) = eV (ν+

V ) ≥ 0,

which means that heat flows from the hot reservoir to the cold one.
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