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Entropy production in classical and
guantum systems

CLAUDE-ALAIN PILLET

CPT-CNRS Luminy, Marseille, France
Université de Toulon et du Var, La Garde, France

Abstract. Koopmanism — the spectral theory of dynamical systems — re-
duces the study of dynamical properties of a classical or quantum system
S to the spectral analysis of its Liouvillealis. By definition, the opera-

tor Ls implements the dynamics on a suitable representation of the observ-
able algebra of. Near thermal equilibrium, this representation can often
be constructed explicitely. Recent developments have shown that, in this
situation, spectral analysis becomes a powerful tool in the study of thermal
relaxation processes. Far from thermal equilibrium, the explicit constructio
of stationary states and of the corresponding representations is usoially n
possible. Nevertheless, important physical properties of the sySian be
obtained from a fairly simple mathematical analysis. In this work, | inves-
tigate entropy production in open systems driven away from equilibrium by
thermodynamic forces.

Keywords. Nonequilibrium statistical mechanics, open systems, Hamilto-
nian systems, entropy production, Koopmanism.

PACS.05.20.-y, 05.30.-d, 05.45.-a, 05.70.Ln, 31.70.Hq, 44.10.+i.

Introduction

Important efforts have recently been focussed on the rigotevelopment of
nonequilibrium statistical mechanics. Roughly speakingcese distinguish two
main streams in this growing body of works:

» Thermostated systems.A Hamiltonian systent:, with a large but finite

number of degrees of freedom, is driven away from equiliorioy non-
hamiltonian and/or time dependent forces and constramadbmpact en-
ergy surface by a Gaussian thermostat.
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» Open systemsThe same systeii is allowed to interact with infinite reser-
Voirs R1,Ras, ..., R, the coupled syster§ = > + R, + --- remaining
Hamiltonian.

In both cases nonequilibrium states of the systerfalso called dynamical en-
sembles) are obtained as weak limits, under time evoluabappropriate initial
states. From a methodological point of view, these two wdydefining a dy-
namics on: should be understood as two different schemes modelizengdame
physical situation. More precisely, thieermostat vs. reservoir alternative gen-
eralizes to nonequilibrium thmicrocanonical vs. canonical (or grand canonical)
ensembles of equilibrium statistical mechanics. We exfleat asY> becomes
large, the dynamical ensembles defined by the two dynammsnhe equivalent.
We are still far from a precise formulation of this extendediealence principle.
However, see [R5] and references therein for related results

Recent investigations of thermostated systems are basdgkachaotic hypoth-
esis» of Gallavotti and Cohen [CG], an adaptation of the «Ruymileciple» of
turbulent fluid dynamics [R1]. In the spirit of Boltzmann’s edic hypothesis,
the dynamics ok is assumed to be strongly chaotic (uniformly hyperbolic). Un-
der the chaotic hypothesis, dynamical ensembles can bgfiddnvith SRB mea-
sures. This fact brings the powerful machinery of Axiom Atsyss into the game.
The reader can find an excellent survey of this subject in [R3].

The fact that there is no natural way to quantize thermadtsystems makes the
alternative approach trough open systems unavoidableantqm statistical me-

chanics. From a more philosophical point of view, a unifieghtment of classi-

cal and quantum nonequilibrium dynamics requires the |suddvelopment of a

classical theory of open systems. Recent results in thesetidins can be subdi-
vided in three classes according to the initial state of ésenvoirs.

If there is only one reservoiR at thermal equilibrium, thermodynamic stability
requires the full syster§ = ¥+ R to approach thermal equilibrium with the same
values of intensive parameters. This has been proved fte general classical
Hamiltonian system& coupled to a harmonic radiation field in [JP1]. The first
guantum mechanical result can be found in [JP2], wheremetequilibrium
of the spin-boson model (a 2-level atom coupled to a free mdwtd) at high
temperature is proved. More recently, this result has b&tmnded to a N-level
atom coupled to the electromagnetic field at arbitrary tawatpee in [BFS]. For
further extensions to more general Pauli-Fierz systenes|3# and [DJP].
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If the system> is coupled to several reservoirs in thermal equilibriumitiecent
temperatures, one expects the corresponding dynamicaindahss to describe a
steady heat flow trough the system. In this situation, therfieghematical prob-
lem is the existence of dynamical ensembles. This questas aensidered in
[EPR1], where the existence of a steady state is proved forta €ihain of clas-
sical, weakly anharmonic oscillators coupled at its twosetadreservoirdk; and
R,. The unicity and mixing property of this stationary state proved in [EPR2],
where the existence of a steady heat flow through the systafedsestablished.
More recently, these results have been extended to thegstramharmonic regime
in [EH]; moreover a detailed study of the asymptotic behawiothe stationary
state at low temperature can be found in [RT].

Finally, the systent: can also be driven away from thermal equilibrium if the
reservoirs themselves are initially far from equilibriunm [FL], weakly anhar-
monic perturbations of an infinite quantum harmonic cham @nsidered. A
large family of quasi-free, nonequilibrium stationarytetaof the chain is proved
to be stable under local perturbations, providing a wedltioaequilibrium states
for the anharmonic chain. In a more axiomatic setup, undeéroag ergodicity
assumption, natural nonequilibrium states for a N-levehatoupled to several
reservoirs and subject to external time-dependent foneesanstructed in [R4].
The linear response formula is also proved to remain vatfiftéen equilibrium.

Many of the above results on open systems have been provedtgoinstructing

a «normal form» of the systeme. a distinguished representation of its algebra
of observables in a Hilbert space where the dynamics is img@feed by a unitary
grouplU, = e, and the stationary state by a unit vedtorin such a representa-
tion, ergodic properties of the system can be obtained fymeotsal and scattering
theory of the self-adjoint generatdr. For example, return to equilibrium fol-
lows from the fact thal. has purely absolutely continuous spectrum, except for a
simple eigenvalue &t

This circle of ideas is well known in the ergodic theory of dymcal systems,
going under the name «Koopmanismsx». At or near thermal dxjuwifn, the normal
form can often be constructed explicitely since we have alg@mdidate for the
stationary state: The classical or quantum Gibbs Ansatis. &Xplains the success
of the method in this regime. Far from equilibrium the sta#ity state is not
explicitely known. It is constructed as a weak limit, undee time evolution, of
suitable initial states. Moreover it is singular with respt® these initial states
(technically, its normal form live in a different folium oépresentations).
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In this paper | adopt a somewhat different point of view, armtknn the normal

form associated with the initial state. For a large class otlets describing a
small systen®: driven away from equilibrium by temperature gradients, firde

entropy production and show that it is non-negative. | alsscdbe the relation
between entropy production and the heat currents flowirautiir the system.

The paper is organized as follows. Section 2 is a brief suo¥élye normal forms
of the simple systems which will be the building blocks of @pen systens.
Section 3 introduces the technical tool used in this pager:miodular structure
of normal forms. In Section 4, | define the model, and prové iisaentropy
production is non-negative.

2 Normal Forms

Definition 1 The systens® is in normal form if it is described by a Hilbert space
H, a von Neumann algebfst C B(H), a unit vector2 € H and a self-adjoint
operatorLZ on’H with the following properties.

(a) Q2 is cyclic for Mt: MO = H.

(b) Q2 is separating fo?t: X € M, XQ =0= X = 0.
(c) L2 = 0.

(d) et te~ it = M for all t € R.

The algebrant is the set of observables 6f The operator., the Liouvillean of
S, generates the dynamics i /(X)) = e'/! Xe L', The vector defines the
stationary state?t 5 A — w(X) = (2, XQ).

The normal form is unique, up to unitary equivalence. If thgtemS decomposes
into non-interacting subsystemS,= > S,, its normal form is the tensor prod-
uct of the normal forms of its component¥: = ®,H.,, ... There is a completely
general method to bring a system into its normal form: The @N&struction.
However, this is a rather abstract construction. The fdalgwexamples display
explicit representations of the normal form of systems vaitfinite number of
degrees of freedom. They will play the roleXfin our model.

Example 2 A classical Hamiltonian system with finite dimensional plhapace
G, Poisson bracket:, -}, HamiltonianH and invariant measure has a normal
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form given by: H = L*(G,dp), M = L=(G,du), @ = 1 andL = i{H,}.
The group generated by is el f = f o ®t,, wheredy; is the Hamiltonian flow
generated by{ on G. Thermal equilibrium at inverse temperatuteorresponds
todu = Zgle—ﬁHdé where/ is the Liouville measure of.

Example 3 Let S be a quantum system with finitely many degrees of freedom,
Hilbert spacef), Hamiltonian # and density matrixy = > p,|e, >< @,
Assumingp > 0 and[H, p] = 0, the normal form ofS is given by:H = h ® b,
M=BHILQ=3 p/0.®¢,andL = H® I — I ® H. Thermal
equilibrium at inverse temperatugecorresponds tp = Zﬁ‘le‘ﬁH.

Thermal equilibrium of systems with infinitely many degreé¢$reedom is most
conveniently characterized by the KMS condition.

Definition 4 A quantum systens, in normal form, is in thermal equilibrium at
inverse temperaturg if there exists ar-weakly denser-invariant x-subalgebra
g C M, such that

> UsQ C D(e PL/2);
> (e PL2XQ, e PE2Y Q) = (Y*Q, X*Q) for X, Y € Us.
See [BR2] for a more general definition and a complete discnsdithe quantum

KMS condition. For a classical systeff) the symplectic structure of phase space
induces a Poisson brackgt -} on sufficiently «regular» observables.

Definition 5 A classical systen®, in normal form, is in thermal equilibrium at

inverse temperatur@ if there exists ar-weakly denser-invariant x-subalgebra
iz C M, such that

» Uz C Q(L) (the form domain of);

> B(XQ,LYQ) = (Q,i{X*,V}Q) for X,V € 8.
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See [Al] and [A2] for a detailed study of the classical KMS dibion.

Notation. Let h be a complex Hilbert spacd:(h) denotes the symmetric Fock
space oveh. For f € b, a*(f) anda(f) are the associated creation and annihila-
1

tion operators and(f) = ﬁ(a*(f) +a(f)) is the Segal field operator. K is an

operator orf), dI'(A) denotes its second quantization.

The following examples give the normal form of infinite syagewich will play
the role of the reservoirR,, in our model.

Example 6 A classical harmonic field is an infinite dimensional Hamiien
system whose phase space is a real Hilbert spaséh the symplectic struc-
ture induced by a non-singular skew-adjoint operdtér The Hamiltonian is

H(¢) = 1||¢|%, and the flow it generates dyis the unitary group?.

For example, the classical scalar wave-fieldrwhose dynamics is
given by the wave equatiop = Ay is described by the Hilbert space

of real functions
()

with the norm||¢||* = [ (|Vy|? 4+ 72) dz and the symplectic struc-
ture induced by
(01
~\A 0 )"

The thermal equilibrium state at inverse temperattiref a classical harmonic
field is the Gaussian measure with covariapce(-,-). The normal form asso-
ciated with this state is given byt{ = I'(hc), wherebhc is the complexification

of h. Q is the Fock vacuum?t is the commutative von Neumann algebra gener-
ated by the family{e’s\)| f € b}, wheregs(f) = 7'/24(f) are canonical field
operators, and, = idI'(l).

Example 7 The normal form of a free, scalar, Bose fieldif, at thermal equilib-
rium (without condensate) at inverse temperattiie given by the Araki-Woods
representation [AWo]H = T'(h) ® I'(h), whereh = L*(R?) is the one-particle
Hilbert spacef) = Qr ® QF, whereQr is the Fock vacuumL = dI'(h) @ I —

li.e, the Poisson bracket ig, G} = (VF,IVG).
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I ® dT'(h), whereh is the one particle Hamiltonian. With= (e®" — 1)~!, M is
the von Neumann algebra generated by the farpily»(")| f € D(p'/?)}, where
op(f) = o(VT+pf) ® I +1® ¢(,/pf) is the Araki-Woods field operator. A
similar representation exists for fermions [AWy].

Example 8 The normal form of a classical ideal gas of identical pagBabf mass
m in R? is given by: H = I'(h), whereh = L?(R3 x R3, dqdp). Q is the Fock
vacuum andL = idI'(p/m - V,). 2 is the commutative von Neumann algebra
generated by the familfe’™>(1)| f € C3°(R? x R3)}, where

N,(f) = /f(q,p)(a*(q,p) + v/ p(p))(alg, p) + / p(p))dq dp,

andp(p) = (2rm/[)~3/2e~P7*/2™ is the Maxwell distribution.

3 Modular structures

The main advantage of the normal form of a syst&ns the existence of a rich
mathematical structure which, in the quantum case, brimgsrtodular theory of
von Neumann algebra into the playground. In the classicsd,dhis structure is
far less understood. In this section | briefly recall the &smsif modular theory
and its relation to statistical mechanics.

3.1 Quantum KMS states and Tomita-Takesaki theory

LetS = (H, 9, 2, L) be a quantum system in normal form. The densely defined

anti-linear involution
mo — H

XQ — X*Q

has a closuré such that, for any? € D(.S), there exists a closed operator
affiliated to 91, with ¥ = CQ and SV = C*Q2. The polar decomposition of
S, written asS = Je*/?, defines an anti-unitary operatdrcalled the modular
conjugation and a self-adjoint operatbicalled the modular generator. It follows
easily from these definitions thdtis an involution (> = I) which anti-commutes
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with £: JL£ + £J = 0. Moreover, the adjoing* = Je %/? is characterized by
S*XQ = X*Qforany X € 9. These objects define an involutigrand a group
of automorphisms® on B(H) via the formulae

JX) = JXJ
Ut(X) — eitﬁXe_itﬁ.

Jjm) =
at(Mm) = M,

so that, in particulary’ defines an automorphism @ which is called the modu-
lar group of9Jt. This group commutes with the dynamics,,

L, L] =0.
Moreover, Takesaki’'s Theorem states thas the only dynamics ofdt for which
w is a KMS state at temperaturel. It follows immediately thatS is at thermal
equilibrium at inverse temperatugeif and only if

L =—-0L, 1)

(compare with the KMS condition in Section 2. See [BR1] for detand proofs).

Another important object associated with the modular $tmeds the natural cone

P = fAI, O = {X(X)QX € M},

wheret, denotes the set of positive element9Bf For any normal statg on
9, there is a unique unit vectéy, € P such thatu(X) = (2,, XQ,) for all
X € 9. Moreover, is faithful < 2, is separating foflt < Q,, is cyclic for
M. If p andv are two faithful normal states ant, the densely defined anti-linear
map

me, — M,

XQ, — X*Q,

has a closuré,,.. Its polar decomposition, written &5,, = MVA;l/f, defines a
positive operaton\ ,, called relative modular operator.



Nonequilibrium Stationary States 9

3.2 Classical KMS states and Gallavotti-Pulvirenti modular struc-
ture

Due to the abelian nature of the algebra the Tomita-Takesaki modular theory
is trivial for a classical system. It was first noticed in [GR&t, under suitable
regularity conditions on the staig another structure exists in this case. Its rela-
tion with Tomita-Takesaki theory is probably best undeydtby considering the
classical limit of a quantum system. Instead, | shall take$aki’'s Theorem as a
starting point.

Definition 9 The state of the classical systém= (H, 9, (2, L) is regular if there
exists a unique Hamiltonian flow’ on 91 for which it is an equilibrium state a
temperature-1.

By the classical KMS conditiorg is in a regular state if there exists a self-adjoint
operatorL and as-weakly dense:-subalgebral C 91 such thatC is essentially
self-adjoint ont((2, and

(Q,{X*,Y}Q) = —(XQ, LYQ), @)

forall X,Y € 4. The required flow is then given by (X) = ¢! Xe ! (see
[GP] for a proof of this fact). | shall say thatis the modular group and the
modular generator &§. From the definition (2), a number of important properties
of £ are easily obtained:

» LisaderivationLXYQ = XLYQ+YLXAQ.

» In particular: £ = 0.

» [L,L] =0.

» The modular group is symplectit€, { X, Y'}] = {[£, X], Y} +{ X, [L,Y]}.
For the finite system of example 2, the statis regular if it is given by a measure
of the formdu = e¥dl, wherey is smooth enough to generate a Hamiltonian flow
®,. Then the modular group is'(X) = X o &', andL = i{yp, -}. Note also that
S is at thermal equilibrium at inverse temperatgref and only if it is in a regular

state and
L =—0(L.
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Remark 10 If the system decomposes into non-interacting subsystemssS.,
its modular structure factorizes in a simple way= ®,.J, in the quantum case
ande®! = ®,e“! in both, the classical and the quantum case. In partictlall, i
subsystems are at thermal equilibrium, with possibly d#ff temperatures, the
modular generator is given by

L=-Y BuLa.

4 Far from equilibrium

| shall consider a simple class of models where a «smallbesyst with a finite
number of degrees of freedom, is driven away from equilirioy reservoirs
Ry, -+, R, in thermal equilibrium at inverse temperaturgs- - - , 3,. Let me
denote byS the uncoupled systed + > " _, R,. Its normal form is given by

H = (®7_,H.) @ Hs,
Q = (®"_,0,) ® Oy,
M = (RI_M,) @ Ny,
L = (O _,La)+ Ls.

The modular generator &f is
L= Lo+Ls,
a=1

where
Lo = —BoLa. (3

In the quantum case, the modular conjugatiod is (®7_,J,) ® Jx. The cou-
pling of X with the reservoirs is described by the interactior= > " _, V,,, where
Vo =V € M, ® My. In the quantum case, the dynamics is defined by

(X)) = o HLAVIL X i L+V)E

In the classical case, the existence of the coupled dynamiasmore delicate
question which | will not consider here (see however Se@iam[JP1] for a soft
approach to this problem). | assume that the Hamiltodlan= Y _, H,+Hx+
V induces a global flowb, on phase spacee., that the operator

Ly: XQ— LXQ+i{V, X},
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generates a strongly continuous groupgronThen
T‘t/(X) =Xo <I)§/ = oilvi X emitvt

defines the dynamics dni.

In both, classical and quantum case, | also assume that ifiee sormal faithful
statev of S
v (X) = lim vor,(X), 4)

t——+o0

defines a natural nonequilibrium state on some subalgébra 91 containing
My. Finally, | need a more technical regularity assumptionhenimteraction,

i[L, V] e ut. (5)

Note that, at the current level of generality, the existesfdde limit (4) is a very
challenging mathematical problem (see [EPR1] and [JP3]ifiopler examples).

4.1 Relative entropy and entropy production

In the study of thermostated systems, the rate of phase spat&ction and its
relation to entropy production play an important role. &imee are dealing with
infinite dimensional Hamiltonian systems, it is not clearatviemains of this re-
lation in our model. | will start with a discussion of classicystems, and then
proceed by analogy to the quantum case.

4.1.1 Classical systems

Using the definition (2) and the properties of the modularegator, one easily
gets the formula
LT/ = LV + iUv,

whereoy, = i[£,V] is an observable (the derivative &f along the modular
group). It immediately follows that

Jh = e iLitailvt _ o fy v (ov)ds.
From the fact thal <2 = 0, we further get

woTh(X) = (Q, eVt Xe viQ)) = (Q,e_iL;teiLthQ) = w(J}, X),
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which shows that’{, is the Radon-Nikodym derivative

t
dw o Ty,

dw

Let us now start the system in an arbitrary normal stgteaComputing the relative
entropy of the state at time w, = wy o 7{,, with respect to our reference state
we obtain

I =

dwt

S(ewnlw) = ~wllog S2) = S(unlw) — / s )ds. 6)

It is therefore natural to define the entropy production natbe state., as

6\/(/1) = M(Uv).
Since by assumption (5) the limit (4) exists o, we get

- S(|w) = S(|w)
iy ST —

Furthermore, the fact theti(-|w) is bounded above, shows that the entropy pro-
duction is non-negative in a natural equilibrium state

ev(v) > 0.

Proving strict positivity of the entropy production is ahet challenging mathe-
matical problem (see [EPR2] for an example).

4.1.2 Quantum systems

Since there is no natural way to define phase space contrantiguantum me-
chanics, | proceed directly to the computation of relatnt@py. Letyu, v be two
faithful normal states, their relative entropy is defined by

S(M’V) = (Qua log AuluQu)a

where(,, is the unique vector representative of the sjata the natural coné®
andA,, is the relative modular operator. To compute the relativeogy S (w;|w)
of the states; = wyo1{, with respect to the reference statewe use the following
simple facts:
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1. If U € 9 is unitary, then the vector representative of the statéX) =
w(U*XU) isUj(U)S2 € P. Moreover the relative modular operators are
given byA,, 1, = UefU* andA,,y,, = 5 (U)ec5(U*).

2. 7(X) = (U} XU,), wherer! is the non-interacting dynamics abil =
e {(LHV)teilt g g unitary element dit.

The result is again expressed by formula (6), with= i[£, V]. Since the quan-
tum relative entropy is non-positive, we can repeat theraegu of the previous
subsection to provey (v;7) > 0.

4.2 Heat flows

We expect the non-equilibrium statg to describe steady heat currefits, flow-
ing from R, into the small systenx. Formally, we would like to defin@,, by
v (®,) = oy (H,), whereH, is the energy ofR,. Since this quantity is not
observable we set

Ol (Hs + V) = =3 1 (®a),
a=1

where®, € My ® 9M,,. Note thatd,, is positive when energy is flowing froi
into R,,. A simple calculation leads to the formula

O, = —i[Lq, Val.

Since by definitior)  , @, is a total derivative, we have in the stationary state
Xn: vy (@q) = 0. (7)
a=1

On the other hand, using (3), we get

oy =i[L, V] = zn:ﬂa% +i[Ls, V],
a=1
where the last term can be further expresseds, L + V], which is also a total

derivative. Hence, assuminlg, € 9", we can relate entropy production to the
usual phenomenological expression for the entropy flux

Y Bari (®a) = ev(v), 8)
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As a final remark, note that for = 2, the formulae (7) and (8) combine to

(81 = By (®1) = ev (1)) >0,

which means that heat flows from the hot reservoir to the coéd o
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