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Abstract. An algorithm of estimation of the curvature at each point
of a general discrete curve in O(nlog2n) is proposed. It uses the notion
of blurred segment, extending the definition of segment of arithmetic
discrete line to be adapted to noisy curves. The proposed algorithm relies
on the decomposition of a discrete curve into maximal blurred segments
also presented in this paper.

1 Introduction

A lot of applications in image processing requires the geometrical measuring of
represented discrete objects.

In the framework of the discrete geometry, estimators of geometrical pa-
rameters have been proposed but they rely on the recognition of discrete line
segments which is very sensitive to the noise existing in the studied curves [1–3].
The boundary of such discrete objects is often noisy due to acquisition process.
Therefore the concept of blurred segment was introduced [4], it allows the flex-
ible segmentation of discrete curves, taking into account noise. Relying on an
arithmetic definition of discrete lines [5], it generalizes such lines, admitting that
some points are missing. A curvature estimator was proposed in [6] and used in
an application to the arc detection in technical documents [7], the complexity
of this curvature estimator algorithm is in O(n2) (n is the number of points of
the studied curve) and it can only be applied to 8-connected simple curves. We
proposed in this paper an extension to general curves of this algorithm. First the
recognition algorithm of blurred segments proposed in [4] is extended to general
curves [8]; the problem of adding or removing a point is studied. Then thanks
to the decomposition of curve into maximal blurred segments, we proposed an
algorithm of calculation of the curvature at each point of a general discrete curve
in O(nlog2n).

The paper is organized as follows. In Section 2, after recalling definitions
related to blurred segments, we study the problem of adding (or removing) a
point to (from) a blurred segment of width ν in the case of a general discrete
curve. Then we propose an extension to the noisy curves of the notion of maximal
segment of a discrete curve. An algorithm to determine all maximal blurred
segments of a discrete curve is given in Section 3. In Section 4, after recalling
the definition of the curvature estimator adapted to noisy curves, we proposed a
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new algoritm for the determination of the curvature at each point of a discrete
curve. Examples are also given.

2 Blurred segment of width ν

2.1 Definitions

The notion of blurred segments relies on the arithmetical definition of discrete
lines [5] where a line, whose slope is a

b
, lower bound µ and thickness ω (with

a, b, µ and ω being integer such that gcd(a, b) = 1) is the set of integer points
(x, y) verifying µ ≤ ax− by < µ + ω. Such a line is denoted by D(a, b, µ, ω). Let
us recall definitions [4] that we use in this paper (see Figure 1):

Definition 1. Let us consider a set of 8-connected points Sb. The discrete line
D(a, b, µ, ω) is said bounding for Sb if all points of Sb belong to D.

Definition 2. Let us consider a set of 8-connected points Sb. A bounding line of
Sb is said optimal if its vertical distance is minimal, i.e. if its vertical distance
is equal to the vertical distance of conv(Sb), the convex hull of Sb.

Definition 3. A set Sb is a blurred segment of width ν iff its optimal bound-
ing line has a vertical distance lesser than or equal to ν i.e. if ω−1

max(|a|,|b|) ≤ ν.

y

x

Fig. 1. D(5, 8,−8, 11), optimal bounding line (vertical distance = 10
8

= 1.25) of the
sequence of gray points

2.2 Add (or remove) a point to (from) the blurred segment of
width ν

In this section we study the problem of adding (or removing) a point to (from)
a blurred segment of width ν. The algorithm of recognition of blurred segments
of width ν presented in [4] is executed in linear time however it only considers
the incremental addition of a point to a blurred segment in the first octant. We
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present here the general case which requires the incremental calculation of both
height and width of the convex hull after adding or removing a point. To do
that, we use the results given in [9] and [8] that we briefly recall below.

Dynamic estimation of the convex hull
The problem of dynamic estimation of the convex hull of a set of points when
adding (or removing) a point to (from) this set was proposed by M.H. Overmars,
J. van Leeuwen [9]. In this work, a convex hull is considered as the union of two
parts: the upper convex hull (Uhull) and the lower convex hull (Lhull). Uhull and
Lhull are updated after each operation of addition or removal of a point, the cost
of these operations are estimated by the following theorem [9].

Theorem 1 The convex hulls Uhull and Lhull of the set S of n points may be
dynamically kept, in the worst case, in O(log2n) by an operation of addition or
removal.

Determination of height and width of the convex hull
We use the double technique of binary search [8] to determine the height and
width of the convex hull. In [8], the convex hull is also considered as the union
of two parts Uhull and Lhull. The double technique of binary search permits to
find the vertical width of the convex hull by using the concavity property of the
function height(x) = Uhull(x) − Lhull(x) in O(log2n).

3 Maximal blurred segments of width ν

3.1 Definitions and first property

The notion of maximal segment of a discrete curve was proposed in [1, 3] and re-
lies on the discrete line segments. This structure enables a global understanding
of the discrete curve to be analyzed. We propose here an extension of that notion
to the blurred segments, adapted to noisy curves, by using the same notations
as in [3].

Let us consider a discrete curve called C, the points of C are indexed from 0
to n− 1. C is a general curve and the points of C can be disconnected .
We note Ci,j a set of successive points of C increasingly ordered from index i to
j.

Definition 4. The predicate ”Ci,j is a blurred segment of width ν” is denoted
by BS(i, j, ν). The first index j, i ≤ j, such that BS(i, j, ν) and ¬BS(i, j +1, ν)
is called the front of i and noted F (i). Symmetrically, the first index i such that
BS(i, j, ν) and ¬BS(i − 1, j, ν) is called the back of j and noted B(j).

Definition 5. Ci,j is called a maximal blurred segment of width ν and
noted MBS(i, j, ν) iff BS(i, j, ν) and ¬BS(i, j + 1, ν) and ¬BS(i − 1, j, ν).
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It is obvious that an equivalent characterization for a maximal blurred segment
of width ν, MBS(i, j, ν), is to show that F (i) = j and B(j) = i. In this work,
we use the notion of blurred segment of width ν which is maximal on the right
or left sides:

Definition 6. Ci,j is called a maximal blurred segment of width ν on the
right side (resp. on the left side) and noted MBSR(i, j, ν) (resp. MBSL(i, j, ν))
if F (i) = j (resp. B(j) = i).

Property 1 Let C be a discrete curve, MBSν(C) the sequence of maximal
blurred segments of width ν of the curve C.
MBSν(C) = {MBS(B1, E1, ν), MBS(B2, E2, ν), ..., MBS(Bm, Em, ν)}, it sat-
isfies B1 < B2 < ... < Bm. So we have: E1 < E2 < ... < Em.

Proof: We consider 2 consecutive maximal blurred segments MBS(Bi, Ei, ν)
and MBS(Bi+1, Ei+1, ν). By hypothesis, Bi < Bi+1, let us suppose that Ei ≤
Ei+1, then MBS(Bi+1, Ei+1, ν) becomes a part of MBS(Bi, Ei, ν). Therefore
MBS(Bi+1, Ei+1, ν) is not a maximal blurred segment, that is contradictory.

3.2 Algorithm for the segmentation of a curve C into maximal
blurred segments

We propose an algorithm (see Algorithm 1) which determines all maximal blurred
segments of width ν of a discrete curve C according to the conditions given in
section 3.1. To do that, property 1 is used.

Complexity
Each point of the curve is scanned at most twice in this algorithm. The cost of
determining a new optimal bounding discrete line when we add (or remove) a
point to (from) a blurred segment is in O(log2n). Hence the complexity of this
algorithm is in O(nlog2n).

4 Discrete curvature of width ν

4.1 Definition

We recall in this section the curvature estimator which is adapted to noisy curves
[6]. It is directly deduced from the estimator proposed by D. Coeurjolly [2] for
the 2D curves without noise. This technique can be seen as a generalization of
the classical order m normalized curvature [10].

Let C be a discrete curve, Ck is a point of the curve. Let us consider the
points Cl and Cr of C such that : l < k < r, BS(l, k, ν) and ¬BS(l − 1, k, ν),
BS(k, r, ν) and ¬BS(k, r + 1, ν).

The estimation of the curvature of width ν at the point Ck shall be
determined thanks to the radius of the circle passing through the points Cl,
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Algorithm 1: Algorithm for the segmentation of a curve C into maximal
blurred segments of width ν

Data: C - discrete curve with n points, ν - width of the segmentation

Result: MBSν - the sequence of maximal blurred segments of width ν

begin

k=0; Sb = {C0}; MBSν = ∅; a = 0; b = 1; ω = b, µ = 0;
while ω−1

max(|a|,|b|)
≤ ν do

k++; Sb = Sb ∪ Ck; Determine D(a, b, µ, ω) of Sb;

end

bSegment=0; eSegment=k-1 ;
MBSν = MBSν ∪ CbSegment,eSegment ;
while k < n − 1 do

while ω−1
max(|a|,|b|)

> ν do

bSegment++ ; Sb = Sb \ CbSegment; Determine D(a, b, µ, ω) of Sb;

end

while ω−1
max(|a|,|b|)

≤ ν do

k++ ; Sb = Sb ∪ Ck; Determine D(a, b, µ, ω) of Sb;

end

eSegment=k-1; MBSν = MBSν ∪ CbSegment,eSegment ;

end

end

Ck and Cr. To determine the radius Rν(Ck) of the circumcircle of the triangle
[Cl, Ck, Cr], we use the formula given in [11] as follows (see Figure 2.a):

Let s1 = ||
−−−→
CkCr ||, s2 = ||

−−−→
CkCl|| and s3 = ||

−−−→
ClCr ||, then

Rν(Ck) =
s1s2s3

√

(s1 + s2 + s3)(s1 − s2 + s3)(s1 + s2 − s3)(s2 + s3 − s1)

Then, the curvature of width ν at the point Ck is Cν(Ck) = s
Rν(Ck) with s =

sign(det(
−−−→
CkCr,

−−−→
CkCl)) (it indicates concavities and convexities of curve).

As indicated in [2], the degenerated cases, which correspond for example to
colinear half-tangents, may be independently tested and, thus, a null curvature
is affected to the considered point.

4.2 Algorithm for the estimation of the curvature of width ν at
each point of C

We propose in this section a new algorithm for the determination of the cur-
vature of width ν at each of the n points of a curve C. The complexity of this
algorithm is better than the one of the naive algorithm, in O(n2), which consists
in calculating at each point Ck , the maximal blurred segment on the right side,
MBSR, the maximal blurred segment on the left side, MBSL, then the circle
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R = 14.7638
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(a) Estimation of the curvature at the
point T with width 2

Bi Ei

Bi+1 Ei+1

(b) Ei (Bi+1) is front (back)
of points in first (second)
bold edge

Fig. 2.

passing through the 3 points: left extremity of MBSL, Ck, right extremity of
MBSR.

Principle of the algorithm
Let MBSR(k, r, ν) and MBSL(l, k, ν) be the maximal blurred segments on the
right and left sides of the point Ck. Then it exists r′ ≤ k and l′ ≥ k such that
MBSR(k, r, ν) ⊂ MBS(r′, r, ν) and MBSL(l, k, ν) ⊂ MBS(l, l′, ν).

Let us then consider the decomposition of C into maximal blurred seg-
ments: MBSν(C) = {MBS(B1, E1, ν), MBS(B2, E2, ν), ..., MBS(Bm, Em, ν)}
with B1 < B2 < ... < Bm and E1 < E2 < ... < Em.
We look for the indices i and j such that i is the first index such that Ei ≥ k and
j is the last index such that Bj ≤ k. So it is obvious that l = Bi, r = Ej and
that the curvature of width ν at the point Ck is the inverse of the radius of the
circumcircle of the triangle [Cl, Ck, Cr]. More generally, we have the following
simple result:

Property 2 Let L(k), R(k) be the functions which respectively present the in-
dices of the left and right extremities of the maximal blurred segments on the left
and right sides of the point Ck.

– ∀k such that Ei−1 < k ≤ Ei, then L(k) = Bi

– ∀k such that Bi ≤ k < Bi+1, then R(k) = Ei

This method is used in the algorithm 2 (see Figure 2.b).

Complexity
Both steps of labelling and estimation of the curvature at each point are executed
in linear time. However, the determination of the maximal blurred segments are
executed in O(nlog2n). Thus the complexity of our method is in O(nlog2n). It
is more efficient that O(n2log2n) when we work with general curves as well as
O(n2) for the simple curves with the existing methods.
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Algorithm 2: Width ν curvature estimation at each point of C

Data: C discrete curve of n points, ν width of the segmentation

Result: {Cν(Ck)}k=0..n−1 - Curvature of width ν at each point of C

begin

Build MBSν = {MBS(Bi, Ei, ν)} ;
m = |MBSν |; E−1 = −1; Bm = n;
for i = 0 to m − 1 do

for k = Ei−1 + 1 to Ei do L(k) = Bi;
for k = Bi to Bi+1 − 1 do R(k) = Ei;

end

for i = 0(∗)
to n − 1(∗) do

Rν(Ci) = Radius of the circumcircle to [CL(i), Ci, CR(i)];
Cν(Ci) = s

Rν(Ci)
;

end

end

(*) The bounds mentioned in the algorithm are correct for a closed curve. In case
of an open curve, the instruction becomes: For i = l to n - 1 - l with l fixed to a
constant value. Indeed it is not possible to calculate a maximal blurred segment
on the left side (resp. on the right side) at the first point (resp. at the last point)
of the curve. Thus the calculation of the curvature begins (resp. stops) at the
lth (resp. (n − 1 − l)th) point of the curve.

Results
Two discrete curves (3.a and 3.c) are represented on the Figure 3 with the graph
of their curvature values calculated at each point of the curves with width 2
(3.b and 3.d). The points of the curve 3.c corresponding to the peaks of the
associated curvature graph 3.d are indicated by black pixels.

5 Conclusion

We have proposed the notion of maximal blurred segments of a discrete curve
for a given width as an extension to noisy curves of the definitions proposed in
[1, 3]. This decomposition of a discrete curve enabled us to propose an optimized
version of the algorithm of calculation of the curvature of width ν at each point
of a general discrete curve.
However, we expect to obtain a specific algorithm with a better complexity for
simple curves where points are added in one direction. The extension of the
results of this paper to 3D discrete curves will be subject to a next publication.
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