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SURGERY AND THE SPINORIAL 7-INVARIANT

BERND AMMANN, MATTIAS DAHL, AND EMMANUEL HUMBERT

ABSTRACT. We associate to a compact spin manifold M a real-valued invariant
7(M) by taking the supremum over all conformal classes of the infimum inside
each conformal class of the first positive Dirac eigenvalue, when the metrics are
normalized to unit volume. This invariant is a spinorial analogue of Schoen’s
o-constant, also known as the smooth Yamabe invariant.

We prove that if N is obtained from M by surgery of codimension at least 2
then 7(N) > min{7(M), An, }, where A, is a positive constant depending only
on n = dim M. Various topological conclusions can be drawn, in particular
that 7 is a spin-bordism invariant below A,. Also, below A, the values of T
cannot accumulate from above when varied over all manifolds of dimension n.
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1. INTRODUCTION

1.1. Spin manifolds and Dirac operators. Let M be a compact n-dimensional
spin manifold without boundary. We will always consider spin manifolds as equipped
with an orientation and a spin structure. The existence of these structures is equiv-
alent to the vanishing of the first and the second Stiefel-Whitney classes.

As explained in [@, E, E] one associates the spinor bundle X9M to the spin
structure, together with a Riemannian metric g on M and a complex irreducible
representation p of the Clifford algebra over R™. The Dirac operator D is a self-
adjoint elliptic first order differential operator acting on smooth sections of the
spinor bundle 39M. It has a spectrum consisting only of real eigenvalues of finite
multiplicity. The spectrum depends on the choice of spin structure, on the metric g,
and a priori on the representation p. In even dimensions n, the representation p
is unique. In odd dimensions there are two choices p™ and p~. Exchanging the
representation results in reversing the spectrum, that is if ) is an eigenvalue of Dg i
then —A\ is an eigenvalue of Di, with the same multiplicity, and vice versa. This
has no effect if n = 1 mod 4 since the real/quaternionic structure on 39M anti-
commutes with the Dirac operator and the spectrum therefore is symmetric, see [E7
Section 1.7]. However, in dimensions n = 3 mod 4 the choice of p matters. In this
case we choose the representation such that Clifford multiplication of e; - e --- e,
acts as the identity, where ey, ..., e, denotes the standard basis of R". We thus
can and will suppress p in the notation.

1.2. The 7-invariant. We denote by A\ (D7) the first non-negative eigenvalue of
D9. For a metric g on M we define

AE (M, g) = inf AT (D9)Vol(M, §)*/™,

min
where the infimum is taken over all metrics g conformal to g. Further we define

(M) == sup Al (M, g),

min
where the supremum is taken over all metrics g on M. This yields an invariant of
the spin manifold M. Observe that we do not require M to be connected.
We begin by noting some simple properties of the invariant 7. Let (S™,0")
denote the unit sphere with its standard metric. We have

(8™ 0™) = Zwl/™,
where w, is the volume of (5™, 0™). Moreover it is shown in [f, f] that

M (M, g) < N (5™, 0™)

for any compact Riemannian spin manifold (M,g). Together with Inequality ()
below we get
H(S") = Ain(S™,0™) = Zun/™,

min

so for all compact spin manifolds M we have

(M) < 7H(S™).
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If the kernel of DY is non-trivial, then obviously At. (M, g) = 0. Conversely, it
was shown in [J] that if the kernel of D9 is trivial, that is if D9 is invertible, then
Af (M, g) > 0. It follows that 77 (M) > 0 if and only if there is a metric g on M
for which the Dirac operator DY is invertible. It is a further fact that 7+ (M) = 0
precisely when a(M) # 0, where a(M) is the alpha-invariant which equals the
index of the Dirac operator for any metric on M, see [@]

For compact Riemannian spin manifolds (M1, ¢1) and (Ma,g2) we denote by
My IT M the disjoint union of M; and Ms with the natural metric g; 1T go. It is

not difficult to see that
Afin (M1 1T My, g1 1T go) = min{ A}, (M, g1), Al (M2, g2)}-

This implies

T+(M1 I Mg) = min{TJr(Ml), T+(M2)}.
We denote by —M the manifold M equipped with the opposite orientation. The
Dirac operator changes sign when the orientation of the manifold is reversed. If
M has dimension # 3 mod 4 this does not change the first positive eigenvalue
of D since the spectrum is symmetric, so we then have AT (=M, g) = AT (M, g)
and 77 (—M) = 77 (M). For manifolds M of dimension = 3 mod 4 we define
Ao (M, g) and 77 (M) similar to A}, (M, g) and 7H(M) by replacing A\; by the
absolute value of the first non-positive eigenvalue. We then have \T. (=M, g) =
Amun(M, g) and 7+(=M) = 7~ (M).
1.3. The o-constant. The 7-invariant is a spinorial analogue of the o-constant
7, which is defined for a compact manifold M by

[ Scal? dv?
Vol(M, §)" =
where the infimum runs over all metrics g in a conformal class and the supremum
runs over all conformal classes. o(M) is also known as the smooth Yamabe invariant
of M. When o(M) is positive it can be computed in a way analogous to 77 (M)
using the lowest eigenvalue of the conformal Laplacian LY = 42—:;A9 +Scal? instead

o(M) := sup inf

of \f (D9). Hijazi’s inequality [, [LJ] gives a comparison of the two invariants,

Ti(M)2 2 mU(M) (1)

For M = S" equality is attained in ([[). Upper bounds for 7% (M) may help to
determine the o-constant.

Surgery formulas for the o-constant analogous to those obtained in this paper
have been proved in [f.

1.4. Geometric constants. We are going to prove a surgery formula for the in-
variant 7. This formula involves geometric constants Ay, 1 which we now define.
For a complete spin manifold (V,g) we set
At (V,g) :==inf X € [0, 00],
where the infimum is taken over all A € (0, c0) for which there is a non-zero spinor
field p € L®(V) N L2(V) N CL (V) such that H<pHL%(V) <1, and

loc

_2
D¢ = Mop|"=Tp. (2)
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If there are no such solutions of () on V' then A, (V. g) = oo.

For a positive integer k we let ¥ denote the Euclidean metric on R*. For ¢ € R
we denote by nf+1 = e2¢%¢k 4 dt? the hyperbolic metric of sectional curvature —c?
on R¥*1. As above 0" *~1 denotes the metric of sectional curvature 1 on ™ *~1,
We define the product metric

G, 1=+l 4 gkl

on RFt1 x §7=F=1 and we define our geometric constants as

Apgi= inf Mo (RMFL x §n7E1 G,
ce[—1,1]
and

Ap = min A, .
0<k<n—2

Note that the infimum could as well be taken over ¢ € [0, 1] since G. and G_,. are
isometric. It is easy to see that A, o= Al (S, 0™). For k > 0 we are not able to

compute these constants, but at least we can show that they are positive.
Theorem 1.1. For 0 <k <n —2 we have A, ;; > 0.

1.5. Joining manifolds. We are going to study the behaviour of 7 when two
compact Riemannian spin manifolds are joined along a common submanifold. Let M;
and M> be spin manifolds of dimension n and let N be obtained by joining M; and
M> along a common submanifold as described in Section @ The manifold N is
spin and from the construction there is a natural choice of spin structure on N.
The following results make it possible to compare 7+ (M; II My) and 7 (N).

Theorem 1.2. Let (M1, g1) and (Ma, g2) be compact Riemannian spin manifolds
of dimension n for which both D9 and D9 have trivial kernel. Let W be a compact
spin manifold of dimension k embedded into My and My with trivializations of the
corresponding normal bundles given. Assume that 0 < k < n — 2, and let N be
obtained by joining M1 and Ms along W. Then there is a family of metrics gy,
0 € (0,00) on N satisfying

min{ A\, (M 1T My, g1 11 go), Ay g} < ligliglfﬁ (N, 90))

min

< limsup AL, (N, gq)
o—
< Apin (M1 T Mz, g1 11 go).

Taking the supremum over all metrics on M; IT My the first inequality gives us the
following corollary.

Corollary 1.3. In the situation of Theorem @ we have
7H(N) > min{r" (M; I M), Api} > min{7t (M), 77 (Mz), A, }.
Note that these estimates on 77 would be trivial without Theorem E

1.6. Surgery and bordism. Performing surgery on a spin manifold is a special
case of joining manifolds, this is discussed in more detail in Section E From
Corollary we get an inequality relating the 7-invariant before and after surgery.
For a compact spin manifold M of dimension n we define

7H(M) := min{r " (M), A, }.
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We also define
F(M) :=min{rH (M), 7~ (M), A, }.

If n # 3 mod 4 then 7(M) = 77 (M). As noted before, all results for 7+ (M) also
hold for 7= (M) := min{7~ (M), A, }.

Corollary 1.4. Assume that M is a spin manifold of dimension n and that N is
obtained from M by a surgery of codimension n —k > 2. Then

7T (N) > min{TJr(M),An,k} > min{r" (M), A, }.
Corollary B tells us that
7H(N) >7FH(M), T(N)>7(M).

Two compact spin manifolds M and N are spin bordant if there is a spin diffeomor-
phism from their disjoint union to the boundary of a spin manifold of one dimension
higher, and this diffeomorphism respects the orientation of N and reverses that of
M. This happens if and only if N can be obtained from M by a sequence of surg-
eries. To apply Corollary we need to know when this sequence of surgeries can
be chosen to include only surgeries of codimension at least two. The theory of han-
dle decompositions of bordisms tells us that this can be done when N is connected,
see [[[d, VII Theorem 3] for dimension 3, and [[I§, VIIT Proposition 3.1] for higher
dimensions.

Corollary 1.5. Let M and N be spin bordant manifolds of dimension at least 3
and assume that N is connected. Then T(N) > T(M). In particular, if M is also
connected we have T(N) = 7(M).

Corollary @ can also be shown in dimension 2 with similar arguments [ﬂ, The-
orem 1.3].

The spin bordism group Q5P is the set of equivalence classes of spin bordant
manifolds of dimension n with disjoint union as addition. Since every element in
QPN can be represented by a connected manifold we obtain a well-defined map
7 o QPIn [0, A,,] which sends the equivalence class [M] of a connected spin
manifold M to 7(M).

Corollary 1.6. There is a positive constant €,, such that

(M) € {0} U [en, AL (8™, 0™)].

for all spin manifolds M of dimension n.

Proof. The spin bordism group Q5P is finitely generated [@, page 336]. This
implies that the kernel of the map a : QP — KO, is also finitely generated. Let
[N41],...,[N;] be generators of this kernel, we assume that the manifolds N; are all
connected. Since 7(M) = 0 if and only if a(M) # 0 we obtain the corollary for

en = min{A,,7(N1),...,7(N:)}.
O
The a-map is injective when n < 8, and then ¢, = A,,. We do not know whether
there are n € N with ¢, < A,. In other words, we do not know if there are

n-dimensional manifolds M with 0 < 77 (M) < A,,. If such manifolds exist, the
following observations might be interesting.
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First, if M is a spin manifold with 7+ (M) < A, then it follows from Corollary E
that the o-constant of any manifold N spin bordant to M satisfies

4n—1)

o(N) < T (M)2,

n
For the next observation we define

S(t) = {[M] € QP™ |7(M) > t},  S*(t) = {[M] € BP™"[TH(M) > t},
and

T(t) == {[M] € QP |F(M) > t}, TH(t) = {[M] € QP |7H(M) > t}.
Obviously S(t) = ST(t) and T'(¢t) = T*(¢) in dimensions n # 3 mod 4.

Corollary 1.7. S(t) is a subgroup of QSP™ for t € [0,A,] and T(t) is a subgroup
of BPIN for t € [0,A,). If n =3 mod 4, then ST(t) and T (t) are submonoids.

Corollary 1.8. The values of T cannot accumulate from above.

Proof. Assume that t; := 7(M;), i € N, is a decreasing sequence of values of 7
which converges to a limit ¢,,. We want to show that ¢; = t for all but finitely
many <.

We have S(t;) C S(ti+1), and hence |J, S(t;) = T(tx) is a subgroup of the
finitely generated group QSP™. Tt is thus finitely generated itself and we choose a
finite set of generators. There must then be an I € N such that S(¢;) contains
this finite set, and thus S(t;) = T'(tw). Hence [M;] € S(¢) for all ¢, which implies
t; > t;. We conclude that t; = t; =t for i > 1. O

We do not know whether 7+ can accumulate from above in dimensions n = 3
mod 4.

1.7. Variants of the results. We already remarked earlier that if the alpha-genus
a(M) of a spin manifold M does not vanish, then the index theorem tells us that
the kernel of DY is non-trivial for any metric g on M, and hence 7 (M) = 0. For a
connected spin manifold M the index theorem implies that the kernel of the Dirac
operator has at least dimension

|A(M)|, ifn=0 mod 4;

(M) 1, ifn=1 mod 8 and (M) # 0;
a =
2, ifn=2 mod 8 and a(M) # 0;
0, otherwise.

Let us modify the definition of 71 and use the k-th non-negative eigenvalue of
the Dirac operator instead of the first one. The quantity thus obtained, denoted
by 7,7 (M), is zero if k < a(M). It follows from [B] and [ that 7.7, (M) > 0.
We expect that our methods generalize to this situation and yield similar surgery

formulas for le .

2. PRELIMINARIES

2.1. Notation for balls and neighbourhoods. We write B™(r) for the open
ball of radius r around 0 in R™, and set B™ := B"(1). For a Riemannian manifold
(M,g) we let BY9(p,r) denote the open ball of radius r around p € M. If the
Riemannian metric is clear from the context we will write B(p, r). For a Riemannian
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manifold (M, g) and a subset S C M we let U9(S,r) := U, g B?(z,r) denote the
r-neighbourhood of S. Again, if the Riemannian metric is clear from the context
we abbreviate to U(S,r).

2.2. Joining manifolds along submanifolds. We are now going to describe
how two manifolds are joined along a common submanifold with trivialized normal
bundle. Strictly speaking this is a differential topological construction, but since
we work with Riemannian manifolds we will make the construction adapted to the
Riemannian metrics and use distance neighbourhoods defined by the metrics etc.

Let (M1,¢91) and (M3, g2) be complete Riemannian manifolds of dimension n.
Let W be a compact manifold of dimension k, where 0 < k < n. We assume that
W is embedded in both M; and Ms with trivializations of the normal bundle, we
desribe these embeddings as follows.

Let w; : W x R"™* — TM;, i = 1,2, be smooth embeddings. We assume
that w; restricted to W x {0} maps to the zero section of TM; (which we identify
with M;) and thus gives an embedding W — M;. The image of this embedding
is denoted by W/. Further we assume that w; restrict to linear isomorphisms
{p} x R"* — Ng. o)W/ for all p € W;, where NW/ denotes the normal bundle
of W/ defined using g;.

We set w; := exp9 ow;. Fori = 1,2 this gives embeddings w; : Wx B" *(Rpax) —
M; for some Rpax > 0. We have W/ = w;(W x {0}) and we define the disjoint
union

(M, g) == (M 11 M3, g1 11 g2),
and
W' =W 11 W3.
Let r; be the function on M; giving the distance to W/. Then r o wq(w,x) =
roows(w, ) = |x| for w € W, & € B" ¥ (Ryax). Let 7 be the function on M defined
by r(z) :=r;i(z) forz € M;, i =1,2. For0 < e weset U;(¢) :={x € M; : ri(z) <&}
and U(e) := Uy (e) UUs(e). For 0 < & < 6 we define

Ne = (My\ Ui(e)) U (Ma \ Uz(¢))/~,
and
UX(0) == (UO)\U(e))/~
where ~ indicates that we identify 2 € U (¢) with wq o w] ' (z) € OUs(e). Hence
N = (M\U() VU (0).

We say that N, is obtained from M;, My (and w;, w2) by a connected sum along
W with parameter €.

The diffeomorphism type of N, is independent of ¢, hence we will usually write
N = N.. However, in some situations where dropping the index & might cause
ambiguites we will write N.. For example the function r : M; II My — [0, 00) also
defines a continuous function r : N, — [g,00) whose definition depends on . We
will also keep the e-subscript for UN () as important estimates for spinors will be
carried out on UM (). As the embeddings w; and wsy preserve the spin structure,
the manifold N carries a spin structure such that its restriction to (M; \ wy (W x
B F)) I (Ma \ we(W x B" %)) coincides with the restriction of the given spin
structure on M7 IT Ms. If W is not connected, then this choice is not unique. The
statements of our theorem hold for any such spin structure on N.
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The surgery operation on a manifold is a special case of taking connected sum
along a submanifold. Indeed, let M be a compact manifold of dimension n and
let My = M, My = S™, W = S*. Let w; : S¥ x B** — M be an embedding
defining a surgery and let wy : S* x B"F — S™ be the standard embedding. Since
8™\ we(S* x B"F) is diffeomorphic to B¥*1 x §"7*~1 we have in this situation
that N is obtained from M using surgery on wy, see [[I§, Section V1.9).

2.3. Comparing spinors for different metrics. Let M be a spin manifold of
dimension n and let g, ¢’ be Riemannian metrics on M. The goal of this paragraph
is to identify the spinor bundles of (M, g) and (M, ¢') following Bourguignon and
Gauduchon [g.

There exists a unique endomorphism bg, of TM which is positive, symmetric
with respect to g, and satisfies g(X,Y) = ¢'(b7, X, 07,Y) for all X,Y € TM. This
endomorphism maps g-orthonormal frames at a point to ¢’-orthonormal frames at
the same point and we get a map b7, : SO(M, g) — SO(M, g') of SO(n)-principal
bundles. If we assume that Spin(M, g) and Spin(M, g') are equivalent spin struc-
tures on M then the map b7, lifts to a map 37, of Spin(n)-principal bundles,

g

89,
Spin(M, g) —— Spin(M, ¢')

|,

SO(M,g) —2~ SO(M, ¢

From this we get a map between the spinor bundles >9M and ¥9' M denoted by
the same symbol and defined by
B39, - 29M = Spin(M, g) x , By — Spin(M, g') x, S, = 29 M,
1/} = [Sv <P] = [65/55 90] = 6;]/1/}5

where (p, X,,) is the complex spinor representation, and where [s, ¢] € Spin(M, g) X,
3, denotes the equivalence class of (s, ) € Spin(M,g) x X, for the equivalence
relation given by the action of Spin(n). The map Bg, of Hermitian vector bundles
is fiberwise an isometry.

We define the Dirac operator D9 acting on sections of the spinor bundle for g
by

DI = (B%) Lo DY 0 3.

In [E, Theorem 20] the operator 9p9’ is computed in terms of DY and some extra

terms which are small if g and ¢’ are close. Formulated in a way convenient for us
the relationship is

9Dy = DI + A%, (VI) + B, (v), (3)
where A9, € hom(T*M ® %9M, %9 M) satisfies
A% < Clg—d'ly, (4)
and BY, € hom(X9M, X9 M) satisfies
1By < Cllg — gl + V(9 — 9)lg) ()

for some constant C.
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In the special case that ¢’ and g are conformal with ¢’ = F?g for a positive
smooth function F' the formula simplifies considerably, and one obtains

DY (F~*7 ) = F~5 D9y, (6)
see for instance [[L5, §.
2.4. Regularity results. By standard elliptic theory we have the following lemma

(see for example [E, Chapter 3] where the corresponding results of [Il__]l] are adapted
to the Dirac operator).

Lemma 2.1. Let (V,g) be a Riemannian spin manifold and @ C V an open set
with compact closure in V. Let also r € (1,00). Then there is a constant C so that

/|vq¢|rdvq<c</ IDI|" du’ /wdv) (1)

for all ¢ € T(X9Q) which are of class C* and compactly supported in Q.

For a compact Riemannian manifold with invertible Dirac operator we have the
following special case.

Lemma 2.2. Let (V,g) be a compact Riemannian spin manifold such that DY is
invertible. Then there exists a constant C such that

[ 1o a < ¢ [ oo 0
% %
for all ¢ € T(X9V) of class C*.

2.5. The associated variational problem. Let (M, g) be a compact spin man-
ifold of dimension n with ker D9 = {0}. We define the functional J9 acting on
smooth spinor fields ¢ € T'(X9M) by

(fM \Dep| 7 dvg)T
S (Db, pydv 7

whenever the denominator is non-zero. Using techniques from [@] it was proved in
that

JI) =

min

Nin(M. ) = inf J9(), (9
where the infimum is taken over the set of smooth spinor fields satisfying

/ (D, ¥) dv? > 0.
M

If g and § = F?g are conformal metrics on M and if J9 and J? are the associated
functionals, then by Relation (ﬁ) one computes that

JHETT ) = J9(4) (10)
for smooth ¢ € T'(Z9IM)).
The following result gives a universal upper bound on )\mm(M . 9)-

Proposition 2.3. Let (M,g) be a compact spin manifolds of dimension n > 2.
Then "
Ahin(M,9) < AL, (5™ 0") = 5 w/™, (11)

min

where wy, is the volume of (S™,o™).
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Proposition @ was proven for n > 3 in [E] using geometric methods. In the
case n = 2 the article [ff] only provides a proof if ker D = {0}. Another method
that yields the proposition in full generality is to construct for any p € M and
e > 0 a suitable test spinor field 1. supported in B9(p,¢) satisfying J9(v.) <
A (8™, 0™) + o(e), see [{]] for details.

If Inequality (@) holds strictly then one can show that the infimum in Equation
(E) is attained by a spinor field ¢. The following theorem will be a central ingredient

in the proof of Theorem D

Theorem 2.4 ([, B]). Let (M,g) be a compact spin manifold of dimension n for
which Inequality (|[1) holds strictly. Then there exists a spinor field p € C**(XM)N
C> (XM \ ¢~ 1(0)) where a € (0,1) N (0,2/(n — 1)] such that ||@||L%(M) =1 and
2
D = Ay (M, g)l el T .

min

Furthermore the infimum in the definition of AT, (M, g) is attained by the gen-

eralized conformal metric § = ||/ (Vg see [[] for details.

3. PREPARATIONS FOR PROOFS

3.1. Removal of singularities. The following theorem gives a condition for when
singularities of solutions to Dirac equations can be removed.

Theorem 3.1. Let (V,g) be a (not necessarily complete) Riemannian spin manifold
and let S be a compact submanifold of V' of codimension m > 2. Assume that
e LP(Z(V\S)), p>m/(m —1), satisfies the equation

Dy =p

weakly on V\ 'S where p € LY(X(V\S)) = LY (ZV). Then this equation holds weakly
on V. In particular the singular support of the distribution Dy is empty.

Proof. Let v be a smooth compactly supported spinor. We have to show that

/V (. DYy dv = /V (o, ) do. (12)

Recall that for € > 0 we denote the set of points in V' of distance less than € to .S
by U(S,e). We choose a smooth cut-off function x. : V' — [0, 1] with support in
U(S,2¢e), xe. =1 on U(S,¢), and |gradx.| < 2/e. We then have

[ eovyao= [ oo = [ (000 =i+ xew) o= [ o
= [0e0-xawydv+ [ xDujao
+/V<<p,gradxa-w> dv—/v<p,w> dv
== [ xevrav [ (ooxi o
n /V (o, gradxe - ¥) dv,
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where Dy = p is used in the last equality. Let g be related to p via 1/¢+ 1/p = 1.

It follows that
< ( sup WJI)/ |p| dv
U(S,2¢) U(S,2¢)

V <<P,D1/)>dv—/<pﬂ/)>dv
%4 1%
2
+( sup [Dy]+2 sup |w|> [ telde
U(S,2¢) € U(8,2¢) U(S,2¢)

C
<o(1) + ;||90||LP(U(5,25))V01(U(5, %))/

< o(1) + Clloll rws,2ene ™D,

where o(1) denotes a term tending to 0 as e — 0. Since p > m/(m —1) is equivalent
to m/q > 1 we see that ([[) holds. O

Applying Theorem EI to the non-linear Dirac equation in Theorem @ we get
the following corollary.

Corollary 3.2. Let V and S be as in Theorem . Then any LP-solution, p =
2”/(” - 1)) Of
Dy = NP "% (13)

on V'\ S is also a weak LP-solution of ([I3) on V.

3.2. Limit spaces and limit solutions. In the proofs of the main theorems we
will construct limit solutions of a Dirac equation on certain limit spaces. For this
we need the following two lemmas. In the statement of these results, in order to
simplify the notations, we write o — 0 instead of o; — 0 as i — oo when («;)en is
a sequence of positive numbers converging to 0. In the same way, the subsequences
of (o;) will also be denoted by («).

Lemma 3.3. Let V be an n-dimensional manifold. Let (p,) be a sequence of
points in 'V which converges to a point p as a — 0. Let (v4) be a sequence of
metrics defined on a neighbourhood O of p which converges to a metric vy in the
C?(0)-topology. Finally, let (b,) be a sequence of positive real numbers such that
limg—0bo = 00. Then for r > 0 there exists for a small enough a diffeomorphism

O : B™(r) — B (pa, by 1)

with ©4(0) = p, such that the metric OF(b27.) tends to the Buclidean metric £
in C1(B"(r)).

(e

Proof. Denote by exp)> : Uy — O, the exponential map at the point p, defined
with respect to the metric ~,. Here O, is a neighbourhood of p, in V and U, is a

neighbourhood of the origin in R™. We set
O4 : B"(r) >z exp)e (by ') € B7* (pa, by 'r).

It is easily checked that ©, is the desired diffeomorphism. (]

[e3

Lemma 3.4. Let V an n-dimensional spin manifold. Let (go) be a sequence of
metrics which converges to a metric g in C' on all compact sets K CV as a — 0.
Assume that (Uy) is an increasing sequence of subdomains of V' such that U,U, =
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V. Let 1, € D(29°U,) be a sequence of spinors of class C* such that ||[¢q || oo (v.) <
C where C does not depend on «, and

Dgc”/)a - )\a|1/)a|%wa (14)

where the Ao are positive numbers which tend to X\ > 0. Then there exists a spinor
¥ € T(29V) of class C such that

DIy = N[y 714 (15)

on V and a subsequence of (35°1a) tends to ¢ in C°(K) for any compact set
K C V. In particular

[l () = Hm [[$allpoe (), (16)
and

/ [|" dv? = lim/ [the|" dv9e (17)

K a—0 /i

for any compact set K and any r > 1.

Proof. Let K be a compact subset of V' and let €2 be an open set in V' with compact
closure such that K C Q. Let x € C*°(V) with 0 < x < 1 be compactly supported
in Q and satisfy x = 1 on a neighbourhood Q of K. Set ¢, = ( ga)flg/}a. Using

Equations ([[4) and () we get
2
DI(xpa) = grad?x - 0o + XAa|Pal T 0a — XAJ (VI0a) — XBL (). (18)

Using the fact that |a 4+ b+ c|” < 3"(|a]” + |b]" + |c|") for a,b,c € R, r > 1, we see
that

2
DY (xa)|” < 3T(|gradgx “#a + XAalPal T ¢l
+ XA, (V90a)|" + [XB, (¢a)l")
for » > 1. Since ||@a| vy = [[VallLe(vy < C we have
2

lgrad?x - pa + XAalPal " T@al” < C.

By Relations () and (), and since limg ¢ [|ga — gllcr) = 0, we get
IXAG, (VIa)l" + IXBE, (pa)l” < 0o(1) ([V9(xwa)|" + [grad”x - val” + [xpal")
<o(1) (IV?(xpa)|” + C),

where o(1) tends to 0 with «. It follows that

[D?(xpa)l" < C+ o)V (xpa)l"-

Setting ¢ = X¢q in Inequality ([]) and again using that ||pq|| Leo(0) is uniformly
bounded we get that

/Ivg(xsaa)levg §C+o(1)/ V9 (x@a)|" dv?.
Q Q

In particular (y@,) is bounded in Hy"(Q). Let a € (0,1). By the Sobolev Em-
bedding Theorem this implies that a subsequence of (x¢,) converges in C'%%(£2)
to 1 € T(X92Q) of class C%*. We take the inner product of ([[§) with a smooth
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spinor ¢ which is compactly supported in Q and integrate over {). Since xy = 1 on
the support of ¢ the result is

o~ _2 —~
/Q<war09w>dvg=:/2Aarpav%ﬂ<wa,w>dvg

- / (47, (VI¢a), 9) dv” — / (BY. (¢a), @) dv?.
Q Q

Taking the limit o — 0 and again using (f]) and (f) we get
[ w03 ot = [ el (0, ) o
Q Q

Hence, ¢ satisfies Equation ([L) weakly on K. By standard regularity theorems
we conclude that ¥x € C1(K).

Now we choose an increasing sequence of compact sets K, such that U,, K,,, = V.
Using the above arguments and taking successive subsequences it follows that (¢4 )
converge to spinor fields ¢, on K, with ¢¥,,|k,,_, = ¥m-1. We define ¢» on V by
¥ 1=, on K,,. By taking a diagonal subsequence of we get that (¢, ) tends to ¢
in C° on any compact set K C V.

The relations ([l§) and ([[7) follow immediately since B9 is an isometry, since
Yo = (89 ) Mpa, and since (go) (resp. (¢a)) tends to g (resp. v) in C° on K.

9o
This ends the proof of Lemma @ (I

3.3. Dirac spectral bounds on products with spheres. In the following lemma
we assume (in the case m = 1) that S! carries the spin structure which is obtained
by restricting the unique spin structure on the B? to the boundary. The proof is
a simple application of the formula for the squared Dirac operator on a product
manifold together with the lower bound of its spectrum on the standard sphere.

Lemma 3.5. Let (V,g) be a complete Riemannian spin manifold. Then any L*-
spinor ¥ on (V x S™, g+ ™) satisfies

m2

/ |Dy)? dvto™ > — | dvdte™
VxSm

Vxsm

3.4. Approximation by local product metrics. In this paragraph we will see

how to change the metrics g; to product form g; = h; + dr? + r2o" %=1 in a
neighbourhood of W/ in M; without changing A\ (M;, g;) much.

Lemma 3.6. Let (V,g) be a compact Riemannian manifold of dimension n and let
S be a closed submanifold of dimension k, where 0 < k < n — 2. Assume that a
trivialization of the normal bundle of S is given and assume that DY is invertible.
Then there exists a sequence (g;)ien of positive real numbers converging to 0 and a
sequence (ge,) of metrics on 'V such that

Zlig.lo rtlln(V7 gf‘-‘w) = )\1?;11'1(‘/7 g)
and

ge, = h+ dr* + 1o k1

on U9(S,¢e;). Here h is the restriction of the metric g to S and r(xz) = d9(S, x).
Proof. Using the trivialization of the normal bundle we identify a neighbourhood

of S with S x B"*(Rpax) as described in Section P.J. In this neighbourhood we
define the metric g := h + dr? 4+ r20"*~1. Recall that U9(S,¢) denotes the set
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of points x € V such that r(z) < € and let x. € C°(M), 0 < x < 1, be a cut-off
function such that x = 1 on U9(S,e), x = 0 on M \ U9(S,2¢), and |dx.| < 2/e.
We define
ge = xeg + (1 = xe)g-
Then g. has product form on U9(S, e). For convenience we introduce the notation
Ae = A (V,ge) and X := At (V. g). Let (g;).en be a sequence of positive numbers
tendmg to 0 such that the limit hmzﬁOo e, exists. In the following, we write € — 0
instead of &; — 0 as ¢ — oo. In the same way, (¢) will denote the successive
subsequences of (g;) we will need. With this notations, let X := lim._,0 A. which
exists after possibly taking a subsequence.
We begin by proving that

A<, (19)
which is the simpler part of the proof. Let J := JY and J, := J9% be the functionals
associated to g and g., and let § > 0 be a small number. We set x. := 1 — x2¢, S0
that x. =1 on V \ U9(S,4¢), x. = 0 on U9(S,2¢), and |dx.| < 1/e. We see that
g = g- on the support of .. Let ¢ be a smooth spinor such that J(1)) < A+4d. We
then have

l/@%&@wWMW:/XﬁD%WMW+/@wﬂ L) do?
1% 1%

Since the last term here is purely imaginary we obtain

lim [ (D9(xL¢), xL¢) dv? = lim Re/ Xf(D%/},@/}} dvd = / (D99, ) dvd. (20)
v e—0 v v

e—0

We compute

[iprecoFar = [ i
v V\U9(S,4¢)

(1)
+ lgrad? . -+ x. D] dut.
U9(S,4e)\U9(S,2¢)

Using the fact that |a + b|n%l1 < 2%(|a|% + |b|n%l1) for a,b € R we have

lgrad?x. - + XLDI| 7T < 27 (Jgrad? x| [yl #H + [xL| 1| Doy )

< o7 (Cla 2 +02)

where Cy and Cy are bounds on [¢| and |Di)|. Since Vol(U9(S, 4e) \ UI(S, 2¢)) <
Ce™ % < Ce? it follows that

lim lgrad?x. - ¥ + XL DIY| AT dv? = 0.

=0 Jua(8,4e)\U9(S,2¢)
It is clear that lim._,¢ fV\Ug (5.46) | D9)| T dud = fV |Dq¢|n+1 dv9 so Equation (P )
tells us that

hm/ | D9 (xp)|7rT dvgz/ |DI| T du.

Together with Equatlon thls proves that lim._,¢ J(xL¢) = J(¥) < A+4. Since
ge = g on the support of Xs¢= we have J.(x.¢) = J(x.¢). Relation ([9) now
follows since \; < J.(xLv) and 4 is arbitrary.

The second and harder part of the proof is to show that

A > (22)
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From Proposition .3 we know that \. < /\mm(S ™), A < At (8", 0™), and
A < AP (97, 0™). Inequality (RJ) is obvious if A = /\+ (8™, 0™). Hence we will

min min
assume . < AT. (S™ o) for a sequence ¢ — 0. As the Dirac operator is invertible

we know that (B) holds. By Theorem @ there exists for all € spinor fields . €
['(329%w) of class C* such that

DgE@/Ja = )‘a|¢€|%waa (23)

and
/ (o 25 o= = 1. (24)
\%

Define ¢, = (ﬁgs)_lwg. Since g. — ¢ it is easily seen that the sequence (p.) is
bounded in LT (V,9). By () and (R3) we have

Dg(ﬂs = /\s|<Ps|%<Ps - AgE (vg@s) - Bgs (<P€>a (25)

together with |a + b+ ¢[=1 < 3741 (|a|»tT + [b|7FT + |¢|7i7) for a,b,c € R this
implies

2n_ n n n
DI, |7 < C (A:“ 0| *2T + |AZ (V9¢.) 75T + | BY. <<p5>|3—+1) : (26)
We also have
|49 (V90.)| < lg — gellcoq | V90| < Ce[ V9|, (27)
and
IBY (92)] < [lg = gellervylee] < Clee |- (28)

Indeed, since g and g. coincide on S, there exists a constant C so that |g —
gs||Bg(V8) < Ce. Together with the fact that |dx.| < 2/¢ and using the defini-
tion of g, this immediately implies that ||g — g[/c1(vy < C. Using Relation ®
and integrating (E) we find that

2n_ 2n 2n 2n_ 2n_
/ |vg308| nt dv?d < C )\Enp / |(p€|n71 dv? + eniT / |V9(p€|n+1 dv?
\%4 1%

/ |BY ()| 757 vt ).

As g and g. coincide on V'\ BI(S,2¢) we conclude that B (¢.) = 0 on this set.
Together with (R§) we have

/ |B§E (906)|"2$1 dv? < O/ |</75|"2$1 dv?
14 B9(S,2¢)
n—1

n+1
< CVOI(BY(S, 2¢)) 7 </ el 1 dv? )
B(

S,2¢)
=o(1),

where o(1) tends to 0 with . Hence

/ |Vg<p€|n2_f1 dv? SC( "*ll/ |oe |n 1 dvg—l—a/ VI, |n+1 dv? 4+ o(1 )) (29)
%

This implies in particular that (¢.) is bounded in H 1"? (V) and hence after passing

to a subsequence (¢.) converges weakly to a limit ¢ in Hy o (V).
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The next step is to prove that X\ = lim._o \. is not zero. To get a contradiction
let us assume that A = 0. We then obtain from @) that

/ V9| 74T dvd < lim/ V9. |71 dv? = 0.
\4 e—0 Jy

So ¢ is parallel and since D9 is 1nvert1ble we conclude ¢ = 0, in other words

(cpg) converges weakly to zero in H "“( ). As this space embeds compactly into
LaFT (V') we have

= llell, 2 ., =0,

lim | L)

L n+1

and hence (¢.) converges strongly to zero in H{‘? (V). As this space embeds
continuously into L%(V) we conclude that the sequence converges strongly to
zero in Ln-1 (V). This is impossible since by Relation (R4)) we easily get that

tim lpell oy ) = 1

From this contradiction we conclude
A > 0. (30)
From (P§) we have

n—1

nT1 9 (w9
1%l ) < Aelloel [Ty |+ 148 (99000
B (ol e
We already proved above that
lim 1B, (00, 2, =0
Using Relation @) we get similarily
9 (w9
lig 143, (V%00), 22, ) = O

Moreover since dv%s = (1 + o(1)) dv? it follows from (24) that

n+1

Acllioell " = Ae(L+0(1)).
V)

We conclude

1D%6cll, 2y ) < Ae + (D) (31)

Starting from Equation (@) we can prove in a similar way that
/ (D9e, 2) dv? > Ae + o(1). (32)
1%

From (Bd), (BI)), and (BD) it follows that A < lim._oJ(¢.) = A. This ends the
demonstration of (RJ), which together with (Ld) proves Lemma .6 O
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1DA9 -

| |
—Inéb —Indy —Inr =|Ine| — |¢|

FIGURE 1. The function —Inr — f(r)

4. PROOFS

4.1. Proof of Theorem . This section is devoted to the proof of Theorem .
Our goal is to construct a family of metrics (gg) with 0 < 6 < 6y which satisfies the
conclusion of Theorem ([L.J).

From Lemma B.q applied with V = M = M; II My and § = W’ = w; (W x
{0}) T we (W x {0}) we may assume that

g=h+dr?+r?c" ! (33)

in a neighbourhood U(Rmax) of W’ where Rpyax > 0. We fix numbers Ry, Ry € R
with Rmax > R1 > Ro > 0 and we choose a function F': M \ W’ — R* such that

1, if v € M; \ U;(Ry);
Py = b, Mo MATT)
ri - ifx e U(Ro)\ W'

2

We further choose 6 € (0, Ry), later we will let # — 0. It is not difficult to see that
there is a smooth function f : U(Rmax) — R (depending only on r), real numbers
51 = 01(0) and o = §3(0) with 8 > d3 > 61 > 0 and a real number Ay € (9‘1,62_1)
such that

_J=Inr ifz € U(Rmax) \U(0);
f(x)_{lnAg if & € U(3y),

and such that

af | | df
"ar _‘d(lnr) <L
d [ df | a3 .
"dr (d_) LJHdmnw .

as 0 — 0. It follows that limy_g Ag = oco.
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HIERARCHY OF VARIABLES
Ruax > R1 >Rog>60>03>6 >e>0

We choose in the order Ry, .x, R1, Ro, 0, 02,01, Ag We can assume for example that
£ = e~49§,. This implies [t| = Ag & r; = 1.

FIGURE 2. Hierarchy of variables

After these choices we set ¢ := e~49§;. We assume that N is obtained from
M by a connected sum along W with parameter €, as explained in Section @ In
particular, recall that UN (s) = U(s)\U(e)/~ for all s > €. On the set UN (Rpax) =
U(Rmax) \ U(e)/~ we define the variable ¢ by

t:=—Inr; +Ilne <0

on Ui (Rmax) \ U(e) and
t:=Inry —Ine >0
on Us(Rmax) \ U(g). This implies

[t|+Ine

ri=e = eell,

The choices imply that ¢ : UN(Rumax) — R is a smooth function with ¢ < 0 on
UN(Rupax) N My, t > 0 on UY(Rpax) N Ma, and t = 0 is the common boundary

€

OU () identified in N with dUs(e). Then Equation (B3) tells us that
r 29 =e 2 2tp; 4 dt? 4+ oL
Expressed in the new variable ¢ we have
F(x) =e te I
if z € UN(Ro) \ UN(0) or in other words if [¢| + Ine < In Ry, and
Ft) = {—|t| —Ine if [t +Ine € (6, Rma)
In Ay if [t| +Ine < Indo,

and |df /dt| < 1, ||d*f/dt?|| L~ — 0. After choosing a cut-off function x : R — [0, 1]

such that x = 0 on (—oo, —1] and x = 1 on [1,00), we define

go(x) i= { 2fOp; 4 dt2 + gn—h-1 if x € U;(0) \ U;(61);
AFX(Ag T )hy + AZ(1 — x(Ag ')y + dt? + 0" 7F=1if @ € Ui(61) \ Usi(e).

(Recall that the h; are defined as the pullback via w; of the metric g; on M;,
composed with restriction to W =W x {0}.)
On UN(Ry) we write gg as

go = OthiLt +dt? + o R
where the metric & is defined for ¢ € R by
hy o= x(Ay " t)ha + (1 — x (A, '1))ha, (34)

and where
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The rest of the proof consists of showing that (gg) is the desired family of metrics.
We first choose a sequence (6;);en converging to 0 so that lim; .. Ag, exists. To
avoid complicated notation we write § — 0 for the sequence (6;);cny converging
to zero and we will pass successively to subsequences without changing notation.
Similarly limg_o h(f) should be read as lim;_,oo h(6;). We set A :== \F. (M; 1T
M, g), Ao = /\:;in(]\], go), and X := limg_,g \g. Let J := J9 and Jy := J9% be the
functionals associated respectively to g and gg.

The easier part of the argument is to show that

A< (36)

For this let a > 0 be a small number. We choose a smooth cut-off function y,, :
M, 1T My — [0,1] such that xo =1 on M; IT M3\ U(2a), |dxal < 2/a, and xo =0
on U(a). Let ¥ be a smooth non-zero spinor such that J(1) < A + ¢ where ¢ is a
small positive number. On the support of x, the metrics g and g, are conformal
since g9 = F2g and hence by Formula (IE) we have

N < Jo (B3, (F7570) ) = J(xa®)

for # < a. Proceeding exactly as in the first part of the proof of Lemma @ we
show that lima 0 J(xa®) = J(¥) < A 4 4. From this Relation (Bg) follows.
Now we turn to the more difficult part of the proof, that
A > min{\, A, 1} (37)

By Proposition E we can assume that \yp < /\LD(S”,U”) for all 6, otherwise
Relation (B7) is trivial. From Theorem P.4 we know that there exists a spinor field
g € T'(X92N) of class C? such that

[ Il =1
N

D% 14pg = Agltb| 7T g (38)

We let x5 in N be such that [vg(z)| = me where mg 1= [|9bg|| Lo (n)-
The proof continues divided in cases.

and

Case I. The sequence (myg) is not bounded.

After taking a subsequence, we can assume that limy_,gmg = co. We consider
two subcases.

Subcase I.1. There exists a > 0 such that xg € N\ U™ (a) for an infinite number
of 6.

We recall that N \ UY (a) = N\ UY (a) = M1 11 My \ U(a). By taking a subse-

quence we can assume that there exists € M11IM>\U (a) such that limg_,g 29 = Z.
4

We let g, = m;flg.g. In a neighbourhood U of & the metric g9 = F2g does
not depend on #. We apply Lemma @ with O = U, a = 0, p, = x9, p = T,
2

Yo = go = F?g, and b, = mF. Let r > 0. For # small enough Lemma @ gives
us diffeomorphisms

_2
©¢ : B"(r) — B (zg,my "~ '1)
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such that the sequence of metrics (0}(gy)) tends to the Euclidean metric £” in
CY(B"(r)). We let 1)) :== m, "¢g. By ([]) we then have

Dngy = Mol | 714
_2
on B9 (xg,m, "~'r) and

_2n ’ 2n_
/ _a o |YplmT v = / _ o [T dv?
B9 (zg,m, "' 1) B9 (zg,m, "' 1)

< / [4p9| 72T du9e
N
=1.

, 2n_
Here we used the fact that dv% = my~" dv9. Since

_ 2
©p : (B"(r),05(gp)) — (B (w9, m4 """ 1), 95)
is an isometry we can consider iy as a solution of
DO = Nglushl =T
on B"(r) with an , |1/Jé|n2+l1 dv©6(96) < 1. Since ||1/)9||Loo(3n(r)) = [¢5(0)] = 1 we
can apply Lemma with V =R", a = 6, go = O}(gp), and 1o = ¢j (we may

apply this lemma since each compact set of R™ is contained in some ball B"(r)).
This shows that there exists a spinor v of class C! on (R”,£™) which satisfies

n T2
D€ = Myl Ty,
Furthermore by ([[7) we have
[l e = g L Wl <
Br(r) f )

—0

B9 (xzg,my " T

for any 7 > 0. We conclude that [, |w|% dve" < 1. Since [1(0)| = 1 we also see
that 1 is not identically zero. As (R™, &™) and (S™ \ {pt},o™) are conformal we
can write 0" = ®2£" for a positive function ®. We define ¢ := @*"T“ﬁff,iw. By
Equation (f) it follows that ¢ € L (S™) is a solution of

D7 o = Ng|™ Ty (39)
on S\ {pt} of class C'. By Corollary B.g we know that ¢ can be extended to a
weak solution of (@) on all S™ and by standard regularity theorems it follows that
@ € C'(8™). Let J°" be the functional associated to (S™,¢™). By Equation (B9)
we have

(8™, 0™) < J7" () = A

where the inequality comes from Proposition @ We have proved Relation (@) in
this subcase.

Subcase 1.2. For all a > 0 it holds that xg ¢ My 11 Mo \ U(a) for 0 sufficiently
small.

This means that xg belongs to U (a) if @ is sufficiently small. This subset is dif-
feomorphic to W x I x S"~*~1 where I is an interval. Through this diffeomorphism
Ty can be written as

xo = (Yo, to, 20)
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where yg € W, tg € (—InRy + Ine, —Ine +In Ry), and zg € S*¥~1. By taking a
subsequence we can assume that ypg, 29 , and zg converge respectively to y € W,
T € [~00,+c], and z € Sn—k-L WeapplyLemma@wth—W a =0,
Pa = Yo, P =Y, Ya = hiy, Yo = hp (we define h_o = hy and hyo := hy), and

n—1

bo = my, ' ay,. The lemma provides diffeomorphisms

. _ 2
@g : Bk(r) — Bl (yo,my ”’10475_17")

2

4
for r > 0 such that (©})*(m, 2 h,,) tends to the Euclidean metric ¥ on B¥(r)
as § — 0. Next we apply Lemma@wwh V=8"%1 a=0,ps=20,"Y ==
o k=1 and b, = me . For ' > 0 we get the existence of diffeomorphisms

@ . B k— 1( )_)Ba kil(ZQ,me_m'f‘/)

4
such that (0©3)*(mg o™ *~1) converges to £&"~*~! on B"*~1(+') as § — 0. For
ror' " >0 we deﬁne

_2
—1

Up(r, 7", 7") := B (yo,mp "

2 2
n—1 1 nl//]

at_el) [tg—me '’ te +my, r

n—k—1 .
x B? (26, m, ")

and
Qg : B*(r) x [=r", 7" x B k=1(r") = Uy(r, ', ")

(y,5,2) = (05 (y), (s), O5(2)),

2
where t(s) := tg + myj~'s. By construction Oy is a diffecomorphism. As is readily
seen

_4
O3(my " go) = (0)"(my " aFhu) +ds> +(05)"(mg 0" *Y).  (40)
By construction of a; one can verify that
lim || 2t — N L, =0
0—0 (673 Cl([tg m, T n— l,r” t9+m9 n— 1,',‘,,])

for all R > 0 since Z{ and t2' are uniformly bounded. Moreover it is clear that

g~ -0

- __2
CL(B" (yo,m, " oy, R))

_2 _2
uniformly in ¢ € [tg —m, """, tg +m, " 'r"]. As a consequence

@) (mf™ (athi—ai )

A

uniformly in ¢. This implies that the sequence (©)*(mg 'aih;) tends to the

Euclidean metric ¢ in C*(B*(r)) uniformly in ¢ as § — 0. From (i) we know
4

that the sequence (©3)*(m, o™ *~1) tends to the Euclidean metric 5"_’“_1 on

B"k=1(;') as § — 0. Returning to () we obtain that the sequence O (me Y90)
tends to & = &F +-ds?+&"F L on BE(r) x [—r", 7" x B*"*~1(y'). Asin Subcase I.1
we apply Lemma @ to get a spinor v of class C'' on R™ which satisfies

D" = Ny| =T

=0
CH(B*(r)

lim
6—0




22 BERND AMMANN, MATTIAS DAHL, AND EMMANUEL HUMBERT

with an(T) [|7°Tdx < 1 for all r € RT. Lemma B4 tells us that [1)(0)] = 1 so 1
does not vanish identically. As in Subcase 1.1 we conclude that

A< AR (8™ 0™) <A
This ends the proof of Theorem @ in Case I.
Case II. There ezists a constant Cy such that mg < Cy for all 6.
Again we consider two subcases.

Subcase II.1. Assume that

lim inf o] 7T dv9? > 0 (41)
0—0 N\UN (a)

for some number a > 0.

Let K a compact subset such that K C M; 1T M3\ W’. Choose a small number b
such that K C My II My \ U(2b) = N\ UM(2b). Let x € C°(M; 11 M), 0 < x <1,
be a cut-off function equal to 1 on My IT My \ U(2b) and equal to 0 on U(b). Set

n—1

Py i=Fz ( ge)_lwg. Since g¢ = F?g on the support of y we have

_2
D99y = Nglipp| 7T 1y

on this set. For r > 0 we have

[ Dol
M7 11 M2

T
dvd

=/ ’gradgx-wé + X ho|Up] TT )
My 1IMo

< 27' (/ |gI3ng| |w/0|7‘ d’Ug )\Te / Xrl’(/Jé| (T:l+11)r ’ >
M1HM2 M1 ]\42

since myg < C;. Together with Relation (E) we get that the sequence (xp) is
bounded in H{(M; I My) for all 7 > 0. Proceeding as in the proof of Lemma B.4
we get a C! spinor ¢y defined on K such that a subsequence of (1)) converges to
o in C°(K) and which satisfies

< 2
D% = Altbo| 7T ¢o. (42)
Furthermore the convergence in C° implies that

2n

/ | 7T dv? gliminf/ |¢;|n—1dv9=hmmf/ thg| 7T dv9e < 1.
K 0—0 Jg 6—0 Jg

Repeating the same for a sequence of compact sets which exhausts My IT My \ W’
and taking a diagonal subsequence we can extend o to M; II My \ W’. Since
Yo € L%(Ml M \ W) = L%(Ml IT M>) we can use Theorem B.9 to extend
Yo to a weak solution of Equation (i) on M; IT Ms. Note here that since DY
is invertible we have A > 0. By standard regularity theorems we conclude that
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o € CH(M; 11 M3). By () we have
/ || 7T dv? = lim ||+ dv?
M TIM\U () 0—=0 J My 1IMo\U ()
= lim e 7T due
0—=0 Jan 1IM\U (a)
>0,

and we conclude that 1o does not vanish identically. Equation ([2) then leads to

ntl_q
A< J(to) = A </ o dvg) <
M1,1IMo

which proves Theorem [L.9 in this case.

Subcase I1.2. We have

lim inf [thp| 7T dv9e =0 (43)
6—0 N\UN (a)

for all a > 0.

This case is the most difficult one and we proceed in several steps. The assump-
tion here is that we have a sequence (¢;) which tends to zero as i — oo with the
property that the integral above tends to zero for all a > 0. We will abuse notation
and write limy_,o for what should be a limit as ¢ — oo or a limit of a subsequence.

For positive a and 0 let

(@) o v ol dv
a) =
v fUN(a) |¢0|2 dv9e

The first step is to establish an estimate for vy(a).

Step 1. There is a constant Cy so that

4

12 Co (0l + ol i ) (44)

for all a > 0.

Let x € C*®(N), 0 < x < 1, be a cut-off function with y = 1 on U™ (a) and
X =0on N\U¥(2a) = M; 1 M5\ U(2a). Since the definitions of U™ (a) and U(a)
use the distance to W’ for the metric g we can and do assume that |dx|, < 2/a.
For the metric gy this gives

- 2
ldxlgs = F x|y = rldx|y < 20> =4,
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From Lemma B.J and Equation (Bg) it follows that
(k=17 _ Jy 1D i) o
4 Ty Ixbel? dvoe
2(n+1)
_ S ldx 2, 100 l? dv9? + X5 [y X |tbo| =T dv9
S Ixtbol? duvoo

< 16 fUN(Qa \UN (a) Yo |* dv9e + )‘QHQ/JGHgool(UN (2a)) fN Ixto|? dvo

- S Ixtol? dvoe

16fUN(2a)\UN(a) [o]* dvoe
fUN(a) |1bg|? dvso

1679(a) + A2llwel\Lm<Uw (20))°

+ /\2 ||7/}9HL00(UN (2a))

IN

Using that A\g < AT (S™, ™) by Proposition P.3 we obtain Relation ([i4) with

4
(n—Fk—1)2

This ends the proof of Step 1.

Cy = max {16, A1, (S™)?}.

Step 2. There exist a sequence of positive numbers (ag) which tends to 0 with 0
and constants 0 < m < M such that

m < ||7/}9||Loo(UN(2a9)) <M (45)
for all 0.

By ({) we have

lim thg| 7T dv9e = 0
6—0 N\UN (a)

for all a > 0. Since Vol (N \ U™ (a), gs) does not depend on 6 if § < a it follows
that

n—1

lim / || 72T dv9 Vol(N \ UM (a), gg)™ =0
=0 \ JN\UN (a)

for all a. Hence we can take a sequence (ag) which tends sufficiently slowly to 0 so
that

n—1

lim / [he| 72T dv9 Vol(N \ UM (ag), gg)= = 0. (46)
N\UN (ag)

0—0
Using the Holder inequality we get

S35 (g W02 o
fUN (ag) |¢9|2dU‘J9

IN\UN(ae |¢0|" T dv9) "5 Vol(N \ UN (ag), go)

H¢0||L£ [le (ao) fUN (as) |’(/19|n T dy9e

Yo(ag) =




SURGERY AND THE SPINORIAL 7-INVARIANT 25

The numerator of this expression tends to 0 by Relation ([i§). Further by ([id) we
have

. 2n_ . 2n_ 2n_
lim [thg| 7T dv9o = hm/ [thg| 7T dv9° _/ |[4p| =T dv9°
6—0 UN (ag) 6—0 J N N\UN (ag)
=1.
Together with the fact that |[¢g]| L (a,)) < M6 < C1 We obtain that
Lim 79 (ag) = 0.

From Relation (fi4) applied with a = ag we know that 196]| Loo (N (244)) 18 Dounded
from below. Moreover, by the assumption of Case IT we have that ||{g]| Lo (1~ (244)) <
mg < C7. This finishes the proof of Step 2.

Step 3. We have B
A Z An,k-

Let z9 be a point in the closure of U (2ag) such that [g(zg)| = [|¥a]| Lo (¥ (200)) -
As in Subcase 1.2 we write 79 = (yg,t9,29) wWhere yg € W, t9 € (—InRg +
Ine,—Ine + InRy), and zp € S" %=1, By restricting to a subsequence we can
assume that yg, tg/Ag, and zp converge respectively toy € W, T € [—o0, +o0], and
z € S"~k=1 We apply Lemma @ with V =W, a=0, po, =90, D=1, Ya = }Nlte,
Yo = hr, and by = ay, (recall that h; and «; were defined in (B4) and (BJ)) and
conclude that there is a diffeomorphism

0y : B*(r) — Bhte (vo.ag,'r)
for r > 0 such that (©§)* (a7, ht,) converges to the Euclidean metric £&¥ on B¥(r).
For r,7 > 0 we define
Up(r,v') = B (yg, 7,'7) X [tg — 1", tg +1'] x §"7F1
and
Op : BE(r) x [—1,7"] x S"FL 5 Uy(r, 1)
(y,8,2) = (©4(y), t(s), 2) ,
where t(s) := tg + s. By construction Oy is a diffeomorphism. Since gy = afﬁt +
dt? + 0" *1 we see that

2
* « * 7 n—k—
O3(a) = CL(O)" (0, ) +ds? + 0"+, (")
to
We will now find the limit of ©}(gg) in the C! topology. We define ¢ := limg_,o f'(¢5).

Lemma 4.1. The sequence of metrics ©}(gs) tends to
Gc — néﬂ-l‘l 4 O_n—k—l _ €QCS§]€ +d82 + O_n—k—l
in CY on B¥(r) x [—r',7'] x S"=F=1 for fived r,r" > 0.

Proof. Recall that oy = /(). The intermediate value theorem tells us that
/2

(1) = f(te) = f'(t)(t —te)| < = max |f"(¢)]

E€to—1" tg+1"]

2
for all t € [tg — r',tg + r']. On the other hand we assume that f”(t) — 0 as 6 — 0,
0

1£(t) = f(to) = f'(te)(t — to)llco(ty—rr tp4r) — O
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as # — 0 (and 7’ fixed). Furthermore

U0 = ) = £e0)e — )| = 17'6) — 1 0
= ) f(s)ds

<7 O
—0
as § — 0. Together with ¢ = limg_,q f/(t9) we have
[ £(t) = f(te) —c(t — t9)||01([t97r’,t9+7"’]) — 0.
Exponentiation of functions is a continuous map
C[to —r'sto +1"]) > f —expof € C'([tg — 7', 19 +1')).
Hence

Gt e(t—to)
ate

— 0
Cl([to—7" to+r'])

— Hef(t)*f(te) _ pelt—to)
Cl([tg—’r‘/,tg-i-’r'/])

~ ~ ~ 2 ~
as 6 — 0. We now write a7h; = of (hy — hy,) + =Faf, hy,. Using the fact that
to

lim

ht - ht@
6—0

C(By,, (0.0, B))

uniformly for ¢ € [ty — 1, tg — r'] we get that the sequence ;Tf(@g)*(afe h:) tends
to
to e25¢® in C' on B*(r). Going back to Relation () this proves Lemma [i.1. 0

We continue with the proof of Step 3. As in subcases 1.1 and 1.2 we apply
Lemma B.4 with (V,g) = (RF*? x S"7%"1 G.), a = 0, and g, = ©}(ge) (we can
apply this lemma since any compact subset of R¥*! x §7~k=1 ig contained in some
B¥(r) x [=r',r'] x S"~*=1). We obtain a C! spinor 9 which is a solution of

DOy = AT
on (RFFL x §n=k=1 G.). From ([[7) it follows that

/ 72T dvCe < 1.
Rk+1x §n—k—1

From ([L§) it follows that ¢ € L (R*! x §7=*F=1) "and from ([L€]) and (1) it follows
that ¢ does not vanish identically. We want to show that ¢ € L2(RFT! x sn—k=1),
From ([L7) we get that

/ |2 dv€e = lim 4|2 dv®
BE(r)x = /] x §n—k—1 0=0 Juy(r,rr)

< 1i 2dy9e
< lim ) |~ dv
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for some fixed number a > 0 independent of 7, ' and 6. Let x be defined as in
Step 1. Using the Hélder inequality, Lemma @, and Equation () we see that

(n—k—1)2
4
_ I [P (xbo) [? dv
B fN |xg|? dve
2(nt1)
— S ldx 3, el dv® + N3 [y X*[e] »=1 dv?
fN Ixe|? dv9o
2n_

16fUN (2a)\UN (a) [Vo* dv¥? + )\2H1/)e||£m1 N (2a)) Jo (2 [P0l 7T d0P

- fUN(a) || dv9e :

We have

_2n_ n n n%
ol e | oy [P A L (57 2

and

/ o ? v
UN (20)\UN (a)

</ ol 5 do | Vol (U (20)\ U™ (a).90)
UN (20)\UN (a)

< Vol (UN(2a) \ UN(a), go) ™

3=

Since gg does not depend on 6 on UY (2a) \ UN(a) for 6 < a, we get the existence
of a constant C' such that

(n—k—1)32 < C
T = ooy o dom

Together with (i) we obtain that

/ 62 oS < C
BE(r)x[—r/,r']xSn—k-1

where C' is independent of r and /. This proves that ¢ € L2(RFF! x §n=F=1),
Since the spinor ¢ is non-zero and

’Q/J e Loo(Rk—i-l ~ Sn—k—l) N CIJZ)C(R/C-FI % Sn—k—l) N L2(Rk+l % Sn—k—l)
with

/ |77 dvCe < 1
Rk«#lXSnfk:—l

we get that \ > A, i by the definition of A,, ;. This ends the proof of this subcase
and the proof of Theorem E
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4.2. Proof of Theorem E We prove Theorem by contradiction. Assume
that there is a sequence ¢; € [—1,1], i € N, for which

lim Af, (R % §"7F=1 @) = 0.
After removing the indices i for which )\r‘;in

DCeiap; = M| 7T ah; (49)

where \; — 0 as i — co. Moreover, the spinors 9; are in L* N L2 N CL_and

loc
/ i) 7T dvCes <1
Rk+1x Gn—k—1

Let m; = ||¢]|L~. We cannot assume that m; is attained, but since (RF¥*1 x
Sn—F=1 @G.,) is a symmetric space we can compose 1; with isometries so that
|4i(P)| > m;/2 for some fixed point P € RFT! x §"~k~1  First we prove that

is infinite we have for all ¢ a solution of

lim m; = oco. (50)

By Lemma @ and Equation (@) we have
(n k- 1)2 _ f]Rk+1><Sn7k—1 |DGC”/11'|2 dchi

4 N ka+1XSn—k—1 |9:]? dv%ei
2(n+1)
)\f ka‘FlXSnfk:—l szl n=1 duCei

a ka‘FlXSnfk:—l |¢z|2 dvCei

4
< ANm].

Since A; tends to zero this proves (@) Restricting to subsequence we can assume

that lim;_, ¢; exists and we denote this limit by ¢ € [—1,1]. We apply Lemma

B with o =1/i, (V.7a) = (RM x S77F71,Ge), (Vi) = (RFF x 577K, G),
2

po =p = P, and b, = mfj. For r > 0 we obtain a diffeomorphism

2
©;: B"(r) — B (P,m ")

3

such that ©F (ml"%1 (G.,)) tends to the Euclidean metric £&” on B"(r). Proceeding
as in Subcase 1.1 of Theorem [1.2 we construct a non-zero spinor ¢ belonging to
L (R™) such that

D"y = lim N[ 79 = 0.
Again as in Subcase L1 of Theorem [.d we get 0 > AT, (S",¢™), which is false.
This proves Theorem m
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