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Central and non-central limit theorems for weighted power variations of

fractional Brownian motion

Ivan Nourdin∗, David Nualart†‡ and Ciprian A. Tudor§

Abstract: In this paper, we prove some central and non-central limit theorems for renormalized

weighted power variations of order q ≥ 2 of the fractional Brownian motion with Hurst parameter

H ∈ (0, 1), where q is an integer. The central limit holds for 1

2q
< H ≤ 1 − 1

2q
, the limit being a

conditionally Gaussian distribution. If H < 1

2q
we show the convergence in L2 to a limit which only

depends on the fractional Brownian motion, and if H > 1 − 1

2q
we show the limit in L2 to a stochastic

integral with respect to the Hermite process of order q.

Key words: fractional Brownian motion, central limit theorem, non-central limit theorem, Hermite

process.

2000 Mathematics Subject Classification: 60F05, 60H05, 60G15, G0H07.

1 Introduction

The study of single path behavior of stochastic processes is often based on the study of
their power variations and there exists a very extensive literature on the subject. Recall that,
a real q > 0 being given, the q-power variation of a stochastic process X, with respect to a
subdivision πn = {0 = tn,0 < tn,1 < . . . < tn,n = 1} of [0, 1], is defined to be the sum

n−1∑

k=0

|Xtn,k+1
−Xtn,k

|q.

For simplicity, consider from now on the case where tn,k = k2−n, for n ∈ N and k ∈ {0, . . . , 2n}.
In the present paper we wish to point out some interesting phenomena when X = B is a
fractional Brownian motion of Hurst index H ∈ (0, 1) and when q ≥ 1 is an integer. In fact,
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we will also drop the absolute value (when q is odd) and we will introduce some weights. More
precisely, we will consider

2n∑

k=1

f(B(k−1)2−n)(∆Bk2−n)q, q ∈ {1, 2, 3, 4, . . .}, (1.1)

where the function f : R → R is assumed to be smooth enough and where ∆Bk2−n denotes
the increment Bk2−n −B(k−1)2−n .

The analysis of the asymptotic behavior of quantities of type (1.1) is motivated, for
instance, by the study of the exact rates of convergence of some approximation schemes of
scalar stochastic differential equations driven by B (see [6], [12] and [14]), besides, of course,
the traditional applications of quadratic variations to parameter estimation problems.

Now, let us recall some known results concerning q-power variations (for q = 1, 2, 3, 4, . . .),
which are today more or less classical. First, assume that the Hurst index is H = 1

2 , that is B
is a standard Brownian motion. Let µq denote the q-moment of a standard Gaussian random
variable G ∼ N (0, 1). By the scaling property of the Brownian motion and using the central
limit theorem, it is immediate that, as n→ ∞:

2−n/2
2n∑

k=1

[
(2n/2∆Bk2−n)q − µq

]
Law−→ N (0, µ2q − µ2

q). (1.2)

When weights are introduced, an interesting phenomenon appears: instead of Gaussian random
variables, we rather obtain mixing random variables as limit in (1.2). Indeed, when q is even,
it is a very particular case of a more general result by Jacod [9] that we have, as n→ ∞:

2−n/2
2n∑

k=1

f(B(k−1)2−n)
[
(2n/2∆Bk2−n)q − µq

]
Law−→

√
µ2q − µ2

q

∫ 1

0
f(Bs)dWs. (1.3)

Here, W denotes another standard Brownian motion, independent of B. When q is odd, we
have, this time, as n→ ∞:

2−n/2
2n∑

k=1

f(B(k−1)2−n)(2n/2∆Bk2−n)q
Law−→

∫ 1

0
f(Bs)

(√
µ2q − µ2

q+1 dWs + µq+1 dBs

)
, (1.4)

see for instance [15].
Secondly, assume that H 6= 1

2 , that is the case where the fractional Brownian motion B
has not independent increments anymore. Then (1.2) has been extended by Breuer and Major
[1], Dobrushin and Major [4], Giraitis and Surgailis [5] or Taqqu [20]. Precisely, four cases are
considered according to the evenness of q and the value of H:

• if q is even and if H ∈ (0, 3
4 ), as n→ ∞,

2−n/2
2n∑

k=1

[
(2nH∆Bk2−n)q − µq

] Law−→ N (0, σ2
H,q); (1.5)
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• if q is even and if H ∈ (3
4 , 1), as n→ ∞,

2n−2nH
2n∑

k=1

[
(2nH∆Bk2−n)q − µq

] Law−→ “Rosenblatt r.v.” (1.6)

• if q is odd and if H ∈ (0, 1
2 ], as n→ ∞,

2−n/2
2n∑

k=1

(2nH∆Bk2−n)q
Law−→ N (0, σ2

H,q). (1.7)

• if q is odd and if H ∈ (1
2 , 1), as n→ ∞,

2−nH
2n∑

k=1

(2nH∆Bk2−n)q
Law−→ N (0, σ2

H,q). (1.8)

Here and from now on, σH,q > 0 will denote a constant depending only on H and q,
which may be different form one formula to another one, and which can be computed explicitly.
The term “Rosenblatt r.v.” denotes a random variable whose distribution is the same as that
of Z(2) at time one, for Z(2) defined in Definition 6 below.

Now, let us proceed with the results concerning the weighted power variations in the
case where H 6= 1

2 . In what follows, f denotes a regular enough function such that f together
with its derivatives have subexponential growth. If q is even and H ∈ (1

2 ,
3
4), then by Theorem

2 in León and Ludeña [11] (see also Corcuera et al [3] for related results on the asymptotic
behavior of the p-variation of stochastic integrals with respect to B) we have, as n→ ∞:

2−n/2
2n∑

k=1

f(B(k−1)2−n)
[
(2nH∆Bk2−n)q − µq

] Law−→ σH,q

∫ 1

0
f(Bs)dWs, (1.9)

where, once again, W denotes a standard Brownian motion independent of B. Thus, (1.9)
shows for (1.1) a similar behavior to that observed in the standard Brownian case, compare
with (1.3). In contradistinction, the asymptotic behavior of (1.1) can be completely different
of (1.3) or (1.9) for other values of H. The first result in this direction has been observed
by Gradinaru et al [8] and continued in [6]. Namely, if q is odd and H ∈ (0, 1

2), we have, as
n→ ∞:

2nH−n
2n∑

k=1

f(B(k−1)2−n)(2nH∆Bk2−n)q
L2

−→ − µq+1

2

∫ 1

0
f ′(Bs)ds. (1.10)

Also, when q = 2 and H ∈ (0, 1
4), Nourdin [13] proved that we have, as n→ ∞:

22Hn−n
2n∑

k=1

f(B(k−1)2−n)
[
(2nH∆Bk2−n)2 − 1

] L2

−→ 1

4

∫ 1

0
f ′′(Bs)ds. (1.11)
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In view of (1.3), (1.4), (1.9), (1.10) and (1.11), we observe that the asymptotic behaviors
of the power variations of fractional Brownian motion (1.1) can be really different, depending
on the values of q and H. The aim of the present paper is to investigate what happens in
the whole generality with respect to q and H. Our main tool is the Malliavin calculus that
appeared, in several recent papers, to be very useful in the study of the power variations
for stochastic processes. As we will see, the Hermite polynomials play a crucial role in this
analysis. In the sequel, for an integer q ≥ 1, we write Hq for the Hermite polynomial with
degree q defined by

Hq(x) =
(−1)q

q!
e−

x2

2
dq

dxq

(
e−

x2

2

)
,

and we consider, when f : R → R is a deterministic function, the sequence of weighted Hermite
variation of order q defined by

V (q)
n (f) :=

2n∑

k=1

f
(
B(k−1)2−n

)
Hq

(
2nH∆Bk2−n

)
. (1.12)

The following is the main result of this paper.

Theorem 1 Fix an integer q ≥ 1. Let f : R → R be a deterministic function that satisfies the
following condition:

(Hq) f belongs to C 2q and, for any p ∈ (0,∞) and 0 ≤ i ≤ 2q: supt∈[0,1]E
{
|f (i)(Bt)|p

}
<∞.

1. Assume that 0 < H < 1
2q . Then, as n→ ∞, it holds

2nqH−n V (q)
n (f)

L2

−→ (−1)q

2q

∫ 1

0
f (q)(Bs)ds. (1.13)

2. Assume that 1
2q < H < 1 − 1

2q . Then, as n→ ∞, it holds

2−n/2 V (q)
n (f)

Law−→ cH,q

∫ 1

0
f(Bs)dWs, (1.14)

where W is a standard Brownian motion independent by B and cH,q is an explicit constant
depending only on q and H.

3. Assume that H = 1 − 1
2q . Then, as n→ ∞, it holds

1√
n

2−n/2 V (q)
n (f)

Law−→ cq

∫ 1

0
f(Bs)dWs, (1.15)

where W is a standard Brownian motion independent by B and cq is an explicit constant
depending only on q.
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4. Assume that H > 1 − 1
2q . Then

2nq(1−H)−n V (q)
n (f)

L2

−→
∫ 1

0
f(Bs)dZ

(q)
s , (1.16)

where Z(1) = B and, for q ≥ 2, Z(q) denotes the Hermite process of order q (see Definition
6 below).

Remark 1 When q = 1, V
(1)
n (f) is the forward Riemann sum

∑2n

k=1 f
(
B(k−1)2−n

)
∆Bk2−n .

In this case, for H = 1
2 , the limit in L2 is the Itô stochastic integral

∫ 1
0 f(Bs)dBs and for

H > 1
2 , we also have convergence in L2 and almost surely to the Riemann-Stieltjes integral∫ 1

0 f(Bs)dBs.

Remark 2 We do not know what happens in the critical case H = 1
2q when q ≥ 2. The

case q = 2 et H = 1
4 is related to a conjecture by Swanson [19] on the asymptotic behavior

of the Riemann sums with alternating signs, for the solution of the stochastic heat equation
driven by a space-time white noise. The reader is also referred to [15] for the study of the
weighted variations associated with iterated Brownian motion, which is a non-Gaussian self-
similar process of order 1

4 . Note that the weighted variations of iterated Brownian motion are
customarily defined by means of a random partition composed of Brownian hitting times (see
also [10]).

Our Theorem 1 allows to complete the missing cases in the understanding of the asymp-
totic behavior of power variations of fractional Brownian motion:

Corollary 2 Let q ≥ 1 be an integer, and f : R → R be a function such that (Hq) holds.
Then, as n→ ∞:

1. When H < 1
2 and q is odd,

2−nH
2n∑

k=1

f(B(k−1)2−n)(2nH∆Bk2−n)q
L2

−→ qµq−1

∫ 1

0
f(Bs)dBs = qµq−1

∫ B1

0
f(x)dx.

(1.17)

2. When H < 1
4 and q is even,

22nH−n
2n∑

k=1

f(B(k−1)2−n)
[
(2nH∆Bk2−n)q − µq

] L2

−→ 1

4

(
q

2

)
µq−2

∫ 1

0
f ′′(Bs)ds. (1.18)

(We recover (1.11) by choosing q = 2).
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3. When 1
4 < H < 3

4 and q is even,

2−n/2
2n∑

k=1

f(B(k−1)2−n)
[
(2nH∆Bk2−n)q − µq

] Law−→ σH,q

∫ 1

0
f(Bs)dWs, (1.19)

for σH,q an explicit constant and W a standard Brownian motion independent of B.

4. When H = 3
4 and q is even,

1√
n

2−n/2
2n∑

k=1

f(B(k−1)2−n)
[
(2nH∆Bk2−n)q − µq

] Law−→ σ 3
4
,q

∫ 1

0
f(Bs)dWs, (1.20)

for σ 3
4
,q an explicit constant and W a standard Brownian motion independent of B.

5. When H > 3
4 and q is even,

2n−2Hn
2n∑

k=1

f(B(k−1)2−n)
[
(2nH∆Bk2−n)q − µq

] L2

−→ µq−2

(
q

2

)∫ 1

0
f(Bs)dZ

(2)
s , (1.21)

for Z(2) the Rosenblatt process introduced in Definition 6.

Finally, we can also give a new proof of the following result, stated and showed inde-
pendently by Gradinaru et al. [7] and Cheridito and Nualart [2] in a continuous setting:

Theorem 3 Assume that H > 1
6 , and that f : R → R verifies (H6). Then the limit in

probability, as n→ ∞, of the symmetric Riemann sums

1

2

2n∑

k=1

(
f ′(Bk2−n) + f ′(B(k−1)2−n)

)
∆Bk2−n (1.22)

exists and is given by f(B1) − f(0).

Remark 3 When H ≤ 1
6 , quantity (1.22) does not converge in general. As a counterexample,

one can consider the case where f(x) = x3, see Gradinaru et al. [7] or Cheridito and Nualart
[2].

2 Preliminaries and notations

We briefly recall some basic facts about stochastic calculus with respect to a fractional Brown-
ian motion. One refers to [17] for further details. Let B = (Bt)t∈[0,1] be a fractional Brownian
motion with Hurst parameter H ∈ (0, 1). That is B is a zero mean Gaussian process, defined
on a complete probability space (Ω,A, P ), with the covariance function

RH(t, s) = E(BtBs) =
1

2

(
s2H + t2H − |t− s|2H

)
, s, t ∈ [0, 1].

6



We denote by E the set of step functions on [0, T ]. Let H be the Hilbert space defined as the
closure of E with respect to the scalar product

〈1[0,t],1[0,s]〉H = RH(t, s).

The mapping 1[0,t] 7→ Bt can be extended to an isometry between H and the Gaussian space
H1 associated with B. We will denote this isometry by ϕ 7→ B(ϕ).

The covariance kernel can be written as

RH(t, s) =

∫ s∧t

0
KH(t, r)KH(s, r)dr,

where KH is a square integrable kernel given by

KH(t, s) = Γ(H +
1

2
)−1(t− s)H− 1

2F (H − 1

2
,
1

2
−H,H +

1

2
, 1 − t

s
),

F (a, b, c, z) being the Gauss hypergeometric function. Consider the linear operator K∗
H from

E to L2([0, 1]) defined by

(K∗
Hϕ)(s) = KH(1, s)ϕ(s) +

∫ 1

s
(ϕ(r) − ϕ(s))

∂KH

∂r
(r, s)dr.

For any pair of step functions ϕ and ψ in E , we have

〈K∗
Hϕ,K

∗
Hψ〉L2([0,1]) = 〈ϕ,ψ〉H.

As a consequence, the operator K∗
H provides an isometry between the Hilbert spaces and

L2([0, 1]). Hence, the process W = (Wt)t∈[0,1] defined by

Wt = B
(
(K∗

H)−1(1[0,t])
)

(2.23)

is a Wiener process, and the process B has an integral representation of the form

Bt =

∫ t

0
KH(t, s)dWs,

because (K∗
H1[0,t])(s) = KH(t, s).

Let S be the set of all smooth cylindrical random variables, i.e. of the form

F = φ(Bt1 , . . . , Btm)

where m ≥ 1, φ : R
m → R ∈ C∞

b and 0 ≤ t1 < . . . < tm ≤ 1. The derivative of F with respect
to B is the element of L2(Ω,H) defined by

DsF =

m∑

i=1

∂φ

∂xi
(Bt1 , . . . , Btm)1[0,ti](s), s ∈ [0, 1].
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In particular DsBt = 1[0,t](s). For any integer k ≥ 1, we denote by D
k,2 the closure of the set

of smooth random variables with respect to the norm

‖F‖2
k,2 = E

[
F 2
]
+

k∑

j=1

E
[
|DjF |2

H⊗j

]
.

The Malliavin derivative D verifies the chain rule: if ϕ : R
n → R is C 1

b and if (Fi)i=1,...,n is a
sequence of elements of D

1,2 then ϕ(F1, . . . , Fn) ∈ D
1,2 and we have,

Dϕ(F1, . . . , Fn) =
n∑

i=1

∂ϕ

∂xi
(F1, . . . , Fn)DFi.

The divergence operator I = I1 is the adjoint of the derivative operator D. If a random variable
u ∈ L2(Ω,H) belongs to the domain of the divergence operator, that is if it verifies

|E〈DF, u〉H| ≤ cu ‖F‖L2 for any F ∈ S ,

then I(u) is defined by the duality relationship

E
(
FI(u)

)
= E

(
〈DF, u〉H

)
,

for every F ∈ D
1,2.

For every n ≥ 1, let Hn be the nth Wiener chaos of B, that is, the closed linear subspace
of L2 (Ω,A, P ) generated by the random variables {Hn (B (h)) , h ∈ H, |h|

H
= 1}, where Hn is

the nth Hermite polynomial. The mapping In(h⊗n) = n!Hn (B (h)) provides a linear isometry
between the symmetric tensor product H⊙n and Hn. For H = 1

2 , In coincides with the multiple
stochastic integral. The following duality formula holds

E (FIn(h)) = E
(
〈DnF, h〉

H⊗n

)
, (2.24)

for any element h ∈ H⊙n and any random variable F ∈ D
n,2.

We recall the following simple formula for any s < t and u < v:

E ((Bt −Bs)(Bv −Bu)) =
1

2

(
|t− r|2H + |s− u|2H − |t− u|2H − |s− r|2H

)
. (2.25)

We will need the following lemma:

Lemma 4 We have:

1. Let s < t and u belong to [0, 1]. Then, if H < 1/2

∣∣E
(
Bu(Bt −Bs)

)∣∣ ≤ |t− s|2H . (2.26)

8



2. For any 1 ≤ k, ℓ ≤ 2n, and for all H ∈ (0, 1)

2n∑

k,ℓ=1

∣∣E
(
B(k−1)2−n ∆Bℓ2−n

)∣∣ = O(2n). (2.27)

3. For any r ≥ 1, we have, if H < 1 − 1
2r

2n∑

k,ℓ=1

|E (∆Bk2−n ∆Bℓ2−n)|r = O(2n−2rHn). (2.28)

4. For any r ≥ 1, we have if H = 1 − 1
2r

2n∑

k,ℓ=1

|E (∆Bk2−n ∆Bℓ2−n)|r = O(n22n−2rn). (2.29)

Proof. To prove inequality (2.26), we just write

E(Bu(Bt −Bs)) =
1

2
(t2H − s2H) +

1

2

(
|s− u|2H − |t− u|2H

)
,

and observe that we have |b2H −a2H | ≤ |b−a|2H for any a, b ∈ [0, 1], because H < 1
2 . To show

(2.27) using (2.25) we write

2n∑

k,ℓ=1

∣∣E
(
B(k−1)2−n ∆Bℓ2−n

)∣∣ = 2−2Hn−1
2n∑

k,ℓ=1

∣∣|k − 1|2H − k2H − |ℓ− k + 1|2H + |ℓ− k|2H
∣∣

≤ C2n.

Finally, to show (2.28) and (2.29), we write

2−2nrH
2n∑

k,ℓ=1

∣∣|k − ℓ+ 1|2H + |k − ℓ− 1|2H − 2|k − ℓ|2H
∣∣r

≤ 2n−2nrH
∞∑

p=−∞

∣∣|p+ 1|2H + |p− 1|2H − 2|p|2H
∣∣r,

and observe that, since the function
∣∣|p + 1|2H + |p − 1|2H − 2|p|2H

∣∣ behaves as CHp
2H−2 for

large p, the series in the right-hand side is convergent because H < 1− 1
2r . In the critical case

H = 1 − 1
2r , this series is divergent, and

2n∑

p=−2n

∣∣|p+ 1|2H + |p− 1|2H − 2|p|2H
∣∣r

behaves as a constant time n.

9



Lemma 5 Assume that H > 1
2 .

1. For every u, s, t ∈ [0, 1] we have

∣∣E
(
Bu(Bt −Bs)

)∣∣ ≤ 2H|t− s|. (2.30)

2. Assume that H > 1 − 1
2l for some l ≥ 1. Let u < v and s < t belong to [0, 1]. Then

|E(Bu −Bv)(Bt −Bs)| ≤ H(2H − 1)

(
2

2Hl + 1 − 2l

) 1
l

|u− v| l−1
l |t− s|. (2.31)

3. Assume that H > 1 − 1
2l for some l ≥ 0 (of course, this condition is immaterial when

l = 0). Then
2n∑

i,j=1

∣∣E
(
∆Bi2−n ∆Bj2−n

)∣∣l = O(22n−2ln). (2.32)

Proof: By symmetry, we can assume that s ≤ t. We have

E
(
Bu(Bt −Bs)

)
=

1

2

(
t2H − s2H

)
+

1

2

(
|s− u|2H − |t− u|2H

)
.

But, when 0 ≤ a < b ≤ 1:

b2H − a2H = 2H

∫ b−a

0
(u+ a)2H−1du ≤ 2H b2H−1 (b− a) ≤ 2H(b− a).

Thus, |b2H − a2H | ≤ 2H|b− a| and the first point follows.

Concerning the second point, using Hölder inequality, we can write

|E(Bu −Bv)(Bt −Bs)| = H(2H − 1)

∫ v

u

∫ t

s
|y − x|2H−2dydx

≤ H(2H − 1)|u − v| l−1
l

(∫ 1

0

(∫ t

s
|y − x|2H−2dy

)l

dx

) 1
l

≤ H(2H − 1)|u − v| l−1
l |t− s| l−1

l

(∫ 1

0

∫ t

s
|y − x|(2H−2)ldydx

) 1
l

.

Denote by H ′ = 1 + (H − 1)l and observe that H ′ > 1
2 (because H > 1 − 1

2l ). We can write

H ′(2H ′ − 1)

∫ 1

0

∫ t

s
|y − x|(2H−2)ldydx = E

∣∣∣BH′

1 (BH′

t −BH′

s )
∣∣∣ ≤ 2H ′|t− s|

by the first point of this lemma. This gives the desired bound.
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We prove now the third point. We have

2n∑

i,j=1

∣∣E
(
∆Bi2−n ∆Bj2−n

)∣∣l = 2−2nHl−l
2n∑

i,j=1

∣∣|i− j + 1|2H + |i− j − 1|2H − 2|i− j|2H
∣∣l

≤ 2n−2Hln+1−l
2n−1∑

k=−2n+1

∣∣|k + 1|2H + |k − 1|2H − 2|k|2H
∣∣l

and the function |k+1|2H + |k−1|2H −2|k|2H behaves as |k|2H−2 for large k. As a consequence
the series

∞∑

k=−∞

∣∣|k + 1|2H + |k − 1|2H − 2|k|2H
∣∣l

is divergent for H > 1 − 1
2q and the third point follows.

Let us introduce the Hermite process of order q.

Definition 6 Fix q ≥ 2 and H > 1 − 1
2q . The Hermite process of order q is defined by

Z
(q)
t = IW

q (Lt), where IW
q is the multiple stochastic integral with respect to the Wiener process

W given by the transfer equation (2.23), and for every t ∈ [0, 1], Lt is the symmetric square
integrable kernel given by

Lt(y1, . . . , yq) =
1

q!
1[0,t]q(y1, . . . , yq)

∫ t

y1∨...∨yq

∂1KH(u, y1) · · · ∂1KH(u, yq)du, (2.33)

where ∂1KH denotes the partial derivative of KH with respect to the first variable.

We have that

E(Z
(q)
t Z(q)

s ) =
1

q!

∫

[0,t∧s]q

(∫ s

y1∨...∨yq

∫ t

y1∨...∨yq

∂1KH(u, y1)∂1KH(v, y1)

× · · · × ∂1KH(u, yq)∂1KH(v, yq)dudv) dy1 · · · dyq

=
1

q!

∫ t

0

∫ s

0

(∫ u∧v

0
∂1KH(u, y1)∂1KH(v, y1)dy1

)q

dudv

=
(H(2H − 1))q

q!

∫ t

0

∫ s

0
|u− v|q(2H−2)dudv

=
cq(H)

q!

1

2

(
tq(2H−2)+2 + sq(2H−2)+2 − |t− s|q(2H−2)+2

)
,

for some constant cq(H). It can be easily seen that this process is q(H − 1) + 1 self-similar,
has stationary increments and admits moments of all orders. On the other hand, it has Hölder
continuous paths of order less than q(H − 1) + 1. We will see later (see Remark 4) that this
process coincides with the classical Hermite process that appears in [4] or [20]. For other
properties of related processes, we refer to Tudor [21].
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3 Proof of the main results

In this section we will provide the proofs of the main results. For simplicity, we write ε(k−1)2−n

(resp. δk2−n) instead of 1[0,(k−1)2−n] (resp. 1[(k−1)2−n,k2−n]). The following proposition provides

information on the asymptotic behavior of E
(
V

(q)
n (f)2

)
, as n tends to infinity, for H ≤ 1− 1

2q .

Proposition 7 Fix an integer q ≥ 1. Suppose that f satisfies (Hq). Then, if H ≤ 1
2q , then

E
(
V (q)

n (f)2
)

= O(2n(−2Hq+2)). (3.34)

If 1
2q ≤ H < 1 − 1

2q , then

E
(
V (q)

n (f)2
)

= O(2n). (3.35)

Finally, if H = 1 − 1
2q , then

E
(
V (q)

n (f)2
)

= O(n2n). (3.36)

Proof. Using the relation between Hermite polynomials and multiple stochastic inte-

grals, we have Hq

(
2nH∆Bk2−n

)
= 1

q!2
qnHIq

(
δ⊗q
k2−n

)
. In this way we obtain

E
(
V (q)

n (f)2
)

=
2n∑

k,ℓ=1

E
{
f(B(k−1)2−n) f(B(ℓ−1)2−n)Hq

(
2nH∆Bk2−n

)
Hq

(
2nH∆Bℓ2−n

)}

=
1

q!2
22Hqn

2n∑

k,ℓ=1

E
{
f(B(k−1)2−n) f(B(ℓ−1)2−n) Iq

(
δ⊗q
k2−n

)
Iq

(
δ⊗q
ℓ2−n

)}
.

Now we apply the product formula for multiple stochastic integrals (see [16], Proposition
1.1.3) and the duality relationship between the multiple stochastic integral IN and the iterated
derivative operator DN , obtaining

E
(
V

(q)
1,n (f)2

)

= 22Hqn
2n∑

k,ℓ=1

q∑

r=0

r!

q!2

(
q

r

)2

×E
{
f(B(k−1)2−n) f(B(ℓ−1)2−n) I2q−2r

(
δ⊗q−r
k2−n ⊗̃δ⊗q−r

ℓ2−n

)}
〈δk2−n , δℓ2−n〉rH

= 22Hqn
2n∑

k,ℓ=1

q∑

r=0

1

r!(q − r)!2

×E
{〈
D2q−2r

(
f(B(k−1)2−n) f(B(ℓ−1)2−n)

)
, δ⊗q−r

k2−n ⊗̃δ⊗q−r
ℓ2−n

〉

H⊗(2q−2r)

}
〈δk2−n , δℓ2−n〉rH,

12



where ⊗̃ denotes the symmetrization of the tensor product. The derivative of the product
D2q−2r

(
f(B(k−1)2−n) f(B(ℓ−1)2−n)

)
will be equal to a sum of derivatives:

D2q−2r
(
f(B(k−1)2−n) f(B(ℓ−1)2−n)

)
=

∑

a+b=2q−2r

f (a)(B(k−1)2−n) f (b)(B(ℓ−1)2−n)

×(2q − 2r)!
(
ε⊗a
(k−1)2−n⊗̃ε⊗b

(ℓ−1)2−n

)
.

We make the decomposition

E
(
V (q)

n (f)2
)

= An +Bn + Cn +Dn, (3.37)

where

An = 22Hqn
2n∑

k,ℓ=1

E
{
f (q)(B(k−1)2−n) f (q)(B(ℓ−1)2−n)

}
〈ε(k−1)2−n , δk2−n〉q 〈ε(ℓ−1)2−n , δℓ2−n〉q,

Bn = 22Hqn
∑

c+d+e+f=2q
d+e≥1

2n∑

k,ℓ=1

E
{
f (q)(B(k−1)2−n) f (q)(B(ℓ−1)2−n)

}
α(c, d, e, f)

×〈ε(k−1)2−n , δk2−n〉cH〈ε(k−1)2−n , δℓ2−n〉dH 〈ε(ℓ−1)2−n , δk2−n〉eH 〈ε(ℓ−1)2−n , δℓ2−n〉f
H
,

Cn = 22Hqn
∑

a+b=2q
(a,b)6=(q,q)

2n∑

k,ℓ=1

E
{
f (a)(B(k−1)2−n) f (b)(B(ℓ−1)2−n)

} (2q)!

q!2

×〈ε⊗a
(k−1)2−n⊗̃ε⊗b

(ℓ−1)2−n , δ
⊗q
k2−n⊗̃δ⊗q

ℓ2−n〉H⊗(2q) ,

and

Dn = 22Hqn
q∑

r=1

∑

a+b=2q−2r

2n∑

k,ℓ=1

E
{
f (a)(B(k−1)2−n) f (b)(B(ℓ−1)2−n)

} (2q − 2r)!

r!(q − r)!2

×〈ε⊗a
(k−1)2−n⊗̃ε⊗b

(ℓ−1)2−n , δ
⊗q−r
k2−n ⊗̃δ⊗q−r

ℓ2−n 〉H⊗(2q−2r) 〈δk2−n , δℓ2−n〉r
H
,

for some combinatorial constants α(c, d, e, f). That is, An and Bn contain all the terms with
r = 0 and (a, b) = (q, q); Cn contains the terms with r = 0 and (a, b) 6= (q, q); and Dn contains
the terms with 1 ≤ r ≤ q.

For any integer r ≥ 1, we set

αr,n = sup
k,ℓ

∣∣〈ε(k−1)2−n , δℓ2−n〉H
∣∣r , (3.38)

βr,n =
2n∑

k,ℓ=1

∣∣〈δk2−n , δℓ2−n〉H
∣∣r , (3.39)

γn =
2n∑

k,ℓ=1

∣∣〈ε(k−1)2−n , δℓ2−n〉H
∣∣ . (3.40)
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Then we have the following estimates:

|An| ≤ C22Hqn+2nα2q,n,

|Bn| + |Cn| ≤ C22Hqnα2q−1,nγn,

|Dn| ≤ C22Hqn
q∑

r=1

α2q−2r,nβr,n,

where C is a constant depending on the function f . Notice that the second inequality follows
from the fact that when (a, b) 6= (q, q), or (a, b) = (q, q) and c+ d+ e+ f = 2q with d ≥ 1 or
e ≥ 1, there will be at least a factor of the form 〈ε(k−1)2−n , δℓ2−n〉H in the expression of Bn or
Cn.

In the case H < 1
2 , we have, by Lemma 4, (2.26), αr,n ≤ 2−2nrH , by Lemma 4, (2.28),

βr,n ≤ C2n−2rHn and by Lemma 4, (2.27), γn ≤ C2n. As a consequence, we obtain

|An| ≤ C2n(−2Hq+2), (3.41)

|Bn| + |Cn| ≤ C2n(−2Hq+2H+1), (3.42)

|Dn| ≤ C

q∑

r=1

2n(−2(q−r)H+1), (3.43)

which implies the estimates (3.34) and (3.35).

In the case 1
2 ≤ H < 1 − 1

2q , by Lemma 5, (2.30), αr,n ≤ C2−nr, by Lemma 4, (2.28)

βr,n ≤ C2n−2rHn and by Lemma 4, (2.27), γn ≤ C2n. As a consequence, we obtain

|An| + |Bn| + |Cn| ≤ C2n(2q(H−1)+2),

|Dn| ≤ C

q∑

r=1

2n((2q−2r)(H−1)+1),

which also implies (3.35).
Finally, if H = 1 − 1

2q , by Lemma 5, (2.30), αr,n ≤ C2−nr, by Lemma 4, (2.29)

βr,n ≤ Cn22n−2rn and by Lemma 4, (2.27), γn ≤ C2n. As a consequence, we obtain

|An| + |Bn| + |Cn| ≤ C2n,

|Dn| ≤ C

q∑

r=1

n2
n r

q ,

which implies (3.36).

3.1 Proof of Theorem 1 in the case 0 < H <
1
2q

In this subsection we are going to prove the first point of Theorem 1. The proof will be done
in three steps. Set

V
(q)
1,n (f) = 2n(qH−1)V (q)

n (f).
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We first study the asymptotic behavior of E
(
V

(q)
1,n (f)2

)
, using Proposition 7.

Step 1. The decomposition (3.37) leads to

E
(
V

(q)
1,n (f)2

)
= 22n(qH−1) (An +Bn + Cn +Dn) .

From the estimate (3.42) we obtain

22n(qH−1) (|Bn| + |Cn|) ≤ C2n(2H−1),

which converges to zero as n goes to infinity since H < 1
2q ≤ 1

2 . On the other hand (3.43)
yields

22n(qH−1) |Dn| ≤ C

q∑

r=1

2n(2rH−1),

which tends to zero as n goes to infinity since 2rH − 1 ≤ 2qH − 1 < 0.
In order to handle the term An we make use of the following estimate, which follows

from Lemma 4, (2.26) and (2.25)

∣∣∣∣〈ε(k−1)2−n , δk2−n〉q
H
−
(
−2−2Hn

2

)q∣∣∣∣

=

∣∣∣∣〈ε(k−1)2−n , δk2−n〉H +
2−2Hn

2

∣∣∣∣

∣∣∣∣∣

q−1∑

s=0

〈ε(k−1)2−n , δk2−n〉sH
(
−2−2Hn

2

)q−1−s
∣∣∣∣∣

≤ C
(
k2H − (k − 1)2H

)
2−2Hqn. (3.44)

Thus,

∣∣∣∣∣∣
24Hqn−2n

2n∑

k,ℓ=1

E
{
f (q)(B(k−1)2−n) f (q)(B(ℓ−1)2−n)

}
〈ε(k−1)2−n , δk2−n〉q

H
〈ε(ℓ−1)2−n , δℓ2−n〉q

H

− 2−2n−2q
2n∑

k,ℓ=1

E
{
f (q)(B(k−1)2−n) f (q)(B(ℓ−1)2−n)

}
∣∣∣∣∣∣
≤ C22Hn−n,

which implies, as n→ ∞:

E
(
V

(q)
1,n (f)2

)
= 2−2n−2q

2n∑

k,ℓ=1

E
{
f (q)(B(k−1)2−n) f (q)(B(ℓ−1)2−n)

}
+ o(1). (3.45)

Step 2: We need the asymptotic behavior of the double product

Jn := E

(
V

(q)
1,n (f)2−n

2n∑

ℓ=1

f (q)(B(ℓ−1)2−n)

)
.
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Using the same arguments as in Step 1 we obtain

Jn = 2Hqn−2n
2n∑

k,ℓ=1

E
{
f(B(k−1)2−n) f (q)(B(ℓ−1)2−n)Hq

(
2nH∆Bk2−n

)}

=
1

q!
22Hqn−2n

2n∑

k,ℓ=1

E
{
f(B(k−1)2−n) f (q)(B(ℓ−1)2−n) Iq

(
δ⊗q
k2−n

)}

=
1

q!
22Hqn−2n

2n∑

k,ℓ=1

E
{〈
Dq
(
f(B(k−1)2−n) f (q)(B(ℓ−1)2−n)

)
, δ⊗q

k2−n

〉}

= 22Hqn−2n
2n∑

k,ℓ=1

q∑

a=0

1

q!

(
q

a

)2

E
{
f (a)(B(k−1)2−n) f (2q−a)(B(ℓ−1)2−n)

}

×〈ε(k−1)2−n , δk2−n〉aH 〈ε(ℓ−1)2−n , δk2−n〉q−a
H

.

It turns out that only the term with a = q will contribute to the limit as n tends to infinity.
For this reason we make the decomposition

Jn = 22Hqn−2n
2n∑

k,ℓ=1

1

q!
E
{
f (a)(B(k−1)2−n) f (q)(B(ℓ−1)2−n)

}
〈ε(k−1)2−n , δk2−n〉q

H
+ Sn,

where

Sn = 22Hqn−2n
2n∑

k,ℓ=1

〈ε(ℓ−1)2−n , δk2−n〉H
q−1∑

a=0

1

q!

(
q

a

)2

E
{
f (a)(B(k−1)2−n) f (2q−a)(B(ℓ−1)2−n)

}

×〈ε(k−1)2−n , δk2−n〉aH 〈ε(ℓ−1)2−n , δk2−n〉q−a−1
H

.

By (2.26) and (2.27), we have
|Sn| ≤ C22Hn−n,

which tends to zero as n goes to infinity. Moreover, by (3.44), we have
∣∣∣∣∣∣
22Hqn−2n

2n∑

k,ℓ=1

E
{
f (q)(B(k−1)2−n) f (q)(B(ℓ−1)2−n)

}
〈ε(k−1)2−n , δk2−n〉q

H

−(−1)q 2−2n−q
2n∑

k,ℓ=1

E
{
f (q)(B(k−1)2−n) f (q)(B(ℓ−1)2−n )

}
∣∣∣∣∣∣
≤ C 22Hn−n,

which also tends to zero as n goes to infinity. Thus, finally, as n→ ∞:

An = (−1)q 2−2n−q
2n∑

k,ℓ=1

E
{
f (q)(B(k−1)2−n) f (q)(B(ℓ−1)2−n)

}
+ o(1). (3.46)
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Step 3: By combining (3.45) and (3.46), we obtain that

E

∣∣∣∣∣V
(q)
1,n (f) − (−1)q

2q
2−n

2n∑

k=1

f (q)(B(k−1)2−n)

∣∣∣∣∣

2

= o(1),

as n→ ∞. Thus, the proof of the first point of Theorem 1 is done.

3.2 Proof of Theorem 1 in the case H > 1 − 1
2q

: the weighted Non Central

Limit Theorem

We can assume that q ≥ 2, the case where q = 1 being straightforward. We prove here that
the sequence V3,n(f) given by

V
(q)
3,n (f) = 2n(1−H)q−n V (q)

n (f) = 2qn−n 1

q!

2n∑

k=1

f
(
B(k−1)2−n

)
Iq

(
δ⊗q
k2−n

)

converges in L2(Ω) as n → ∞ to the pathwise integral
∫ 1
0 f(Bs)dZ

(q)
s with respect to the

Hermite process of order q.
First we will show the result when the function f is one. It is a generalization of a

result in [22] where the case q = 2 has been proven.

Lemma 8 For each t ∈ [0, 1], the sequence

Tn(t) = 2qn−n 1

q!

[2nt]∑

k=1

Iq

(
δ⊗q
k2−n

)
(3.47)

converges in L2(Ω) to the Hermite random variable Z
(q)
t .

Proof: By the transfer principle the multiple stochastic integral Iq

(
δ⊗q
k2−n

)
can be

written as a multiple stochastic integral with respect to the Wiener process W , Iq

(
δ⊗q
k2−n

)
=

IW
q

(
A⊗q

k2−n

)
, where

Ak2−n(s) = KH

(
k2−n, s

)
1[0,k2−n](s) −KH

(
(k − 1)2−n, s

)
1[0,(k−1)2−n](s)

=
(
KH

(
k2−n, s

)
−KH

(
(k − 1)2−n, s

))
ε(k−1)2−n(s) +KH

(
k2−n, s

)
δk2−n(s)

:= Dk2−n(s) + Ck2−n(s).

We will consider the case t = 1, the proof in the general case being similar. It suffices to prove
that

2qn−n 1

q!

2n∑

k=1

(Dk2−n + Ck2−n)⊗q → L1
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in L2([0, 1]q) as n → ∞, where Lt denotes the kernel introduced in (2.33). We will show first
that 2qn−n 1

q!

∑2n

k=1D
⊗q
k2−n converges in L2([0, 1]q) to L1 as n tends to infinity. We can write,

for every s ∈ [0, 1] and k = 1, . . . , n

Dk2−n(s) = 2−n∂1KH (ξk(s), s) ε(k−1)2−n(s),

where ξk(s) is a point in the interval [(k − 1)2−n, k2−n]. Hence

2qn−n 1

q!

2n∑

k=1

Dk2−n(s1) · · ·Dk2−n(sq) = 2−n 1

q!

2n∑

k=1

∂1KH (ξk(s1), s1) . . . ∂1KH (ξk(sq), sq)

×1[0,(k−1)2−n]q(s1, . . . sq),

is a Riemann sum that converges a.e. to L1. To obtain the convergence in L2([0, 1]q) we will
apply the dominated convergence theorem. In fact,

∫

[0,1]q

∣∣∣∣∣2
qn−n

2n∑

k=1

Dk2−n(s1) · · ·Dk2−n(sq)

∣∣∣∣∣

2

ds1 · · · dsq

= 22qn−2n
2n∑

k,ℓ=1

(∫ 1

0
Dk2−n(s)Dℓ2−n(s)ds

)q

≤ 22qn−2n
2n∑

k,ℓ=1

(E (∆Bk2−n ∆Bℓ2−n))q ,

which is bounded by Lemma 5, (2.32). Then, it only remains to show that for every j ≤ q− 1,
the kernel

Rn(s1, . . . , sq) = 2qn−n
2n∑

k=1

Dk2−n(s1) . . . Dk2−n(sq−j)Ck2−n(sq−j+1) . . . Ck2−n(sq)

converges to zero in L2([0, 1]q) as n → ∞. Let us compute the L2 norm of this kernel (note
that the presence of at least one term Ci implies that the mixed terms in the above expression
vanish)

‖Rn‖2 = 22qn−2n

∫

[0,1]q
ds1 · · · dsq

2n∑

k=1

D2
k2−n(s1) . . . D

2
k2−n(sq−j)

×C2
k2−n(sq−j+1) . . . C

2
k2−n(sq),

and since ∫ 1

0
D2

k2−n(s)ds ≤ E
∣∣∆Bk2−n

∣∣2 = 2−2Hn,

and ∫ 1

0
C2

k2−n(s)ds ≤ E
∣∣∆Bi2−n

∣∣2 = 2−2Hn,
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we get ‖Rn‖2 = O(22qn−n−2Hqn) and this goes to zero because H > 1 − 1
2q .

Remark 4 It follows from Taqqu [20] and Dobrushin and Major [4] that the sequence Tn in
Lemma 8 converges in law to the “standard” historical Hermite process defined through its
moving average representation as a multiple integral with respect to a Wiener process with
time horizon R. From Lemma 8, it is clear that the process introduced in Definition 6 has the
same finite dimensional distributions as the historical Hermite process.

Remark 5 We can also work directly with the fractional Brownian motion B without using
its associated Brownian motion W . The sequence of functions

ϕn = 2n

[2nt]∑

j=1

δ⊗q
j2−n

is a Cauchy sequence in the space H⊗q. Indeed, for any m ≥ n we have

〈ϕn, ϕm〉
H⊗q = (H(2H − 1))22n+m

[2mt]∑

j=1

[2nt]∑

k=1

(∫ j2−m

(j−1)2−m

∫ k2−n

(k−1)2−n

|s− s′|2H−2dsds′

)q

,

and,

lim
n→∞

lim
m→∞

〈ϕn, ϕm〉
H⊗2 = (H(2H − 1))2

×
∫ t

0

∫ t

0
|s− s′|(2H−2)qdsds′ = cq,Ht

(2H−2)q+2,

where cq,H = (H(2H−1))2

(2H−2)q(2(2H−2)q+1) . In the same way we can prove that limn→∞ 〈ϕn, ϕn〉H⊗2 =

cq,Ht
(2H−2)q+2. For every t ∈ [0, 1], we denote by µt the uniform measure on the diagonal of

[0, t]q, normalized to have a total mass equals t. That is, for any continuous function f on
[0, 1]q we have ∫

[0,1]q
fdµt =

∫ t

0
f(s, . . . , s)ds.

Then, it is clear that the limit in H⊗q of the sequence of functions ϕn can be identified with µt.
We define the stochastic process Xt by Xt = Iq(µt). Then, as a consequence of the previous
computations we have

lim
n→∞

V (q)
n (1[0,t]) = Xt,

in L2. It is clear that the process X coincides with the Hermite process Z(q).

Proof of the third point in Theorem 1. Consider now the case of a general function

f . We fix two integers m ≥ n, and decompose the sequence V
(q)
3,m(f) as follows:

V
(q)
3,m(f) = A(m,n) +B(m,n),
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where

A(m,n) =
1

q!
2m(q−1)

2n∑

j=1

f
(
B(j−1)2−n

) j2m−n∑

i=(j−1)2m−n+1

Iq

(
δ⊗q
i2−m

)
,

and

B(m,n) =
1

q!
2m(q−1)

2n∑

j=1

j2m−n∑

i=(j−1)2m−n+1

∆m,n
i,j f(B)Iq

(
δ⊗q
i2−m

)
,

with the notation ∆m,n
i,j f(B) = f(B(i−1)2−m)−f(B(j−1)2−n). We shall study A(m,n) and B(m,n)

separately.

Study of A(m,n). When n is fixed, Lemma 8 yields that the random vector


 1

q!
2m(q−1)

j2m−n∑

i=(j−1)2m−n+1

Iq

(
δ⊗q
i2−m

)
; j = 1, . . . , 2n




converges in L2, as m→ ∞, to the vector

(
Z

(q)
j2−n − Z

(q)
(j−1)2−n ; j = 1, . . . , 2n

)
.

Then, as m→ ∞, A(m,n) L2

→ A(∞,n), where

A(∞,n) :=

2n∑

j=1

f(B(j−1)2−n)
(
Z

(q)
j2−n − Z

(q)
(j−1)2−n

)
.

Finally, we claim that when n tends to infinity, A(∞,n) converges in L2 to
∫ 1
0 f (Bs) dZ

(q)
s .

Observe that the stochastic integral
∫ 1
0 f (Bs) dZ

(q)
s is a pathwise Riemann-Stieltjes integral.

So, to get the convergence in L2 it suffices to show that the sequence A(∞,n) is bounded in Lp

for some p ≥ 2. The integral
∫ 1
0 f (Bs) dZ

(q)
s has moments of all orders, because for all p ≥ 2

E


 sup

0≤s<t≤1




∣∣∣Z(q)
t − Z

(q)
s

∣∣∣
|t− s|γ




p
 <∞

and

E

[
sup

0≤s<t≤1

( |Bt −Bs|
|t− s|β

)p]
<∞,

if γ < q(H − 1) + 1 and β < H. On the other hand, Young’s inequality implies

∣∣∣∣A
(∞,n) −

∫ 1

0
f (Bs) dZ

(q)
s

∣∣∣∣ ≤ cρ,νVarρ

(
f(B)

)
Varν

(
Z(q)

)
,
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where Varρ denotes the variation of order ρ, and with ρ, ν > 1 such that 1
ρ + 1

ν > 1. Choosing

ρ > 1
H and ν > 1

q(H−1)+1 , the result follows.

This proves that, by letting m and then n go to infinity, A(m,n) converges in L2 to∫ 1
0 f (Bs) dZ

(q)
s .

Study of the term B(m,n): We prove that

lim
n→∞

sup
m
E
∣∣∣B(m,n)

∣∣∣
2

= 0. (3.48)

We have, using the product formula for multiple stochastic integrals

E
∣∣∣B(m,n)

∣∣∣
2

= 22m(q−1)
2n∑

j=1

j2m−n∑

i=(j−1)2m−n+1

2n∑

j′=1

j′2m−n∑

i′=(j′−1)2m−n+1

q∑

l=0

l!

q!2

(
q

l

)2

×b(m,n)
l 〈δi2−m , δi′2−m〉lH, (3.49)

where
b
(m,n)
l = E

(
∆m,n

i,j f(B)∆m,n
i′,j′f(B)I2(q−l)

(
δ
⊗(q−l)
i2−m ⊗̃δ⊗(q−l)

i′2−m

))
. (3.50)

By the duality relationship between the multiple stochastic integral and the iterated derivative
operator, we obtain

b
(m,n)
l = E

〈
D2(q−l)

(
∆m,n

i,j f(B)∆m,n
i′,j′f(B)

)
, δ

⊗(q−l)
i2−m ⊗̃δ⊗(q−l)

i′2−m

〉
H⊗2(q−l)

=
∑

a+b=2(q−l)

〈
E
[
D(a)

(
∆m,n

i,j f(B)
)
⊗̃D(b)

(
∆m,n

i′,j′f(B)
)]
, δ

⊗(q−l)
i2−m ⊗̃δ⊗(q−l)

i′2−m

〉
H⊗2(q−l)

=
∑

a+b=2(q−l)

(2q − 2l)!
〈
E
((
f (a)(B(i−1)2−m)ε⊗a

(i−1)2−m − f (a)(B(j−1)2−n)ε⊗a
(j−1)2−n

)
⊗̃

(
f (b)(B(i′−1)2−m)ε⊗b

(i′−1)2−m − f (b)(B(j′−1)2−n)ε⊗b
(j′−1)2−m

))
, δ

⊗(q−l)
i2−m ⊗̃δ⊗(q−l)

i′2−m

〉
H⊗2(q−l)

,

where D(a) denotes the iterated Malliavin derivative. The term in (3.49) corresponding to
l = q can be estimated by

1

q!
22m(q−1) sup

|x−y|≤2−n

E |f(Bx) − f(By)|2 βq,m,

where βq,m has been introduced in (3.39), which converges to zero as n tends to infinity,
uniformly in m, because by Lemma 5, (2.32), and using that H > 1 − 1

2q , we have

sup
m

22m(q−1)βq,m <∞.
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In order to handle the terms with 0 ≤ l ≤ q − 1, we make the decomposition

∣∣∣b(m,n)
l

∣∣∣ ≤
∑

a+b=2(q−l)

(2q − 2l)!

4∑

h=1

Bh, (3.51)

where

B1 = E
∣∣∣∆m,n

i,j f(B)∆m,n
i′,j′f(B)

∣∣∣ 〈ε⊗a
(i−1)2−m ⊗̃ε⊗b

(i′−1)2−m , δ
⊗(q−l)
i2−m ⊗̃δ⊗(q−l)

i′2−m 〉H⊗2(q−l) ,

B2 = E
∣∣∣f (a)(B(j−1)2−n)∆m,n

i′,j′f(B)
∣∣∣

×〈
(
ε⊗a
(i−1)2−m − ε⊗a

(j−1)2−n

)
⊗̃ε⊗b

(i′−1)2−m , δ
⊗(q−l)
i2−m ⊗̃δ⊗(q−l)

i′2−m 〉H⊗2(q−l) ,

B3 = E
∣∣∣∆m,n

i,j f(B)f (b)(B(j′−1)2−n)
∣∣∣

×〈ε⊗a
(i−1)2−m⊗̃

(
ε⊗b
(i′−1)2−m − ε⊗b

(j′−1)2−n

)
, δ

⊗(q−l)
i2−m ⊗̃δ⊗(q−l)

i′2−m 〉H⊗2(q−l) ,

B4 = E
∣∣∣f (a)(B(j−1)2−n)f (b)(B(j′−1)2−n)

∣∣∣

×〈
(
ε⊗a
(i−1)2−m − ε⊗a

(j−1)2−n

)
⊗̃
(
ε⊗b
(i′−1)2−m − ε⊗b

(j′−1)2−n

)
, δ

⊗(q−l)
i2−m ⊗̃δ⊗(q−l)

i′2−m 〉H⊗2(q−l) .

(3.52)

By using Lemma 5, (2.30), and the conditions imposed on the function f , one can bound the
terms B1, B2 and B3 as follows:

|B1| ≤ c(q, f,H) sup
|x−y|≤ 1

2n ,0≤a≤2q

E
∣∣∣f (a)(Bx) − f (a)(By)

∣∣∣
2
2−2m(q−l),

|B2| + |B3| ≤ c(q, f,H) sup
|x−y|≤ 1

2n ,0≤a≤2q

E
∣∣∣f (b)(Bx) − f (b)(By)

∣∣∣ 2−2m(q−l),

and by using Lemma 5, (2.31), we obtain that

|B4| ≤ c(q, f,H)2
−n q−1

q
−2m(q−l)

.

By setting

Rn =
1

q!
sup

|x−y|≤2−n

E |f(Bx) − f(By)|2 sup
m

22m(q−1)βq,m,
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we can finally write, by the estimate (2.32) in Lemma 5

E
∣∣∣B(m,n)

∣∣∣
2

≤ Rn + c(H, f, q)22m(q−1)

(
sup

|x−y|≤ 1
2n ,0≤a≤2q

∣∣∣f (b)(Bx) − f (b)(By)
∣∣∣+ (2−n)

q−1
q

)

×
2n∑

j=1

j2m−n∑

i=(j−1)2m−n+1

2n∑

j′=1

j′2m−n∑

i′=(j′−1)2m−n+1

q−1∑

l=0

2−2m(q−l)〈δi2−m , δi′2−m〉lH

≤ Rn + c(H, f, q)22m(q−1)

(
sup

|x−y|≤ 1
2n ,0≤a≤2q

∣∣∣f (b)(Bx) − f (b)(By)
∣∣∣+ (2−n)

q−1
q

)

×
q−1∑

l=0

2−2m(q−l)
2m∑

i,j=0

〈δi2−m , δi′2−m〉lH

≤ Rn + c(H, f, q)

(
sup

|x−y|≤ 1
2n ,0≤a≤2q

∣∣∣f (b)(Bx) − f (b)(By)
∣∣∣+ (2−n)

q−1
q

)

and this converges to zero due to the continuity and B and since q > 1.

3.3 Proof of Theorem 1 in the case 1
2q

< H ≤ 1 − 1
2q

: the weighted central

limit theorem

Suppose first that 1
2q < H < 1 − 1

2q . We study the convergence in law of the sequence

V
(q)
2,n (f) = 2−

n
2 V

(q)
n (f). We fix two integers m ≥ n, and decompose this sequence as follows:

V
(q)
2,m(f) = A(m,n) +B(m,n),

where

A(m,n) = 2−
m
2

2n∑

j=1

f
(
B(j−1)2−n

) j2m−n∑

i=(j−1)2m−n+1

Hq

(
2nH∆B

)
,

and

B(m,n) =
1

q!
2m(Hq− 1

2
)

2n∑

j=1

j2m−n∑

i=(j−1)2m−n+1

∆m,n
i,j f(B)Iq

(
δ⊗q
i2−n

)
,

and where as before we make use of the notation ∆m,n
i,j f(B) = f(B(i−1)2−m) − f(B(j−1)2−n).

Let us first consider the term A(m,n). From Theorem 1 in Breuer and Major (1983),
and taking into account that H < 1 − 1

2q , it follows that the random vector


2−

m
2

j2m−n∑

i=(j−1)2m−n+1

Hq

(
2nH∆Bi2−n

)
; j = 1, . . . , 2n



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converges in law, as m→ ∞, to

(
cH,q∆Wj2−n ; j = 1, . . . , 2n

)

where W is a standard Brownian motion independent of B (the independence is a consequence
of the central limit theorem for multiple stochastic integrals proved, for instance, in Peccati
and Tudor [18]). Since

2n∑

j=1

f
(
B(j−1)2−n

)
∆Wj2−n

converges in L2 as n→ ∞ to the Itô integral
∫ 1
0 f(Bs)dWs we conclude that, by letting m→ ∞

and then n→ ∞, we have

A(m,n) law−→ cH,q

∫ 1

0
f(Bs)dWs.

Then it suffices to show that

lim
n→∞

sup
m→∞

E
∣∣∣B(m,n)

∣∣∣
2

= 0. (3.53)

We have, as in (3.49)

E
∣∣∣B(m,n)

∣∣∣
2

= 2m(2Hq−1)
2n∑

j=1

j2m−n∑

i=(j−1)2m−n+1

2n∑

j′=1

j′2m−n∑

i′=(j′−1)2m−n+1

q∑

l=0

l!

q!2

(
q

l

)2

×b(m,n)
l 〈δi2−m , δi′2−m〉lH, (3.54)

where b
(m,n)
l has been defined in (3.50). The term in (3.54) corresponding to l = q can be

estimated by
1

q!
2m(2Hq−1) sup

|x−y|≤2−n

E |f(Bx) − f(By)|2 βq,m,

which converges to zero as n tends to infinity, uniformly in m, because by Lemma 4, (2.28),
and using that H < 1 − 1

2q

sup
m

2m(2Hq−1)βq,m <∞.

In order to handle the terms with 0 ≤ l ≤ q − 1, we will distinguish two different cases,
depending on the value of H.

Case H < 1/2. Suppose 0 ≤ l ≤ q − 1. By Lemma 4, (2.27), we can majorize b
(m,n)
l

as follows
|b(m,n)

l | ≤ C2−4Hm(q−l) ,

and, as a consequence, applying again Lemma 4, (2.28) the corresponding term in (3.54) will
be bounded by

C2m(2Hq−1)2−4Hm(q−l)βl,m ≤ C22mH(l−q),
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which converges to zero as m tends to infinity because l < q.

Case H > 1/2. Suppose 0 ≤ l ≤ q − 1. By Lemma 5, (2.30), we get the estimate

|b(m,n)
l | ≤ C2−2m(q−l) ,

and, as a consequence, applying again Lemma 4, (2.28) the corresponding term in (3.54) will
be bounded by

C2m(2Hq−1)2−2m(q−l)βl,m.

If H < 1 − 1
2l , applying Lemma 4, (2.28) this is bounded by C2m(2H(q−l)−2(q−l)), which

converges to zero as m tends to infinity because H < 1 and l < q. In the case H = 1 − 1
2l ,

applying Lemma 4, (2.29) we get the estimate Cm2m(2H(q−l)−2(q−l)), which converges to zero
again as m tends to infinity because H < 1 and l < q. In the case H > 1 − 1

2l we apply

Lemma 5, (2.30) and we get the estimate C2m(2H2+1−2q), which converges to zero as m tends
to infinity because H < 1 − 1

2q .

The proof in the case H = 1 − 1
2q is similar. The convergence of the term A(m,n) is

obtained by applying Theorem 1’ in Breuer and Major (1983), and the convergence to zero in
L2 of the term B(m,n) follows the same lines as before.

3.4 Proof of Corollary 2

For any integer q, we have

(
2nH∆Bk2−n

)q − µq =

q∑

p=1

1

p!

(
q

p

)
µq−p2

HnpIp(δ
⊗p
k2−n)

=

q∑

p=1

(
q

p

)
µq−pHp

(
2nH∆Bk2−n

)

Indeed, the pth kernel in the chaos representation of
(
2nH∆Bk2−n

)q
will be

1

p!
E(Dp

(
2nH∆Bk2−n

)q
) =

1

p!

(
q

p

)
2nHpµq−pδ

⊗p
k2−n .

Suppose first that q is odd and H > 1
2 . In this case we have

2−nH
2n∑

k=1

f(B(k−1)2−n)(2nH∆Bk2−n)q =

q∑

p=1

(
q

p

)
µq−p2

−nHV (p)
n (f).

The term with p = 1 converges in L2 to qµq−1

∫ 1
0 f(Bs)dBs. For p ≥ 2, the limit in L2 is

zero. In fact, if H ≤ 1− 1
2p , E

(
V

(p)
n (f)2

)
is bounded by a constant times n2n, by Proposition
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7, and, by Theorem 1, (1.16), if H > 1 − 1
2p , E

(
V

(p)
n (f)2

)
is bounded by a constant times

2n2(1−H)p−2n, and 2(1 −H)p− 2 − 2H < 0.
Suppose now that q is even, then

22nH−n
2n∑

k=1

f(B(k−1)2−n)
[
(2nH∆Bk2−n)q − µq

]
= 22nH−n

q∑

p=2

(
q

p

)
µq−pV

(p)
n (f) .

If H < 1
4 , by Theorem 1, (1.13), 22nH−n

(
q
2

)
µq−2V

(2)
n (f) converges in L2 as n tends to

infinity to 1
4

(q
2

)
µq−2

∫ 1
0 f

′′(Bs)ds. On the other hand, for p ≥ 4, 22nH−nV
(p)
n (f) converges

to zero in L2. In fact, if H < 1
2p , then by (3.34), E

(
V

(p)
n (f)2

)
= O(2n(−2Hp+2)), and

−2Hp + 2 + 4H − 2 < 0, and if H ≥ 1
2p , then by (3.35), E

(
V

(p)
n (f)2

)
= O(2n), and

4H − 1 < 0. Therefore (1.18) holds.

In the case 1
4 < H < 3

4 , for any p = 2, 4, . . . , q, by Theorem 1, (1.14), 2−n/2V
(p)
n (f)

converges in law to σH,p

∫ 1
0 f(Bs)dW

(p)
s . The Brownian motions W (p) are independent. This

is a consequence of the central limit theorems for multiple stochastic integrals proved, for
instance, in Peccati and Tudor [18]. This implies the convergence (1.19). The proof of (1.20)
is analogous.

Finally, consider the case H > 3
4 . For p = 2, 2n−2HnV

(2)
n (f) converges in L2 to

µq−2

(
q
2

) ∫ 1
0 f(Bs)dZ

(2)
s by Theorem 1, (1.16). If p ≥ 4, then 2n−2HnV

(p)
n (f) converges in L2

to zero because again by Theorem 1, (1.16), E
(
V

(p)
n (f)2

)
= O(2n(2−2(1−H)p)).

3.5 Proof of Theorem 3

We can assume H < 1
2 , the case where H ≥ 1

2 being straightforward. By a Taylor’s formula,
we have

f(B1) = f(0) +
1

2

2n∑

k=1

(
f ′(Bk2−n) + f ′(B(k−1)2−n)

)
∆Bk2−n

− 1

12

2n∑

k=1

f (3)(B(k−1)2−n)
(
∆Bk2−n

)3 − 1

24

2n∑

k=1

f (4)(B(k−1)2−n)
(
∆Bk2−n

)4

− 1

80

2n∑

k=1

f (5)(B(k−1)2−n)
(
∆Bk2−n

)5
+Rn, (3.55)
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with Rn converging towards 0 in probability as n→ ∞, because H > 1/6. We can expand the
monomials xm, m = 2, 3, 4, 5, in terms of the Hermite polynomials:

x2 = H2(x) + 1

x3 = H3(x) + 3H1(x)

x4 = H4(x) + 6H2(x) + 3

x5 = H5(x) + 10H3(x) + 15H1(x).

In this way we obtain

2n∑

k=1

f (3)(B(k−1)2−n) (∆Bk2−n)3 = 2−3HnV (3)
n (f (3)) + 3 × 2−2HnV (1)

n (f (3)), (3.56)

2n∑

k=1

f (4)(B(k−1)2−n) (∆Bk2−n)4 = 2−4HnV (4)
n (f (4))

+6 × 2−4HnV (2)
n (f (4)) + 3 × 2−4Hn

2n∑

k=1

f (4)(B(k−1)2−n), (3.57)

2n∑

k=1

f (5)(B(k−1)2−n) (∆Bk2−n)5 = 2−5HnV (5)
n (f (5))

+10 × 2−5HnV (3)
n (f (5)) + 15 × 2−4HnV (1)

n (f (5)). (3.58)

By (3.35) and using that H > 1
6 , we have E

(
V

(3)
n (f (3))2

)
≤ C2n, E

(
V

(3)
n (f (5))2

)
≤ C2n, and,

as a consequence, the first summand in (3.56) and the second one in (3.58) converge to zero in L2

as n tends to infinity. Also, by (3.35), E
(
V

(4)
n (f (4))2

)
≤ C2n, and E

(
V

(5)
n (f (5))2

)
≤ C2n, and

the first summand in (3.57) and the first summand in (3.58) converge to zero in L2 as n tends

to infinity. If 1
6 < H < 1

4 , by (3.34), E
(
V

(2)
n (f (4))2

)
≤ C2n(−4H+2)), and 2−4HnV

(2)
n (f (4))

converges to zero in L2 as n tends to infinity. If 1
4 ≤ H < 1

2 , by (3.35), E
(
V

(2)
n (f)2

)
≤ C2n,

and 2−4HnV
(2)
n (f (4)) converges to zero in L2 as n tends to infinity.

Moreover, using the identity, valid for regular functions h : R → R:

2n∑

k=1

h′(B(k−1)2−n)∆Bk2−n = h(B1) − h(0) − 1

2

2n∑

k=1

h′′(Bθ
k2−n

) (∆Bk2−n)2

for some θk2−n lying between (k − 1)2−n and k2−n, we deduce that 2−4HnV
(1)
n (f (5)) tends to
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zero, because H > 1
6 . In the same way, we have

2−2HnV (1)
n (f (3)) = −1

2
2−2Hn

2n∑

k=1

f (4)(B(k−1)2−n) (∆Bk2−n)2

−1

6
2−2Hn

2n∑

k=1

f (5)(B(k−1)2−n) (∆Bk2−n)3 + o(1).

We have obtained

f(B1) = f(0) +
1

2

2n∑

k=1

(
f ′(Bk2−n) + f ′(B(k−1)2−n)

)
∆Bk2−n

+
1

8
2−4Hn

2n∑

k=1

f (4)(B(k−1)2−n)H2

(
2nH∆Bk2−n

)

−1

6
2−2Hn

2n∑

k=1

f (5)(B(k−1)2−n) (∆Bk2−n)3 + o(1).

As before 2−4HnV
(2)
n (f (4)) converges to zero in L2. Finally,

2−2Hn
2n∑

k=1

f (5)(B(k−1)2−n) (∆Bk2−n)3 = 2−5HnV (5)
n (f (8)) + 3 × 2−4HnV (3)

n (f (5)),

which also converges to zero by the same arguments as above. This completes the proof.
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[8] M. Gradinaru, F. Russo and P. Vallois (2001): Generalized covariations, local time and
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integrals. Séminaire de Probabilités XXXVIII, 247–262, Lecture Notes in Math., 1857,
Springer, Berlin.

[19] J. Swanson (2007): Variations of the solution to a stochastic heat equation. Ann. Probab.
35, no. 6, 2122-2159.

[20] M. Taqqu (1979): Convergence of integrated processes of arbitrary Hermite rank. Z.
Wahrsch. verw. Gebiete 50, 53-83.

29



[21] C.A. Tudor (2007): Analysis of the Rosenblatt process. ESAIM Probability and Statistics.
To appear.

[22] C.A Tudor and F. Viens (2007): Variations and estimators for the selsimilarity order
through Malliavin calculus. Preprint.

30


