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Spectral Vorticity and Lagrangian Velocity
Measurements in Turbulent Jets

Cédric Poulain, Nicolas Mazellier, Philippe Gervais, Yves Gagne
and Christophe Baudet

Laboratoire des Ecoulements Géophysiques et Industriels, INPG/UJF/CNRS-UMR 5519, 1025, Rue 
de la Piscine 38041 Grenoble

Abstract. In this paper we report an experimental investigation of various statistical properties of 
the spatial Fourier modes of the vorticity field in turbulent jets for a large range of Reynolds num-

bers (530 ≤ Rλ ≤ 6100). The continuous time evolution of a spatial Fourier mode of the vorticity 
distribution, characterized by a well-defined wavevector, is obtained from acoustic scattering mea-

surements. The spatial enstrophy spectrum, as a function of the spatial wave-vector, is determined 
by scanning the incoming sound frequencies. Time-frequency analysis of the turbulent vorticity 
fluctu-ations is also performed for different length scales of the flows. Vorticity time-correlations 
show that the characteristic time of a Fourier mode behaves as the sweeping time. Finally, we report 
preliminary Lagrangian velocity measurements obtained using acoustic scattering by soap bubbles 
inflated with helium. Gathering a large number of passages of isolated bubbles in the scattering 
volume, one is able to compute the Lagrangian velocity PDF and velocity spectrum. Despite the 
spatial filtering due to the finite size of the bubble, the latter exhibits a power law, with the -2 
exponent predicted by the Kolmogorov theory, over one decade of frequencies.

Key words: fully developed turbulence, Fourier statistics, acoustic scattering, Lagrangian measure-
ments

1. Introduction

In fully developed turbulence, most of the experimental, numerical and theoretical 
works [1] rely on the statistics of the longitudinal velocity increments to study the

dynamics of given turbulent length scales in the physical space. In the Fourier space,

there are numerous theoretical and some numerical studies [2], but very few experi-

ments. The objective of this paper is mainly to give experimental vorticity data in the 
Fourier space. Firstly, the ultra-sound acoustic scattering method is described, and

the experimental conditions are detailed. Then, both time and spatial spectra of vor-

ticity are presented and are extended to a time-frequency analysis. Correlation time

of the vorticity Fourier modes is discussed. Finally, we show how the same scatter-

ing method can be applied to detect and track the trajectory of isolated soap bubbles

in a turbulent air jet, in order to extract Lagrangian velocity data and compute

statistics.
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1.1. ACOUSTIC SCATTERING BY VORTICITY

Wave propagation (light and sound) in fluids is known to be strongly affected

by turbulent velocity and/or temperature gradients. In the case of direct propaga-

tion, turbulence is responsible for random wave amplitude and phase fluctuations

along the ray paths leading to the well-known stellar scintillation phenomena,

limiting the spatial resolution of optical and radio observations [2, 3]. Acoustic

wave propagation is also sensitive to local velocity and temperature fluctuations

induced by turbulence: Such fluctuations are responsible for local fluctuations of

the sound velocity along the ray paths which result in distorsions of the wave fronts

[2–6].

In the presence of spatial inhomogeneities with length scales comparable to the

acoustic wave-lengthλs , an incident acoustic plane wave can also be scattered giving

rise to scattered acoustic waves propagating in directions away from the incident

wave direction of propagation [7, 8]. There exists a large number of theoretical [9–

13] and numerical [14–16] studies dealing with the acoustic scattering phenomenon

by velocity fields. Most of it was initiated nearly 50 years ago and started with

the papers authored by Obukhov [9], Kraichnan [10], Chu and Kovàsznay [11]

and Batchelor [12], to mention but a few. Recently, Lund [13] has established,

under reasonable and slightly restrictive assumptions, a linear relation between the

scattered amplitude of a plane acoustic wave incident on a turbulent flow and the

spatial Fourier transform of the vorticity field.

In an analogy with the more usual light scattering phenomenon, and follow-

ing Batchelor [12], the physical mechanism at the origin of acoustic scattering

by vorticity can be thought of as follows: an acoustic wave impinging on a vor-

ticity distribution induces fluctuations of the vorticity at the incoming sound fre-

quency (by virtue of the Kelvin circulation theorem). Each scatterer (vortex) acting

as a secondary source will, in turn, radiate a sound wave. The coherent average

(taking into account the relative positions of the individual vorticity elements)

over the scatterers distribution results in the emission, outside the vorticity do-

main, of scattered acoustic waves. Note that, whereas the light scattering process

is usually linear, the acoustic scattering phenomenon depicted here stems from

the non-linear term of the Navier–Stokes equation, and requires more detailed ex-

planations and computations, beyond the scope of this paper. In particular, one

can find in [13] a clear explanation of the respective contributions to the total

acoustic scattering amplitude, of the vorticity field on one hand, and of the irro-

tational velocity field, induced by the vorticity field, on the other. Using a Born

approximation, Lund et al. [13] obtain the following relation between the scat-

tered acoustic pressure amplitude and the spatial Fourier transform of the vorticity

field:

pscat(ν)

pinc

= π2i
−cos(θscat)

1 − cos(θscat)

νei2πνD/c

c2 D
(n ∧ r).�(qscat, ν − νo) (1)
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Figure 1. Acoustic scattering by a vorticity distribution.

where ∧ and “.” stand for the vector product and the scalar product, respectively,

and where the scattering wave-vector (also called momentum transfert) is given by:

qscat = 2π

c
(νr − νon) ≃ 4πνo

c
sin

(

θscat

2

)

r − n

|r − n| for ν ≃ νo (2)

In the above equations, the meaning of the different variables is the following

according to the schematic drawing in Figure (1):

– qscat = k − ko is the scattering wave-vector.

– n and r are the unit vectors in the incident and scattered wave directions of

propagation, respectively.

– ko (resp. νo) is the vector wave-number (resp. frequency) of the incoming sound

wave (in the direction n).

– k (resp. ν) is the vector wave-number (resp. the frequency) of the scattered sound

wave (in the direction of observation r).

– θscat is the scattering angle.

– pinc is the complex pressure amplitude of the incoming sound wave (assumed to

be plane and monochromatic).

– pscat is the complex pressure amplitude of the scattered sound wave.

– D, c and λs stand respectively for the acoustical path between the measurement

area and the detector, the adiabatic sound velocity and the acoustic wavelength.

1.2. ACOUSTIC SCATTERING: A PROBE OF VORTICITY

Equation (1), indicates that, using an incident acoustic plane wave (ideally of infinite

extension), one can directly probe the time-space Fourier mode �⊥(qscat, f =
ν − νo) of a well defined component of the vorticity field �⊥(r, t):

�⊥(qscat, f ) =
∫ ∫ ∫ ∫

�⊥(r, t)e− j(qscatr−2π f t)dtd3r (3)

Actually, the direction of the probed vorticity component (indicated by the sub-

script ⊥) is perpendicular to the scattering plane defined by the vector wave-numbers

of the incident and scattered (detected) acoustic waves. Equation (1) can be refor-

mulated as a relation between the scattered amplitude and the convolution product
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of the incident acoustic amplitude and �⊥(qscat, f = ν − νo). Using an inverse

Fourier transform on the frequency variable, one then obtains the following linear

relation between the time variables:

pscat(k, t) ∝ L(θscat)�⊥(qscat = k − ko, t).pinc(ko, t) (4)

expressing the scattered pressure amplitude as the result of a modulation of the

incident acoustic pressure by the space Fourier transform �(qscat, t). The variations

of the angular prefactor L(θscat) with the scattering angle θscat, shown on Figure 2,

are typical of a quadrupolar like radiation pattern, diverging at null scattering angle

(where the Born approximation breaks down), and exhibiting null values at θscat =
90◦ and θscat = 180◦ (back-scattering).

Among the several hypothesis put forward in [11, 13] to arrive at Equation

(4), necessary for the Born approximation to be applicable, the velocity amplitude

usound = pinc/ρoc of the incident wave and the Mach number M = vflow/c of the

flow under investigation (associated to the probed vorticity distribution) must be

such that: usound ≪ vflow ≪ c. In addition, the time-scales of the flow are required to

be much smaller than the period To = 1/νo of the incident wave. These conditions

can be easily fulfilled using ultrasonic acoustic waves with low-enough intensity.

From a practical point of view, Equations (1) and (4) imply that the scattered

pressure signal is a narrow-band signal, centered around the incident frequency

νo; the continuous time evolution of �⊥(qscat, t) can then be easily recovered by a

simple demodulation operation using for exemple an heterodyne detection (either

analog or digital) [17]. After demodulation, for a fixed incoming sound frequency

νo and a fixed scattering angle θscat, one thus gets the time dynamics of a spatial

Fourier mode of the vorticity �⊥(qscat, t), characterized by a well-defined vector

wave-number qscat (with specified modulus and orientation).

The overall effect of the acoustic scattering process can then be viewed as a

time-continuous spatial band-pass filtering operation of the vorticity distribution

Figure 2. Acoustic scattering by vorticity directivity.
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�⊥(r, t). The center frequency of the spatial filtering operation is given by the scat-

tering vector wave-number qscat, which depends on a combination of the incident

frequency νo and of the scattering angle θscat as stated by Equation (2). For practical

reasons and as we dispose of wide-band transducers (emission and reception), the

analyzed length-scale of the flow is tuned through the selection of an incident fre-

quency νo, while the scattering angle is usually kept constant. It is worth noting here

that, as a result of the demodulation process according to which the instantaneous

scattered pressure signal is multiplied by both the in-phase (cos(2πνot)) and the

in-quadrature (sin(2πνot)) signals phase-locked with the electric signal driving the

sound transmitter, we get finally a low-frequency signal that is complex (modulus

and phase) and directly proportional to the complex quantity �⊥(qscat, t), where:

�⊥(qscat, t) =
∫ ∫ ∫

�⊥(r, t)e− jqscatrd3r (5)

Thus, the instantaneous phase of the demodulated scattered pressure signal is

simply a measure of the phase modulation of the scattered pressure wave with re-

spect to the incident wave (the carreer, serving as a phase reference). Similarly, the

instantaneous amplitude of the demodulated scattered pressure signal is a measure

of the amplitude modulation with respect to the constant amplitude of the inci-

dent wave. Both informations (phase and amplitude) are easily recovered from the

electric signals, owing to the linearity property of the acoustic transducers used to

generate and detect acoustic waves.

1.3. SPATIAL FILTERING: FINITE SIZE EFFECTS AND SPECTRAL RESOLUTION

As indicated by Equation (1) and Figure 2, the acoustic amplitude scattered by

vorticity distributions is a strongly decreasing function of the scattering angle θscat.

In order to preserve an acceptable signal-to-noise ratio, one needs to work with

low scattering angles (typ. between 10◦ and 60◦). Hence, we work with a bistatic

configuration, using a pair of acoustic transducers : one transmitter and one receiver.

The relative positions of the two tranducers, as well as their arrangement with respect

to the flow under investigation, define the scattering angle and the orientation of

the scattering wave-vector qscat with respect to the flow geometry (e.g., its mean

velocity). A typical experimental configuration, for the study of a turbulent jet flow

is represented on Figure 3.

Equation (1) is valid for an ideal incident plane wave and a perfectly directive de-

tection. In a real experiment, transducers are of finite dimensions and one has to take

into account diffraction effects. Let L be the typical size of the acoustic transducers

and λs = c/νo the acoustic wavelength, at large distances from the transducer (in

the far-field limit D ≥ L2/λs [18, 4]), one expects acoustic energy to be either

emitted by the transmitter or detected by the receiver in a cone corresponding to a

continuous distribution of angles defining the angular aperture (or directivity). In

particular, the principal diffraction lobe, around the normal to each tranducer, is a
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Figure 3. Acoustic scattering experiment in a turbulent jet flow.

cone with a half angle aperture �θ given by [18, 4]): �θ ≃ sin(�θ ) = λs/L . By

differentiating Equation (2), one can associate to these distributions of emission and

detection angles, a distribution of probed scattering wave-vectors qscat = 4π
sin(

θscat
2

)

λs

with a typical width:

�qscat = 2π
cos

(

θ
2

)

λs

�θ ≃ 2π
L

cos

(

θ
2

)

(6)

Equation (6) gives an estimation of the width of the spatial band-pass filtering

operation performed by the scattering process around the spatial frequency (length

scale) qscat. It is interesting at this point to notice that Equation (6) can be interpreted

as a mere consequence of the uncertainty relation �qscat�x ≃ 2π , where �x =
L/cos(θ/2) is roughly the extension of the measurement volume (in the direction

of qscat), defined by the intersection of the incident and detected (antenna beam)

acoustic beams (cf. Figure 3). An equivalent formulation, albeit in the physical

space, of the previous result can be found for example in ([4] pp. 443–446), where

the scattering amplitude in an experimental bistatic configuration is expressed as:

�⊥(qscat, t) =
∫ ∫ ∫ +∞

−∞
|Frec(r)Ftrans(r)|�⊥(r, t)e− jqscatrd3r (7)

where G(r) = |Frec(r)(Ftrans(r)| is a weighting function defined as the modulus of

the cross product of the complex amplitudes of the incident (resp. detected) Frec(r)

(resp. Ftrans(r)) acoustic beams.
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Let us note Vscat, the volume of the region of space over which G(r) takes

appreciable non-zero values and let us call Vscat the scattering volume, Equation

(7) can be expressed as a windowed spatial Fourier transform:

�⊥(qscat, t) =
∫ ∫ ∫

Vscat

�⊥(r, t)e− jqscatrd3r (8)

In conclusion, we deal with a complex signal zscat(t) = ρ(t) e jφ(t) ∝ �⊥(qscat, t),

with a spectral resolution given by:

qscat = qscatex ± �qx ex ± �qyey ± �qzez (9)

qscat =
4πνo

c
sin(θscat/2) (10)

�qx ≃ �qy ≃ �qz ≃
(

1

Vscat

)1/3

≃ 1
L

cos(θscat/2)

(11)

In the following, we shall refer to pscat(t) as the scattered pressure signal (real)

with frequencies around νo (high frequency) and to zscat(t) as the demodulated

scattered pressure signal (complex) with low frequencies.

2. Experimental Conditions

2.1. FLOW CONFIGURATIONS

Two axisymetric turbulent jets have been investigated: a laboratory air jet at mod-

erate Reynolds number, (hereafter called the LEGI jet), and a low-temperature

gaseous helium jet at very high Reynolds number, which has been performed in

the cryogenic facility hosted by the CERN in Geneva. In the laboratory air jet, the

center of the measurement volume was located on the axis at about 40 diameters

downstream the nozzle (with a diameter of 12 cm). The mean velocity and the rms

velocity have been measured in the center of the scattering measurement volume,

with conventional instrumentation (hot wire and Pitot anemometry). The value

of the Taylor microscale Reynolds number, estimated from longitudinal velocity

samples and isotropic and homogeneous relations, ranges 530 ≤ Rλ ≤ 785 [19].

The high Reynolds jet investigated with acoustic scattering [20, 21] consists in

an axisymetric gaseous helium jet at a temperature of about 4 K . The flow emerges

from a 2.5 cm diameter nozzle into a large, thermally insulated cylindrical chamber

(4.6 m high and with a diameter of 1.4 m). The cryostat is connected to a large

refrigerator, with 6kW cooling power, allowing flow rates of cryogenic Helium as

high as 250 g/s. Taking advantage of the very low kinematical viscosity of Helium

at such a low temperature (ν ≃ 810−8 m2/s at T = 4.5K and P = 1.2 bar), very

large Reynolds numbers can be achieved (up to Rλ ≃ 6000). Longitudinal velocity

fluctuations have also been measured with a dedicated super-conducting ‘hot-wire’

anemometer, located at the center of the acoustic measurement volume, on the jet
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Table I. Turbulent flows characteristics.

Flow Rλ λ(mm) η(μm) L/ℓo 2π/qmin 2π/qmax

LEGI Jet 530 8.4 180 0.75 ≃3.5λ ≃10η

740 6.7 120 ” ≃4.5λ ≃15η

785 6.5 107 ” ≃5λ ≃17η

CERN Jet 3450 0.69 5.45 1,5 ≃10 λ ≃1.2λ

4750 0.51 3.40 ” ≃15λ ≃1.8λ

6090 0.42 2.55 ” ≃17λ ≃2λ

axis, 50 nozzle diameters downstream. For the highest flow rate, the mean velocity

in the measurement volume was ≃4.4 m/s and the rms velocity ≃1.25 m/s.

The main flow characteristics of the different experiments are summarized in

Table 2, as well as the range of investigated spatial wave-vectors.

2.2. EXPERIMENTAL SET-UP

Acoustic waves are generated and detected using Sell-type transducers (see e.g.,

[22]). The Sell tranducers are electro-acoustic reciprocal transducers, consisting in

a circular plane piston, of diameter L = 15 cm and L = 5 cm, respectively in

the LEGI and the CERN jet flows, polarized with a high static voltage (≈200 V

DC). The circular membrane made of a very thin (thickness ≃15 μm) mylar sheet

achieves a large frequency band-width (between 1 kHz and 200 kHz in air flows).

Indeed, when the working fluid is air, frequencies higher than 200 kHz are strongly

attenuated by dissipative process (viscosity and thermal conductivity). At small

acoustic frequencies (below 1 kHz), the main frequency limitations stem from the

turbulent noise generated by the turbulent flow under investigation and the beams

divergency due to diffraction effects. The transmitter is driven by a MOSFET power

amplifier (NF 4005, 100VA), while the acoustic pressure signal collected on the

receiver is converted into a voltage signal using a home-made linear, low noise,

charge amplifier.

In all experiments, the scattering angle θscat is kept at a constant value (typ. 60◦

in air flows) chosen so as to realize a trade-off between optimizing the sensitivity

of the measurements and limiting the spurious effects induced by diffraction side-

lobes. Moreover, in any case, the size L of the transducers is such that the linear

size (Vscat)
1/3 is of the same order than the integral length scale of the turbulent

flow (note that in the CERN experiment, the sound velocity is about 110 m/s,

nearly three times smaller than in the air at usual temperature). In a typical sound

scattering experiment time series of the acoustic pressure signal are collected by the

Sell receiver and then sampled and recorded using Agilent E1430 VXIbus-based

analog to digital converters with a high precision (23 bits). Each E1430 module is

provided with an analog anti-aliasing filter, digital filtering and decimation circuits

and its own local oscillator allowing real-time heterodyne demodulation. In order
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to reduce phase noise and frequency drift, the sampling clock, the local oscillator

clock of the E1430 digitizer and the clock of the frequency generator (Agilent

E33120), which generates the continuous sinusoidal signal driving the transmitter,

are locked on the same 10 MHz master clock. The frequency of the local oscillator,

used for the numerical demodulation by the E1430 digitizer, is thus precisely tuned

to the frequency νo of the incoming sound wave.

3. Spectral Analysis and Spatial Enstrophy Spectrum

3.1. TEMPORAL AND SPECTRAL CHARACTERISTICS OF THE SCATTERED

PRESSURE SIGNAL

We consider in this section, the averaged statistical spectral properties of the de-

modulated scattered pressure signal, recorded on the detector for fixed incoming

sound frequency νo and scattering angle θscat, defining a single analyzing wave-

vector qscat according to Equations (1) and (2). Indeed, being a direct image of the

time-evolution of �⊥(r, t) which is a stochastic signal, one expects the demodulated

scattered pressure signal zscat(t) to be also a complex random signal. We can express

the complex signal zscat(t) as ρ(t) eiφ(t), where ρ(t) (resp. φ(t)) is the instantaneous

amplitude modulation (resp. phase modulation). Typical evolutions of these two

quantities are represented on Figure 4, obtained in the LEGI jet for a scattering

wave-vector (qscatλ = 4.93). The upper plot shows the evolution, along time, of the

instantaneous intensity I (t) = |zscat(t)|2 = ρ(t)2, proportional to the instantaneous

Figure 4. Instantaneous scattered pressure intensity (upper) and phase modulation (lower) in

the LEGI jet flow (Rλ ≃ 785).
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spatial enstrophy |�(qscat, t)|2. The signal I (t) clearly exhibits very large fluctua-

tions. The lower part of Figure 4 sketches the time-evolution of the instantaneous

phase φ(t). In this representation, the phase φ(t) has been unwrapped, using an ap-

propriate algorithm, to take into account phase jumps greater than π . The behaviour

of the phase shift is roughly linear with a mean slope dφ(t)/dt = 5800 rad/s. In-

deed, since in this experiment the direction of the scattering wave-vector qscat has

been chosen to be aligned with the mean flow velocity vector Vavg, the linear phase

shift is a mere consequence of a Doppler effect δν(t) = ν(t) − νo = 1
2π

(
dφ(t)

dt
) with:

dφ(t)

dt
= qscatVavg (12)

This Doppler effect is related to the advection of the vorticity distribution by the

large scale velocity field. Note however, that local fluctuations of the instantaneous

frequency shift are still visible, owing to turbulent fluctuations in time of the local

velocity itself. From the knowledge of qscat (739 m−1) and the estimated slope of

dφ(t)/dt , we get an estimation of the local mean flow velocity : 7.79 m/s of the

order of the mean flow velocity obtained with usual hot-wire measurements, yet

averaged on a much longer time (7.39 m/s).

Let’s turn now to the spectral properties of the demodulated scattered pressure

signal. From a long time series (220 points sampled at Fs = 16384 Hz, correspond-

ing to 2500 integral times Tint), we estimate the average Power Spectral Density

(the spectrum hereafter will be referred as PSDscat(δν)) using the usual Welch’s av-

eraged periodogram method [23] (with a hanning window of length 2048 samples

and an overlap between consecutive segments of 1024 samples). The resulting PSD

estimation, for the previous signal is plotted on Figure 5. The spectrum PSDscat(δν),

is asymmetric (with respect to the incident frequency νo (corresponding to a null

Doppler frequency δν = 0) and has a Gaussian shape centered on a positive Doppler

shift frequency as we choose qscatVavg > 0. Note that, thanks to the complex nature

of the demodulated signal zscat(t), we are sensitive to the direction of the flow:

we are thus able to discriminate positive (i.e., downstream) and negative (i.e., up-

stream) velocities. Indeed, the Gaussian shape of the scattered pressure PSDscat(δν)

is a direct consequence of the Gaussian statistics of the large scale velocity. Using

a non-linear Gaussian fit (the dashed line on Figure 5):

PSDscat(δν) = A(νo)√
2πδνrms

exp
− (δν−δνavg)2

2(δνrms)2 (13)

we find a value δνavg = 865.5 Hz and a value δνrms = 224.5 Hz measuring the

width of the fluctuations of the advection velocity around its mean value. The esti-

mated values δνavg and δνrms can be converted into values of the advection velocity

according to Equation (12) : Vavg = 7.37 m/s and Vrms = 1.91 m/s in very good

agreement with hot-wire anemometry measurements of the longitudinal velocity

(7.39 m/s and 1.89 m/s).
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Figure 5. Power spectral density of �⊥(qscat, t) at a scale ∼λ in the LEGI jet (Rλ ≃ 785).

3.2. POWER SPECTRAL DENSITY OF THE VORTICITY FOURIER MODES IN HIGH

REYNOLD NUMBERS TURBULENCE

Acoustic scattering measurements have also been conducted in the CERN jet. In-

deed, taking advantage of the very low kinematical viscosity of gaseous Helium at

low temperature (around 4 K), it is possible to achieve large Reynolds numbers, in

a well controlled flow (implying statistical stationarity of the turbulent flows under

investigation), while keeping moderate Mach number values in order for the Born

approximation used in acoustic scattering analysis to apply. Figure 6 displays the

PSD of the scattered acoustic pressure signal for Rλ = 3450). For this figure, the

scattering angle is set to θscat = 30◦ and the incoming sound frequency to νo = 110

kHz giving a scattering wave-number qscat = 3250 m−1 equivalent to an analyzing

scale 2.8λ.

As in the LEGI jet, a large amplitude scattered peak is still visible on the PSD;

when fitted with a Gaussian, one gets an estimation of the mean advection velocity

of 1.24 m/s, in agreement with longitudinal velocity statistics obtained by hot-wire

anemometry. Notice, however, that from the variance of the Doppler shift frequency

δνrms, we obtain an estimation of the variance of the velocity significantly larger than

the one given by hot-wire anemometry. The observed discrepancy, of order 20%,

could be ascribed to the finite size of the transducers (responsible for a significative

increase of the spectral resolution bandwidth δqscat according to Equation 11).
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Figure 6. Power spectral density of �⊥(qscat, t), at a scale ∼3λ in the CERN helium jet flow

(Rλ ≃ 3450).

A salient feature of the PSD at large Reynolds number, lies in the presence of

significative scattered pressure amplitude at high-frequency shifts, manifesting as

exponential tails on both sides of the principal Gaussian peak. Note that a close look

at Figure 5, also reveals a similar behaviour, albeit with a much smaller amplitude

(relative to the Gaussian peak). We have checked that the two exponential-like

wings are approximately symetric with respect to the mean Doppler shift frequency,

indicating that this high-frequency part of the PSD is associated with vorticity

events, advected by the large-scale flow. As the typical frequencies involved in

these exponential wings are an order of magnitude larger than the Doppler shifts,

we are inclined to ascribe them to a much richer dynamic of the time evolution

of the small scale vorticity events. Comparisons with PSD obtained at still higher

Reynolds numbers in the CERN experiment (up to Rλ = 6090), indicate a clear

enhancement of this high-frequency behaviour (with respect to the low frequency

Gaussian part).

3.3. SPATIAL ENSTROPHY SPECTRUM

In the LEGI Jet experiment, the scattering measurements have been repeated for

various incoming sound frequencies (the scattering angle being held to the constant

value 60◦) in order to scan a large range of spatial wave-vector numbers. For each
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Figure 7. Evolution of the mean δνavg and of the variance δνrms of the Doppler shifts, with the

scattering wave-number qscat in the LEGI jet (Rλ ≃ 785).

incoming sound frequency νo, the time spectrum P SDscat(δν) has been fitted with

a Gaussian function (according to Equation (13)) in order to estimate δνavg(qscat),

δνrms(qscat) and A(qscat). Figure (7) shows a plot of the evolution of δνavg(qscat) and

δνrms(qscat) with the wave-number qscat. A linear evolution is roughly evidenced,

according to Equation (12).

By integrating the scattered pressure PSD with respect to the Doppler shift fre-

quency δν, one gets for each wave-number qscat, a measure of the spatial enstrophy

spectrum according to the Parseval’s formula [17]:

lim
T →∞

1

T

∫ +T/2

−T/2

|� (qscat, t)|2 dt = lim
T →∞

1

T

∫ +∞

−∞
|�T (qscat, δν)|2 d(δν) (14)

where : �T (qscat, δν) =
∫ +T/2

−T/2
� (qscat, t)e− j2πδνt dt

Using Equations (1) and (13):
∫ +∞

−∞
|zscat (δν)|2 d(δν) = A(νo) (15)

one sees that the quantity qscat
2 A(νo), is a direct estimation of the spatial en-

strophy spectrum Enstro(qscat) = qscat
2〈|�(qscat, t)|2〉t at wave-number qscat =

( 4πνo

c
) sin( θscat

2
) up to a multiplicative factor |H (νo)|2 which accounts for the fre-

quency response of both transmitter and receiver around the working frequency
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Figure 8. Spatial enstrophy spectral density as a function of the non-dimensional wave-number

in the LEGI jet (Rλ ≃ 785).

νo. Actually, the transfer function H (νo) is evaluated from measurements of the

electrical response delivered by the receiver, when the transmitter is driven by

a wide-band electrical white noise. We have plot on Figure 8 the variations of

Enstro(qscat) against the turbulent wave-numbers qscat, for various length scales in

the inertial range (Rλ = 785).

This log–log representation suggests a power–law scaling, with an exponent

slightly positive and close to Kolmogorov 1941 prediction (dashed line with a

slope 1/3). Resorting to a scale invariance argument and assuming the statistical

homogenity and isotropy of the flow, one expects (following Kolmogorov) the

spatial enstrophy spectrum to scale as : Enstro(k) ∝ k2 E(k), where E(k) ∝ k−5/3 is

the turbulent energy spectral density. This latter result is the mere consequence of

the definition of the vorticity field Ω(r, t) = ∇ ∧ u(r, t), which leads to Ω(k, t) =
−ik ∧ u(k, t) in the Fourier space.

The spatial enstrophy spectrum differs significantly from Eulerian vorticity time-

spectra measured with multi-wires velocity probes [24–26]. In its principle, the

acoustic scattering measurement gives a good resolution in the Fourier space, thus

it gives the true 1D spectrum, as the spatial Fourier transform of the vorticity field is

evaluated at a well defined spatial wave-vector. In the case of multi-wires anemom-

etry measurements of the Eulerian vorticity, the vorticity spectrum evaluated at

wave-number qx = 2π ( ν
Vavg

) involves the contributions of all the spatial wave-

vectors with the 1D projection qx [27, 28]. Taken as a whole, such a ‘1D spectrum’
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is mainly dominated by the small scales (large qx ) viscous cut-off and hence does

not exhibit any inertial scaling [29].

3.4. TIME-FREQUENCY DISTRIBUTIONS

A detailed examination of the time evolution of the scattered pressure signal (phase

and amplitude as depicted on Figure 4), reveals strong fluctuations which can

be ascribed to the travel in the measurement volume of finite duration vorticity

events. In turn the scattered acoustic signal exhibits a time-varying spectrum, as

the frequency of the measured pressure signal drops from ν0 to ν0 + δν, when

a vorticity event is present, with significative energy at the wave-vector qscat in

the spatial Fourier domain. Due to the randomness of the advection velocity of

the vorticity field, the true vorticity spectrum is blurred and wiped out by the time

averaging process. Thus, we seek after a representation of the signal which preserves

simultaneously the time and frequency information.

Time-frequency distributions [30–32], among which the Wigner–Ville distri-

bution (WVD) is the most famous, provide a simultaneous description (in time

and frequency) of the energy distributions of non-stationary signals in the time-

frequency plane. The Wigner–Ville distribution Wz(t, ν) of a complex analytic

signal z(t) is defined as the time Fourier transform of the local auto-correlation

function of z(t): Rz(t, τ ) = z(t + τ
2
)z∗(t − τ

2
) with respect to the lag variable τ :

Wz(t, ν) = Fτ

[

z
(

t + τ

2

)

z∗
(

t − τ

2

)]

= Fτ [Rz(t, τ )] (16)

where z(t) is the time signal and z∗(t) its complex conjugate. The operator F(.)

denotes the Fourier transform operator, with respect to the variable (.). This def-

inition generalizes, in some way, the Wiener–Khinchin theorem to non-stationary

signals, for which the auto-correlation function depends on two-time variables:

Rz(t1, t2) = 〈z(t1)z(t2)〉 �= Rz(t1 − t2). From an experimental and heuristic point of

view, the effect of the operator Rz(t, τ ) is equivalent to a local-phase conjugation

of the signal, which enhances the phase derivative related to the Doppler shift [30].

Similarly, one usually defines the ambiguity function Az(θ, τ ) as the inverse Fourier

transform (F−1
t ) of Rz(t, τ ) with respect to the first variable t .

Az(θ, τ ) = F−1
t

[

z
(

t + τ

2

)

z∗
(

t − τ

2

)]

= F−1
t [Rz(t, τ )] (17)

Thus, Wz(t, ν) and Az(θ, τ ) are related by the two-dimensional Fourier transform

Wz(t, ν) =
∫ ∫

Az(θ, τ ) e− j(tθ+ντ )dθdτ (18)

The ambiguity function reduces to a deterministic correlation function in time if θ is

set to zero. Similarly, as can be seen in a dual form which starts with Z (ν) = Ft [z(t)],

it can be seen as a deterministic correlation of spectra if τ is set to zero.
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Starting from the Wigner–Ville distribution Wz(t, ν), a wide class of Time-

frequency distributions (TFD) can be developed by means of bi-dimensional

smoothing operations with appropriate kernels φ(θ, τ ):

Cz(t, ν, φ) =
∫ ∫ ∫

e j((ξ−t)θ−ντ )φ(θ, τ )z ξ + τ

2
z∗ ξ − τ

2
dξdτdθ (19)

The purpose of such a generalization of the WVD is to provide the experimen-

talist with an operationnal definition of the TFDz(t, ν) of any signal z(t), which can

be interpreted as a time-frequency energy density: TFDz(t, ν)�ν�t is the energy of

the signal z(t) between the instants t and t +�t , in the frequency band [ν ν +�ν].

Indeed, one can show that with such a definition (smoothing kernels), the so-called

covariance property (invariance with respect to time and frequency translations or

modulations) and marginal preservations are respected:

PSDz(ν) = lim
T →∞

1

T

∫ +T/2

−T/2

TFDz(t, ν) dt (20)

|z(t)z∗(t)| =
∫ +∞

−∞
TFDz(t, ν) dν (21)

An example of such a Time-Frequency analysis is displayed in Figure 9

corresponding to the time-serie presented in Figure 4. The center part of Figure 9

Figure 9. Time-frequency analysis of zscat(t) in the LEGI air jet flow (Rλ ≃ 785). center :

TFDz(t, ν), left : PSD marginal (o) and averaged PSD (-), top : instantaneous power marginal.
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is a pseudo-color image (with a linear gray-scale) of the level TFDscat(t, ν). This

representation evidences the existence of finite duration events, with local random

Doppler shifts corresponding to their own advection velocity. On the left side

of Figure 9, the time averaged spectrum has been represented, together with the

frequency marginal PSDz(ν) = lim
T →∞

1
T

∫ +T/2

−T/2
TFDscat(t, ν)dt of TFDscat(t, ν). The

latter representation demonstrates the blurring effect of the random advection by

the large-scale velocity field. A way to overcome this random sweeping effect is

to account for the instantaneous advection velocity (at each time where a vorticity

event is present, detected by a large amplitude of ρ(t)) . Noting that, as the major

effect of the advection velocity is to induce a phase modulation according to a

Doppler frequency shift, we have observed that random advection velocity can

be safely compensated and fully eliminated by considering only the modulus

ρ(t) of the scattering complex pressure signal zscat(t) thus ignoring the phase

information φ(t).

4. Time-Space Correlations

4.1. CHARACTERISTIC TIME OF A VORTICITY MODE

Following the later remark, the characteristic time of any spatial vorticity Fourier

mode �⊥(qscat, t) can be studied by considering only its modulus ∝ ρ(t). Figure

10 shows the normalized auto-covariance Covρρ(τ ) of the vorticity modulus for

different wave-vectors qscatt aligned with the jet axis in the case of LEGI experiment.

The typical shape of these correlation curves (right figure) brings out two times: a

short one (hereafter refered as τs) characterized by a fast decrease of the correlation,

and a longer one (noted τl) associated with low, but significant correlation values.

Qualitatively, the short-time part can be rather well fitted by a Gaussian curve

(as shown in the left figure), while the long-time correlation part has rather an

exponential-like shape.

The short time corresponds to the average time during which the component of

a vorticity event �⊥ is tuned with the analyzing wave-number qscatt. This short time

τs clearly varies with the analyzing scale q−1
scatt (see below).

In our experiments, the duration τs was systematically much shorter than the

mean transit time in the measurement volume evaluated from the size L of the

scattering volume and the mean advection velocity: τs ≪ ( L
Vavg

) (the mean tran-

sit time in this experiment is ≃25 ms). Accordingly, this latter observation re-

veals the Lagrangian feature of the time analysis performed on the spatial Fourier

modes of vorticity by means of the covariance estimator Covρρ(τ ). The short

time corresponds to the average duration during which the component �⊥ of

a vorticity event is observed at the the analyzing wave-number qscat. On the

contrary, the long time part of the correlation does not seem to depend on the

scale q−1
scatt. In particular, we observe that the correlation curves cross the null

value axis at a typical time of the order of τ0 = 2π (Urmsq0)−1, where q0 is the
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Figure 10. Time correlation of vorticity modulus for different scales 1/qscat in the LEGI jet

(Rλ ≃ 740) (left : detail of the short delays part, right : long delays behaviour).

wave-number characteristic of the integral length scale of the flow. In our ex-

perimental conditions, this large-scale time is longer than the travel time in the

measurement volume. This weak auto-correlation of the modulus ρ(t) at long

time delays τ (larger than the duration time τs) suggests that it should reflect the

time behaviour of the inter-event dynamics (involving several isolated events). The

significantly non-zero values, is an indication of the organization of several events

belonging to the same large structure of the turbulent flow. We will not investigate

further these long time correlation properties as they clearly do not correspond to

a Lagrangian description of the flow.

Focussing on the short time τs, the main question is to know how it depends on

both the length scale and the Reynolds number.

4.2. SCALE DEPENDENCE

Figure 11 shows the behaviour of the short time τs with respect to the length

scale qscat. Here τs has been arbitrarily defined as the width at half the maximum

correlation value. We checked that another definition of τs (for instance, the standard

deviation of the Gaussian fit) does not change the results.
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Figure 11. Scaling of τs (normalized by the large scale time τ0) with the wave number qscat:

(×) Rλ ≃ 530), (∇) Rλ ≃ 6090.

Despite the low extent of the analyzing wave-number range (∼ one decade),

data are in better agreement with a slope −1 than a slope −2/3, meaning that

the charateristic time of �⊥( �qscatt, t), depends linearly on the scale, whatever the

Reynolds number. Thus, τs does not scale as the eddy turn-over time (∼q−2/3). For

the smallest inertial scale range (the only one attainable with our acoustic scattering

device), experiments show that τs is actually proportional to the local sweeping time,

defined as τsweep = 2π (Urmsqscat)
−1. Putting forward an analogy between a given

Fourier mode �⊥(qscatt) (in the Fourier space) and a velocity increment δv(δr ) over

a given separation δr ∼ qscatt
−1 (in the real space) then, the experimental data of

the Figure 11 are in agreement with those obtained, numerically by Sanada et al.

[33], and experimentally by Xu et al. [34]. Such a result would suggest that τsweep is

the pertinent time of the vortex stretchings and/or tippings due to the local velocity

gradients. In both papers [33, 34], it appears that for the largest scales of the inertial

range, the eddy turn-over time possibly becomes again shorter than the sweeping

one. Unfortunately, our acoustic device can not reach such inertial scales.

4.3. REYNOLDS DEPENDENCE

Figure 11 also indicates that the ratio of the vorticity mode life-time τs to the local

sweeping time τsweep weakly depends on the Reynolds number.

19



Figure 12. Power-law behaviour of a(Rλ) in jets for 530 ≤ Rλ ≤ 6090.

Figure 12 shows how this ratio a(Rλ) = τs/τsweep behaves with the Reynolds

number. Thanks to the large range of investigated Reynolds numbers, (100 ≤ Rλ ≤
6000), it is reasonable to infer a power law scaling with an exponent close to −1/4.

Note that the numerical data of Sanada et al. [33] are in very good agreement

with our experiments (the two points of Figure 12 have been taken from Figure

8 of [33]).

In others words, for a fixed scale 2π(qscat)
−1, the vorticity correlation time de-

creases with the Reynolds number. In connection with the vorticity time-correlation,

Novikov [35, 36] has introduced a typical characteristic length ℓc which is the

inertial scale where the viscous dissipation of the enstrophy is balanced by the

large-scale effects. In terms of time scales, the Novikov prediction is such as

τc ≃ τ01.40R
−2/5
λ (where τc is the time scale of the vorticity correlation).

This prediction cannot be directly compared to the experimental scaling of

Figure 12 because the latter relies on the analysis of a single length scale, whereas the

theoretical result is based on the global budget of the vorticity correlations involving

all the scales. However, one expects that experimental data are not in agreement with

the previous prediction, because it is mainly derived from Kolmogorov arguments

and it does not account for sweeping effects.
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5. Lagrangian Velocity Measurements

The interest in the statistics of the Lagrangian velocity (following the fluid particles)

in turbulent flows has been recently renewed by the emergence of new experimental

techniques for the continuous tracking along time of isolated particles [37, 38]

(using acoustical devices) or the measurement of a large number of individual

particle acceleration events [39] (using fast optical techniques). In the first type of

experiment [37], a very few number (ideally one) of solid beads are injected in

a closed turbulent water flow. The trajectory of a single particle is then followed

along time intervals, as large as the integral length scale of the turbulent flow,

using an acoustic scattering device consisting in an array of small transducers (in a

backscattering configuration).

The purpose of the present experiment is to extend the latter acoustic tracking

technique to the study of the Lagrangian turbulent velocity in open turbulent air

flows. Material particles, with an acoustic index different from the acoustic index

of the propagating medium, can efficiently scatter acoustic waves [4]. Provided

the acoustic contrast (the relative difference between the acoustic index of the

particle and that of the medium) is sufficient, acoustic scattering by particles injected

in a turbulent flow can largely overcome the acoustic scattering by the turbulent

vorticity fluctuations. When a particle is advected by the local flow velocity, the

scattered pressure amplitude pscat(t), at a large enough scattering wave-number

(qscatr ≥ 2π , where r is the typical size of the particle), will exhibit Doppler shift-

phase modulations. We have seeded the LEGI jet, with very small soap bubbles (of

diameter ≤ 3mm), at a small rate of injection (typ. ≤ 100 bubbles/s) to have at the

most one particle at the same time in the scattering volume Vscat.

The soap bubbles are inflated with gaseous helium, with a home-made appara-

tus, so as to match precisely the average density of the bubble with the density of

the surrounding fluid (the low-density helium compensates properly the mass of the

soap film). Thanks to this density matching, and to the small size of the bubbles (lim-

iting wake effects behind the bubble [37]), inertial effects are small and each isolated

particle is expected to follow, nearly instantaneously, the fluid particle velocity. In

this experiment, the scattering angle is set to 120◦ in order to increase, both the

wave-number qscat and the size of the scattering volume Vscat in the direction of qscat

(see Figure 3) up to a length larger than the integral length scale L int of the turbulent

flow. Moreover, at such a large scattering angle, the contribution of the vorticity

fluctuations to the scattering amplitude is significantly reduced (see Figure 2).

In this preliminary experiment, the mean velocity was about 4 m/s (Rλ ∼ 530).

5.1. SCATTERED PRESSURE SIGNAL PSD AND COVARIANCE

First experiment has been performed to study the correlation and the spectrum of

the acoustic pressure scattered by the soap bubbles. Simultaneous acquisitions have

been realized with the superposition of two incident frequencies (either 80 kHz–

100 kHz or 100 kHz–120 kHz). The two demodulated scattered signals around
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each incident frequency are then extracted by means of a band-pass filter and a

demodulation. Such a double channel experiment allows a direct comparison of the

detection at different incoming sound frequencies. In all experiments, the travel of

a bubble in the scattering volume is simultaneously detected (around each νo) as

a strong increase of the scattered pressure intensity Iscat(t) = ρ(t)2, indicating a

large signal-to-noise ratio of the acoustic scattering set-up. Also, the Doppler shift

frequency, around each incoming frequency νo scales continuously in time with

νo according to Equation 12. The high level of similarity at each time t , of both

ρ(t) and dφ(t)/dt is a good indication of the efficiency of the acoustic scattering

technique. Moreover, thanks to the small bubble flow rate, we effectively observe

isolated bubbles passing through the scattering volume.

Indeed, the time interval during which the scattered pressure is significant is

of order �T = �L/Vavg, where �L is the size of the scattering volume in the

direction of qscat (aligned with the mean flow). This is illustrated by the plot of the

normalized auto-covariance of ρ(t) on the left part of Figure 13. The covariance,

decreases slowly from its maximum value (at the delay τ = 0), to a null value at

the delay τ = �L/Vavg ≃ 50 ms. Remind that in the case of acoustic scattering

by vorticity fluctuations, a much more rapid decrease of the auto-covariance is

observed leading to an estimation of the duration of vorticity events of a few ms

Figure 13. Normalized covariance Cρρ(τ ) of ρscat(t) (left) and PSDscat(δν) (right) of the acoustic

pressure scattered by soap bubbles in the LEGI turbulent jet flow at Rλ ≃ 500.
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(cf. Figure 10). The position of the second maximum of the auto-covariance marks

the mean waiting time between the passage of two consecutive bubbles in the

scattering volume (≃210 ms). The demodulated scattered pressure signals have

been largely over-sampled at Fs = 32768 Hz and further band-pass filtered with

a Butterworth digital filter of order eight. The right part of Figure 13 displays the

power spectral density for the BP-filtered scattered pressure signal at an incoming

frequency νo = 80 kHz. As expected, the shape of PSDscat(δν) is Gaussian with

δνavg and δνstd in excellent agreement with the statistics of the longitudinal flow

velocity (given by hot-wire anemometry).

5.2. LAGRANGIAN VELOCITY PDF AND SPECTRUM

To investigate the statistical properties of the Lagrangian velocity, a very large

number of bubble trajectories is required for purpose of statistical convergency.

Thus we have performed a long time experiment, wherein we have collected

8 106 complex data points sampled at Fs = 65536 Hz. Using a post-processing

algorithm, relying on an appropriate thresholding of the scattered acoustic intensity

Iscat(t), the passage of isolated bubbles in the scattering volume are identified and

localized.

About 2000 passing bubbles have been identified and localized. After a band-

pass filtering, the projection of the instantaneous velocity (onto the direction of the

jet axis) of each isolated bubble is estimated from the unwrapped phase signal φ(t)

(according to vbubble(t) = ( 1
qscat

(
dφ(t)

dt
)) with a finite difference schema.

From all these Lagrangian velocity signal we have computed firstly the prob-

ability density function PDF(vbubble) of the Lagrangian velocity depicted on left

side of Figure 14. The Lagrangian PDF has a nice Gaussian shape, indicating a

mean value and rms values of the Lagrangian velocity (note that they are ensemble

averages) close to the corresponding Eulerian values (determined with hot-wire

anemometry). The equality of the Lagrangian and Eulerian probability densities is

a well known property of homogeneous turbulent flows [2, 40].

The time power density spectrum PSDLag(δν) have been computed with the

Welch’s averaged periodogram method. The resulting PSD is displayed in the

right part of Figure 14. In this log–log representation, a clear power-law scaling

over roughly one decade is visible. The exponent of the observed power-law

scaling is close to the value −2 in agreement with the theoretical prediction of

Kolmogorov [2]. At higher frequencies, the DSP display a significant cut-off,

above the frequency νc ≃ 70 Hz very close to the low-pass filtering frequency due

to the radius rb = 3 mm of the bubbles (νb ≃ ǫ1/3r
−2/3

b ≃ 70 Hz where ǫ is the

mean energy dissipation rate).

6. Concluding Remarks

Wave scattering (e.g., light and neutron scattering in condensed matter and X-ray

scattering in solid state physics) has proved to be a powerful tool in the study
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Figure 14. PDF (left) and PSD (right) of the Lagrangian velocity in the LEGI turbulent jet

flow at Rλ ≃ 500.

of complex systems (e.g., phase transitions, DNA structure and denaturation).

Turbulent flows are also known to be very complex and disordered. The scattering

of coherent acoustic waves by turbulent vorticity fluctuations allows the direct and

continuous (in time) probing of a spatial Fourier mode �⊥(qscat, t), at a well-defined

spatial wave-vector qscat. In addition, the acoustic scattering technique is non-

intrusive and sensitive to the local orientation of the vorticity field [41]. Thus, it ap-

pears as a relevant means of investigation of turbulence, where the vorticity dynamic

is known to play a crucial role (e.g., vortex stretching and bending), particularly in

the energy transfers across the length scales [43, 44]. By selecting different spatial

wave-vectors, one is able to analyze scale by scale, the statistical properties of the

turbulent vorticity distribution. For example, we have evidenced a scaling law with

exponent 1/3 for enstrophy spectral density, in agreement with the Kolmogorov pre-

diction. Time correlation of the amplitude (modulus) vorticity modes reveals a short

life-time of the vorticity events at a fixed scale (possibly coherent structures [32]).

In view of the spatially non-local character of the acoustic scattering technique we

wish to stress that our analysis seems rather of a Lagrangian type than of an Eulerian

one. Still, the vorticity correlations also exhibit a long-time behaviour, with a lower

level of correlation, indicating probably a large-scale structure of the vorticity
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distribution which could be interpreted as the consequence of the turbulent cascade

process.

Acoustic scattering can also be used to access Lagrangian statistics of the tur-

bulent velocity, thanks to the possibility to detect very small particles (using high

enough ultrasound frequencies), on very large volumes (of order the integral length

scale of the flow). With this preliminary experiment, we have found again, in an

open flow, Lagrangian probability density function of the turbulent velocity field

equal to the Eulerian PDF as expected. Besides, we have also evidenced a La-

grangian power-law scaling (∝ω−2) for spectral power density, according to the

Kolmogorov 41 theory. The power-law scaling extends over roughly one decade.

Further investigations are in progress. In particular, we have already generated and

successfully detected bubbles with a smaller radius (≤1 mm) and thus we expect

to increase the latter power-law scaling range towards the dissipative time-scales.

Finally we wish to underline the fact, that an additional interest of the acoustic

technique, is to provide an efficient means to probe the turbulence in opaque media

(like liquids metals or environmental flows) for which optical techniques (like PIV)

are inapplicable.
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