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We study the experimental dependence of the third-order velocity structure function on the Taylor
based Reynolds number, obtained in different flow types over the rangeR,/22260. As
expected, when the Reynolds number is increasing, the third-order velocity structure functions
(plotted in a compensated wagonverge very slowly to a possible4/5 plateau value according to

the Kolmogorov 41 theory. Actually, each of these normalized third-order functions exhibits a
maximum, at a scale close to the Taylor microscalén this Brief Communication, we show that
experimental data are in good agreement with the recent predictions of Qian and Lundgren. We also
suggest that, from an experimental point of view, a log-similar plot suits very well to study carefully
the behavior of the third-order velocity structure functions with the flow Reynolds number.
© 2004 American Institute of Physic§DOI: 10.1063/1.1639013

Considerable attention has been given to the famousarious types of power injection. Lundgréit! goes back to
“ —4/5” law, 1 characteristic of inertial scales in fully devel- the Karman—Howarth equation to propose a solution in the
oped turbulence which is written as decaying self-similar case which seems not easily compatible

3\ with the possibility of intermittency.

((Bu(r))"y=— 4 e)r @ In the present state, it is difficult to decide if an experi-
(r and e are the inertial range separation and the mean dissmental discrepancy with the Lundgren prediction is dué)to
pation rate, respectivelyEven though the previous relation a peculiar injection regime as discussed by Qfd@n,an in-
is strictly valid for Reynolds number tending to the infinity, termittency effectiii) or, simply, an experimental error in
experimental data seemed to verify it as soon as a conspicthe determination oR, . In this Brief Communication, we
ous power-law scaling range existi®., forR,=500), what- show that a suitable diagram allows to illustrate how the
ever the flow type. To emphasize this feature, the third-ordevarious theoretical predictions overlap, and to decide among
longitudinal velocity structure functions are usually compen-the above questions.
sated by the opposite of the Kolmogorov scaling t¢da- Let us summarize the Qian and Lundgren results. Based
fined as —{((8u(r))®)/({e)r) and hereafter note®s(r)], on the additive property of the energy input and dissipation,
and are plotted in log—log coordinatésf. Refs. 3, 4, and the main prediction of QiafiEq. (24) in Ref. 9], valid for
references thereinActually, the difference betwee8;(r) n<r<dy, is
and 4/5 is experimentally very difficult to determine. Indeed, " s
the identification ofSy(r) with 4/5 is very often the most S3(r)=415=Cy(r/€o)"—Cy(r/7) @)

accurate way to experimentally determife at largeR, . with C;>0 andC,~5.26<, whereK, is the Kolmogorov

However, some experlment§ haye shown a very SIOV\(:onstant,lio the large scale, andy the viscous scale. The
convergence towards the above infinite Reynolds result whep, .4 torm of the right-hand side represents the large-scale

Rﬁ IS rzisEd. For instznce, i? al_;‘(Vorlgfsarman" ﬂo;/]v, Moidy effect and the last term the viscosity effect. At the particular
showe t. a(r) tends to 4/5 likeR, ™. By another way, scale whereS;(r) is maximum, the above relation leads to
Mydlarski and Warhaft, found a slow convergence of the

slope of the energy spectrum measured in a grid turbulence 6m
towards—5/3 asR, increases. For the peculiar scale \, 0=45—[S3(NImax=CsR ¥, 1= GBm+a)’ ()
Pearson and Antonfafound that Sy(A\) does not exactly
scale as the Kolmogorov prediction for Reynolds number ug=rom this Reynolds dependence[&(r) Jmax, Qian has de-
to R,=1000, reflecting the large scale anisotropy effects orduced several predictions of the expongntlepending on
the inertial range. the types of flow. For example, he found &a<1 in the

On the theoretical side, in some recent paférQian  homogeneous shear-flow turbulence. For some types of
examines this problem, dicussing systematically the inflularge-scale forcing turbulence, he predicted an exponent
ence of the energy input. Qian predicts the slowness of thequal tou=6/5, in agreement with the Moisy experiments.
convergence, but points out noticeable differences betweelm the interesting case of a decaying self-preserving turbu-
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lence, Qian’s prediction ig=2/3. In this case, Lundgren has OL NV EEPEI EUUN  15.- Fp i Fg
also derived an equation f@;(r) [Eq. (45) of Ref. 10 by 1 10 100 . 1000 104 105

using a method of matched asymptotic expansions. In terms

of #», it can be written as FIG. 1. Sy(r) in lin—log coordinates.

S3(r)=4/5—- gl(Ir/fo)%— 8(r/m) "3 4
V15 structure function does not strictly behave as a power law,
even in the middle of the inertial range of one of the highest
Reynolds number flow never investigated. Note that the ac-
curacy of measurements does not affect the shapes of the
S;(r) (and cannot lessen this findipgt only affects the
ible with those of Egs(2) and (3) whenK,=1.5—-1.8(see level value of theS;(r) which drastically depends on the
Table Il of Ref. 9. squares of the velocity gradients calculated at the Kolmog-
In order to test these theoretical predictions, we haveorov scalez. As expected, these maxima continuously con-
used three different types of air flows: a round jet, a gridverge to the horizontal line 4/5 &R, is increasing. This
turbulence and in the return channel flow of the ONERA-monotonous evolution suggests that data have been obtained
Modane wind tunnel. In the laboratory flows, measurementsvith a rather good accuracy despite the difficulty to measure
of the longitudinal velocity fluctuations were performed in the small scale velocity gradients. The lack of a true4/5
classical conditions, respectively, on the axis of the jet aplateau” has been studied in detail by Ddaaat al!® in the
x/d=38 downstream the nozzlgwith a diameterd case of a grid turbulence. From the complete form of the
=12cm), and atx/M =40 downstream a square bars grid Kolmogorov equation involving both the viscous and the
(with a mesh size oM =4 cm and a solidity of 0.36 At nonstationary terms, this Brief Communication shows how
Modane, the probe was located on the axis of the 24 nthe latter term acts as a negative production term at large
diameter return channel. In such an industrial facility, thescale. The authors showed that experimental data verify the
flow generates a “chunk” turbulence. Further details onKolmogorov equation if one accounts for the nonstationarity
these experimental conditions are given in Ref. 12. Velocityof the second-order moments. The aim here is not to study
signals were obtained using the CTA hot wire technique withthis interesting finding in others types of flow, but rather to
a home made single-wire probe. The hot wires used in theompare behaviors of the functioss(r) towards the flow
laboratory flows and in the industrial flow, were 0.3 mm andtype and the Reynolds number value.
0.5 mm in length and 2.5xm and 3.5um in diameter, re- A way to highlight the gap betwediS;(r) nmax and 4/5
spectively, and were operated on DISA 55M01 anemometerstudied by Qiafi® and Lundgrert®!is to plot the quantity
The real time duration of data recor¢sf about 75 mega- (1—(533(r)/4))R)2\’3 versus the separationSuch a stringent
samples was always greater than 12 000 times the integrabdiagram is shown on Fig. 2, where the separatitias been
time scales. The time—space conversion of signals has carescaled with the Taylor microscale(and not with# as in
ried out a “corrected Taylor hypothesis” using the instanta-Fig. 1). We observeas in Ref. 5 that all the minima of the
neous velocity®!* Table | lists the relevant data for the experimental curvegorresponding t§S;(r)]ma) OCCUr at a
records analyzed here, estimated with the usual homogemique scale close to. To our knowledge, there is no physi-
neous and isotopic definitions(e)=15v(u?)/\? 5  cal explanation of this feature. Even though the minima val-
=(131{€)) Y4 N2=(u?)/{(dul 9x)?). ues agreémore or lesswith the previous theoretical predic-
Figure 1 shows compensated third-order longitudinations[In(8.45=2.13], these curves diverge each other both
structure functionsS;(r) plotted against the separation dis- at large and small scales.
tancer in linear coordinates. In addition, we have reported In fact, due to the existence of the two scafgsand 7,
the data obtained from an atmospheric turbulence, that wehe problem is that neithev ¢, norr/» can be considered as
have extracted by hand from Fig. 1 of the paper of Dhruvathe good variable. A characteristic scale in turbulence is not
et al® Following the authorsR, is about 10—1, 4x 10%. identified by its ratio tof, but by the way this ratio scales
In Fig. 1, no plateau is observed, the third-order velocitywith the Reynolds number. If this scale is almost equal to the

which leads to
[Sa(r) Imar=4/5—8.45R, 2°. (5)
Note that the coefficients of Eqgl) and(5) are compat-
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FIG. 4. Lundgren results foR, =500, O; 1000, [J; 2000, ¢; 4000, A;
FIG. 2. Compensate&;(r) according to the Qian and Lundgren predic- 8000, V; and, continuous line.
tions.

32 i as those of Fig. R while Fig. 4 displays the results obtained

Taylor scale, while its ratio with €, scales likeR, from Eq. (4)

must be identified withy and not\. In this context, as rec- While none of the two plots show perfect merging, this
ognized in previous studié;'” the good variable is of kind resentation has numerous advantages. First, the c;rdinate
In(r/€o)/InR,, in such a way that characteristic scales havingglu of the minimum gives the Reynolds depenaence of the
the same behavior witR, converge towards the same ab- maximum of Sy(r) that we define as{Ss(r)]m=4/5
ci§sa Wh_enR}\ tends to_infinity. Fa152t1e7r convergence is ob- “A(R, /R, ) *, analogously to the predicted E'C“(%X) and
tained using I.”RA/R‘) with R, =28, which ensures that (5). Second, the slopes close to zero ordinate give the power
In(éo/7) remains close tgIn(R/R,) down to moderat, . law dependences of the outer scatef(;) and inner scale
We then propose such a plot. As we want to emphasize thfew 7) corrections to the-4/5 law as expressed in Eqe)

role of A, we take -the abC|§saﬂ In(r/A) with 8 . and(4). Last, the distance between the two points of inter-
- 1/|n(R”/R*)'.TO mamta}m the scaling laws, we have to di- section of each curve with the zero ordinate is bounded by
vide the logarithmic ordlnqtes by the same factoR|NR,). R, (=3/2+[3/IN(R/28)]). The different data converge to-
we 'Ejhus tak?:.assthﬁ ord|nha1;@In(1—'(583(r)|/4)).W;2 such wards the infinite Reynolds curve is characteristic of the co-
coordinates, Fig. 3 shows the experimental curiies same efficients of these laws. For instance, it can be seen that
choosingR, =28 givesA close to 1, both for Eqg3) and(5)

and for real data. Indeed, this choice comes from an inde-
pendent work(cf. Ref. 12 and this coincidence has to be

0 Eiolin B | TR RSO . .
+ ki remarked. Figure 4 shows how curves degenerate in two
01L . b ] straight lines wheir, — 0. The position of the maximum of
E L m ] S;, its dependence witR, , the power law dependences of
0.2 p . the correction t&S;, and even their coefficients, all are prob-
: To ] ably linked. For instance, if we write, as Lundgren did 1
0.3 b . —(5S3/4)= (R, /R,) “(Ao(r/\)Y+A;(r/\)"), we must
: ] havey,— y;=2 as one of the terms comes from the integral
0.4 1 . of (su(r)?), and the second from its derivative. Then, to
} ] have the maximuni S;(r)]ax at an abcissa close to\,
=08 = ] even at moderatR, , we must haved\y=2/3 andA;=1/3 if
i + Grid 72 ] vi=—4/3.
06 3 perdias ] Further remarks can be discussed in relation to the ques-
L W Jet 350 . . . . .
o N ] tions addressed in the begllnnm.g of this paper.
A todane 2260 ] The two slopes plotted in Fig. @qual to—4/3 and 2/3
08 bt X X oeesa 0] according to the theoretical predictiorseem to be reached
22 15 1 05 0 0.5 1 1.5 2 only for R,>1000 (note that an error o8 does not affect
BLn(r/A) these slopes On the large scale side, the two highest Rey-

nolds data behave as nearly afR?® even though they cor-
FIG. 3. Compensate8,(r) according to the log-similar plot. respond to two very different flows. Moreover, on the large
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scale side of experimental curves, we observe that the cogime, whatever the flow type and/or the Reynolds number.
rection slopelnotedm in Eqg. (2)] never exceeds the value Also, the pertinent scale ¢fS;(r) J,nax S€eems to be close to
2/3, whatever the flow type. In fact, the different power inputthe Taylor microscale but with a different Reynolds scaling.
types(grid turbulence, jetare hardly noticeable, contrary to From an experimental point of view, the log-similarity plot
the theoretical expectations. suits to account for the detailed behavior $f(r) in the
With regard to the accuracy of the Reynolds numbemwhole inertial range when the Reynolds number tends to
determination, such coordinates clearly reveal that in Ref. 1#finity. The question of intermittency is not relevant here
data,R, has been grossly overestimated. This underestimatesnd must be studied by other means.
B and causes the diagram to shrink.
Other differences between the theoretical predictions and
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