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We study the experimental dependence of the third-order velocity structure function on the Taylor
based Reynolds number, obtained in different flow types over the range 72<Rl<2260. As
expected, when the Reynolds number is increasing, the third-order velocity structure functions
~plotted in a compensated way! converge very slowly to a possible24/5 plateau value according to
the Kolmogorov 41 theory. Actually, each of these normalized third-order functions exhibits a
maximum, at a scale close to the Taylor microscalel. In this Brief Communication, we show that
experimental data are in good agreement with the recent predictions of Qian and Lundgren. We also
suggest that, from an experimental point of view, a log-similar plot suits very well to study carefully
the behavior of the third-order velocity structure functions with the flow Reynolds number.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1639013#

Considerable attention has been given to the famous
‘‘ 24/5’’ law,1,2 characteristic of inertial scales in fully devel-
oped turbulence which is written as

^~du~r !!3&.24/5̂ e&r ~1!

~r ande are the inertial range separation and the mean dissi-
pation rate, respectively!. Even though the previous relation
is strictly valid for Reynolds number tending to the infinity,
experimental data seemed to verify it as soon as a conspicu-
ous power-law scaling range exists~i.e., forRl>500), what-
ever the flow type. To emphasize this feature, the third-order
longitudinal velocity structure functions are usually compen-
sated by the opposite of the Kolmogorov scaling term@de-
fined as 2^(du(r ))3&/(^e&r ) and hereafter notedS3(r )],
and are plotted in log–log coordinates~cf. Refs. 3, 4, and
references therein!. Actually, the difference betweenS3(r )
and 4/5 is experimentally very difficult to determine. Indeed,
the identification ofS3(r ) with 4/5 is very often the most
accurate way to experimentally determine^e& at largeRl .

However, some experiments have shown a very slow
convergence towards the above infinite Reynolds result when
Rl is raised. For instance, in a ‘‘Von Karman’’ flow, Moisy5

showed thatS3(r ) tends to 4/5 likeRl
26/5. By another way,

Mydlarski and Warhaft,6 found a slow convergence of the
slope of the energy spectrum measured in a grid turbulence
towards25/3 asRl increases. For the peculiar scaler 5l,
Pearson and Antonia7 found that S3(l) does not exactly
scale as the Kolmogorov prediction for Reynolds number up
to Rl.1000, reflecting the large scale anisotropy effects on
the inertial range.

On the theoretical side, in some recent papers,8,9 Qian
examines this problem, dicussing systematically the influ-
ence of the energy input. Qian predicts the slowness of the
convergence, but points out noticeable differences between

various types of power injection. Lundgren10,11 goes back to
the Karman–Howarth equation to propose a solution in the
decaying self-similar case which seems not easily compatible
with the possibility of intermittency.

In the present state, it is difficult to decide if an experi-
mental discrepancy with the Lundgren prediction is due to~i!
a peculiar injection regime as discussed by Qian,~ii ! an in-
termittency effect,~iii ! or, simply, an experimental error in
the determination ofRl . In this Brief Communication, we
show that a suitable diagram allows to illustrate how the
various theoretical predictions overlap, and to decide among
the above questions.

Let us summarize the Qian and Lundgren results. Based
on the additive property of the energy input and dissipation,
the main prediction of Qian@Eq. ~24! in Ref. 9#, valid for
h!r !,0 , is

S3~r !54/52C1~r /,0!m2C2~r /h!24/3 ~2!

with C1.0 andC2.5.26K0 whereK0 is the Kolmogorov
constant,,0 the large scale, andh the viscous scale. The
second term of the right-hand side represents the large-scale
effect and the last term the viscosity effect. At the particular
scale whereS3(r ) is maximum, the above relation leads to

d54/52@S3~r !#max5CdRl
2m , m5

6m

~3m14!
. ~3!

From this Reynolds dependence of@S3(r )#max, Qian has de-
duced several predictions of the exponentm depending on
the types of flow. For example, he found 2/3<m<1 in the
homogeneous shear-flow turbulence. For some types of
large-scale forcing turbulence, he predicted an exponent
equal tom56/5, in agreement with the Moisy experiments.5

In the interesting case of a decaying self-preserving turbu-
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lence, Qian’s prediction ism52/3. In this case, Lundgren has
also derived an equation forS3(r ) @Eq. ~45! of Ref. 10# by
using a method of matched asymptotic expansions. In terms
of h, it can be written as

S3~r !54/52
3.34

A15
~r /,0!2/328~r /h!24/3 ~4!

which leads to

@S3~r !#max54/528.45Rl
22/3. ~5!

Note that the coefficients of Eqs.~4! and~5! are compat-
ible with those of Eqs.~2! and ~3! when K051.5– 1.8~see
Table II of Ref. 9!.

In order to test these theoretical predictions, we have
used three different types of air flows: a round jet, a grid
turbulence and in the return channel flow of the ONERA-
Modane wind tunnel. In the laboratory flows, measurements
of the longitudinal velocity fluctuations were performed in
classical conditions, respectively, on the axis of the jet at
x/d538 downstream the nozzle~with a diameter d
512 cm), and atx/M540 downstream a square bars grid
~with a mesh size ofM54 cm and a solidity of 0.36!. At
Modane, the probe was located on the axis of the 24 m
diameter return channel. In such an industrial facility, the
flow generates a ‘‘chunk’’ turbulence. Further details on
these experimental conditions are given in Ref. 12. Velocity
signals were obtained using the CTA hot wire technique with
a home made single-wire probe. The hot wires used in the
laboratory flows and in the industrial flow, were 0.3 mm and
0.5 mm in length and 2.5mm and 3.5mm in diameter, re-
spectively, and were operated on DISA 55M01 anemometers.
The real time duration of data records~of about 75 mega-
samples! was always greater than 12 000 times the integral
time scales. The time–space conversion of signals has car-
ried out a ‘‘corrected Taylor hypothesis’’ using the instanta-
neous velocity.13,14 Table I lists the relevant data for the
records analyzed here, estimated with the usual homoge-
neous and isotopic definitions:̂ e&515n^u2&/l2, h
5(n3/^e&)1/4, l25^u2&/^(]u/]x)2&.

Figure 1 shows compensated third-order longitudinal
structure functionsS3(r ) plotted against the separation dis-
tancer in linear coordinates. In addition, we have reported
the data obtained from an atmospheric turbulence, that we
have extracted by hand from Fig. 1 of the paper of Dhruva
et al.15 Following the authors,Rl is about 10421, 43104.
In Fig. 1, no plateau is observed, the third-order velocity

structure function does not strictly behave as a power law,
even in the middle of the inertial range of one of the highest
Reynolds number flow never investigated. Note that the ac-
curacy of measurements does not affect the shapes of the
S3(r ) ~and cannot lessen this finding!, it only affects the
level value of theS3(r ) which drastically depends on the
squares of the velocity gradients calculated at the Kolmog-
orov scaleh. As expected, these maxima continuously con-
verge to the horizontal line 4/5 asRl is increasing. This
monotonous evolution suggests that data have been obtained
with a rather good accuracy despite the difficulty to measure
the small scale velocity gradients. The lack of a true ‘‘24/5
plateau’’ has been studied in detail by Danaı¨la et al.16 in the
case of a grid turbulence. From the complete form of the
Kolmogorov equation involving both the viscous and the
nonstationary terms, this Brief Communication shows how
the latter term acts as a negative production term at large
scale. The authors showed that experimental data verify the
Kolmogorov equation if one accounts for the nonstationarity
of the second-order moments. The aim here is not to study
this interesting finding in others types of flow, but rather to
compare behaviors of the functionsS3(r ) towards the flow
type and the Reynolds number value.

A way to highlight the gap between@S3(r )#max and 4/5
studied by Qian8,9 and Lundgren,10,11 is to plot the quantity
(12(5S3(r )/4))Rl

2/3 versus the separationr. Such a stringent
diagram is shown on Fig. 2, where the separationr has been
rescaled with the Taylor microscalel ~and not withh as in
Fig. 1!. We observe~as in Ref. 5! that all the minima of the
experimental curves~corresponding to@S3(r )#max) occur at a
unique scale close tol. To our knowledge, there is no physi-
cal explanation of this feature. Even though the minima val-
ues agree~more or less! with the previous theoretical predic-
tions @ln~8.45!52.13#, these curves diverge each other both
at large and small scales.

In fact, due to the existence of the two scales,0 andh,
the problem is that neitherr /,0 nor r /h can be considered as
the good variable. A characteristic scale in turbulence is not
identified by its ratio to,0 but by the way this ratio scales
with the Reynolds number. If this scale is almost equal to the

FIG. 1. S3(r ) in lin–log coordinates.

TABLE I. The basic parameters of the data sets.

Grid turbulence Jet ONERA

Rl 72 144 350 695 2260
U (m/s) 4.95 19.6 1.68 6.3 20.75
u8 (m/s) 0.17 0.64 0.44 1.55 1.58
h ~mm! 0.4 0.15 0.33 0.14 0.30
l ~cm! 1.02 0.35 1.23 0.67 2.80
L (cm) 4 4 20 20 .410
^e& ~m2/s3! 0.0093 7.7 0.29 11.7 0.95
105n (m2/s) 1.51 1.55 1.52 1.53 2
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Taylor scalel, while its ratio with ,0 scales likeRl
23/2, it

must be identified withh and notl. In this context, as rec-
ognized in previous studies,12,17 the good variable is of kind
ln(r/,0)/ln Rl , in such a way that characteristic scales having
the same behavior withRl converge towards the same ab-
cissa whenRl tends to infinity. Faster convergence is ob-
tained using ln(Rl /R* ) with R* 528,12,17 which ensures that
ln(,0 /h) remains close to32 ln(Rl /R* ) down to moderateRl .
We then propose such a plot. As we want to emphasize the
role of l, we take the abcissab ln(r/l) with b
51/ln(Rl /R* ). To maintain the scaling laws, we have to di-
vide the logarithmic ordinates by the same factor ln(Rl /R* ).
We thus take as the ordinateb ln(12(5S3(r)/4)). In such
coordinates, Fig. 3 shows the experimental curves~the same

as those of Fig. 2!, while Fig. 4 displays the results obtained
from Eq. ~4!.

While none of the two plots show perfect merging, this
presentation has numerous advantages. First, the ordinate
2m of the minimum gives the Reynolds dependence of the
maximum of S3(r ) that we define as@S3(r )#max54/5
2A(Rl /R* )2m, analogously to the predicted Eqs.~3! and
~5!. Second, the slopes close to zero ordinate give the power
law dependences of the outer scale (;,0) and inner scale
~;h! corrections to the24/5 law as expressed in Eqs.~2!
and ~4!. Last, the distance between the two points of inter-
section of each curve with the zero ordinate is bounded by
Rl(.3/21@3/ln(Rl/28)#). The different data converge to-
wards the infinite Reynolds curve is characteristic of the co-
efficients of these laws. For instance, it can be seen that
choosingR* 528 givesA close to 1, both for Eqs.~3! and~5!
and for real data. Indeed, this choice comes from an inde-
pendent work~cf. Ref. 12! and this coincidence has to be
remarked. Figure 4 shows how curves degenerate in two
straight lines whenRl→`. The position of the maximum of
S3 , its dependence withRl , the power law dependences of
the correction toS3 , and even their coefficients, all are prob-
ably linked. For instance, if we write, as Lundgren did 1
2(5S3/4)5(Rl /R* )2a(A0(r /l)g01Ai(r /l)g i), we must
haveg02g i52 as one of the terms comes from the integral
of ^du(r )2&, and the second from its derivative. Then, to
have the maximum@S3(r )#max at an abcissar close tol,
even at moderateRl , we must haveA052/3 andAi51/3 if
g i524/3.

Further remarks can be discussed in relation to the ques-
tions addressed in the beginning of this paper.

The two slopes plotted in Fig. 3~equal to24/3 and 2/3
according to the theoretical predictions! seem to be reached
only for Rl.1000 ~note that an error onb does not affect
these slopes!. On the large scale side, the two highest Rey-
nolds data behave as nearly as;R2/3 even though they cor-
respond to two very different flows. Moreover, on the large

FIG. 2. CompensatedS3(r ) according to the Qian and Lundgren predic-
tions.

FIG. 3. CompensatedS3(r ) according to the log-similar plot.

FIG. 4. Lundgren results forRl5500, s; 1000, h; 2000, L; 4000, n;
8000,,; and`, continuous line.
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scale side of experimental curves, we observe that the cor-
rection slope@notedm in Eq. ~2!# never exceeds the value
2/3, whatever the flow type. In fact, the different power input
types~grid turbulence, jet! are hardly noticeable, contrary to
the theoretical expectations.

With regard to the accuracy of the Reynolds number
determination, such coordinates clearly reveal that in Ref. 15
data,Rl has been grossly overestimated. This underestimates
b and causes the diagram to shrink.

Other differences between the theoretical predictions and
the real data are within the experimental uncertainty. This
was to be expected, in particular, the intermittency effect
cannot probably be detected in such a diagram, as the fol-
lowing calculus shows.

In his matched asymptotic expansion, Lundgren derives
an outer and an inner expression for the second moment
^du(r )2&(RL5Rl

2/15) such as^du(r )2&5U2bll
0 (x0) with

x05r /L, and ^du(r )2&5U2RL
21/2bll

i (xi) with xi5r /h
5RL

3/4x0 .
Now, remarking that the von Karman equation in the

outer ~respectively, inner! variables hasRL
21 ~respectively,

RL
21/2) as small parameter, he writesbll

0 5bll
0,11RL

21bll
0,2

1¯ andbll
i 5bll

i ,11RL
21/2bll

i ,21¯ .
But, as remarked by Barenblatt,18 incomplete self-

similarity can result in the absence of limit for infiniteRL for
one of these functions. The general case writesbll

i

5RL
2dbll

i ,11¯ .
Then, Eq.~27! of Lundgren, which ensures the matching

of the two expressions, becomesU2RL
21/2RL

2dbll
i ,1(x0RL

3/4)
5U2bll

0,1(x0) and thus bll
0,15CKx0

2(112d)/3 and bll
i ,1

5CKxi
2(112d)/3 .

By the comparison between these two latest equations
and the result of intermittency studies, the value ofd should
be of orderd.0.02. The two exponentsg0 andg i ~which are
the limit slopes in the log-similar diagram! are g052/3
14d/3 and g i524/314d/3. The minimum occurs at
b ln(r/l)5d/2 and its value is22/32d. The very small value
of d explains why the difference with the Lundgren predic-
tion is not visible.

In summary, the present experimental data confirm the
very slow convergence ofS3(r ) towards an asymptotic re-

gime, whatever the flow type and/or the Reynolds number.
Also, the pertinent scale of@S3(r )#max seems to be close to
the Taylor microscale but with a different Reynolds scaling.
From an experimental point of view, the log-similarity plot
suits to account for the detailed behavior ofS3(r ) in the
whole inertial range when the Reynolds number tends to
infinity. The question of intermittency is not relevant here
and must be studied by other means.
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