
HAL Id: hal-00183323
https://hal.science/hal-00183323

Submitted on 27 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Ultrasound scattering by forced laminar wakes
Rodrigo H. Hernández Pellicer, Christophe Baudet

To cite this version:
Rodrigo H. Hernández Pellicer, Christophe Baudet. Ultrasound scattering by forced laminar wakes.
Vortex Structure and Dynamics, pp.173-189, 2001, 978-3-540-44535-7. �10.1007/3-540-44535-8_10�.
�hal-00183323�

https://hal.science/hal-00183323
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Ultrasound Scattering by Forced Laminar Wakes

Rodrigo H. Hernández1 and Christophe Baudet1

1 LEAF-NL, Depto. Ingenieŕıa Mecánica
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1 Introduction

Most of flows found in nature belong to the class of spatially developing open
flows. In this hydrodynamic class, fluid particles enter and leave the flow bound-
aries of the observation domain continuously. It is the case of boundary layers
[1], jets [3,4] and notably wakes [5].

Actually, concepts of absolute and convective instability have proved to be
useful to classify the different types of open flows according to their local dy-
namic behavior. A flow system like the wake, created by the presence of a thin
flat plate, fall into the class of noise amplifiers [6,7]. The system become very
sensitive to external noise which it is therefore amplified. It is well known that
every portion of the wake is convective (stable or unstable); the system presents
an extrinsic dynamics, what means that the spatial evolution of the flow is es-
sentially determined, either by the external noise entering the system or by a
coherent particular applied forcing. A wake can also display an intrinsic dynam-
ics either by some adequate hydrodynamic resonance or by the onset of localized
regions of absolute instability. Vortical structures that are formed become how-
ever very insensitive to the incoming external noise and display a very definite
oscillation frequency [9].

A renewed interest on wakes comes from the idea of disorder and, perhaps
more properly, transition to turbulence. The wake of a thin flat plate does not
present spontaneous self–sustained oscillations. Initial disturbances can grow
and then saturate but are continuously advected by the mean flow. However its
sensitiveness to coherent external forcing makes possible to recover a very rich
family of spatially evolving vortical structures. The onset of dynamical vortical
structures at large and small scales will determine any further behavior of the
wake.

This paper is concerned with the pattern forming structures on the wake
of a flat plate under forcing. This choice was made mainly because the laminar
velocity profile downstream the plate shows two well defined symmetric sheets of
vorticity (of opposite sign). If the plate is submitted to a controlled forcing, one
will find its prints in the wake under the form of a spatio–temporal modulation
of velocity profiles and thereafter the onset of spatial modes of vorticity. These
modes make the modulated wake a benchmark for an ultrasound scattering
experiment.



Scattering of sound waves of high frequency in air by laminar and turbulent
vortex flows has been the subject of some recent experimental [10–12] as well as
theoretical works [13–15]. The presence of vorticity and the further non linear
coupling between the sound wave and the base vortex flow guarantees a coherent
sound emission (scattering) which gives considerable information of its spatial
structure as well as about its temporal dynamics.

Theoretical works have clearly concluded that the process of sound scattering
is well adapted for an acoustic flow diagnostic. In the first Born approximation,
the sound scattered pressure (or density) is found to be proportional to the
Fourier transform in space and time of the vorticity of the base flow Ω(k, ν),
where k is the wave vector and ν is the frequency. This constitutes a spectral
probe of the vortex flow structure.

Well controlled and coherent vortical structures are obtained if we remain
in the category of noise amplifiers. Therefore the flat plate must be very thin,
i.e., the thickness–to–length ratio must be small, e/b � 1. Thus, if the wake
is stationary, one can apply an adequate forcing without triggering eigenmodes
caused by any instability onset. On the contrary, the system falls into the class
of oscillators [7,16] presenting an intrinsic dynamics. Even if fluid particles leave
the domain of interest, they remain enough time inside so that infinitesimal
disturbances can grow, giving place to the onset of global modes of the system.
Comprehensive examples are the flow around a circular [8,9] or square (varying
aspect ratio) [17,16,18] cylinders.

At low values of the plate’s Reynolds number, Ret = Uoe/ν, (where Uo, e, ν
are the free stream mean velocity, plate thickness and kinematic viscosity re-
spectively), and if the boundary layer remain laminar without separation, the
near wake remain stationary. Even though two small recirculation regions at-
tached to the trailing edge of the plate always exists [17]. Recirculation regions
are unavoidable, even if the cross–stream plate dimension (thickness e) is small.
However the smaller the thickness e the shorter the turnover time will be, so
avoiding the onset of instabilities of the wake originated on these recirculating
regions.

Modulation of the velocity profile downstream from the plate is performed
through a harmonic forcing. A flat plate performing rotary oscillation about the
leading edge, creates necessarily a vorticity modulated wake. This is accompanied
by the onset of well defined spatial modes of vorticity because the forcing is a
priori known.

Forcing consists in making vary the angle of attack of the plate through a
periodic oscillation of the plate support (see Figure 1). A very broad range of
spatial patterns of vorticity Ω(r, t) can be obtained through simple settings of
the wave form amplitude ζm, the uniform upstream velocity Uo, and the wave
form frequency fm.

If the oscillation amplitude ζm is too high (and therefore the angle of at-
tack α) there will be strong longitudinal pressure gradients along the plates’s
faces. Boundary layer separation will be enhanced and further but undesired vor-
tex shedding sets up, perturbing the initially modulated wake pattern [19]. In



Fig. 1. Expected periodic patterns on a modulated wake through a periodic forced
oscillation of the trailing edge of a thin flat plate. (a) Wavy wake for small forcing
amplitude ζm, (b) Large scale vortex shedding for higher forcing amplitude ζm.

this case, we will get nevertheless a vorticity–modulated wake, but over spatial
scales of the order of the length of the plate. An obvious very interesting case
but inadequate for an ultrasound scattering experiment in air, where the sound
wavelength is too small with respect to those spatial scales. Therefore here the
modulation amplitude, ζm, will be kept of the order of e.

This situation is doubly advantageous. First the transverse (cross stream)
spatial scale of vorticity is small enough and therefore better adapted to ultra-
sound sound wavelengths. On the other hand a linear forcing becomes feasible
at even higher frequencies.

Even using a very simple way of forcing like here, the wake’s spectral dynam-
ics can be very complicated due to non linear interactions. At first, we can expect
at least two scenarios as a function of ζm and Uo according to the symmetry of
the vorticity distribution that one gets (Figure 1).

This system presents two characteristic time–scales: one given by the forc-
ing frequency, f−1

m and the other by the ratio b/Uo both of them defining a
characteristic dimensionless parameter F = fmb/Uo of the forced wake.

At low forcing frequencies, fm for a F < 1 condition, we get a slowly varying
streamwise sinusoidal wake pattern, where the wave number or spatial mode
is given by 2π/λΩ and λΩ = Uo/fm is the resulting vorticity wavelength. At
each forcing cycle, fluid particles under the boundary layer have already left
the surface of the plate, therefore they ’feel’ a non localized spectral forcing
(frequency is undefined).

On the contrary, if we increase fm approaching the F > 1 case, the vorticity
distribution becomes more complicated, since fluid particles don’t have left the



plate before a cycle of oscillation takes place. So particles under the boundary
layer are now submitted to a harmonic forcing in time. We can now trigger
instabilities of the boundary layer itself [2].

In order to remain in the neighborhood of the F ∼ 1 condition, but working
with reasonable high forcing frequencies fm, we chose a plate where the width b
is small enough so that F ∼ 1 but greater than e so that we don’t loose the class
of noise amplifier of the whole system for a wide range of flow velocities Uo.

2 Experimental Set Up

We use a metal (copper, small roughness) thin plate of length l = 20 cm, width
b = 4 cm and thickness e = 1.6 mm. The plate is placed in the test section of an
open low turbulence wind tunnel. (maximum free stream velocity Uo = 2 m/s,
rate of turbulence 0.05 %). The leading and trailing edges of the plate are of
semi–cylindrical and triangular shape respectively [20].

The plate is maintained in vertical position through two half–axes passing
through the geometric center of the front end of the plate (at the middle of the
test section). We use ball-bearings supporting axes to perform oscillatory forcing
without too much friction. (Figure 2a).

Oscillatory forcing is performed with a B&K electromagnetic shaker coupled
to a rigid aluminum arm system which is fixed on both sides of the plate. The
whole system was mounted on a completely independent support, uncoupled
from the wind tunnel in order to avoid vibrations associated to fans. Measures
of wake velocity profiles were made with a hot wire probe TSI-1210-60 at a
distance of x/e = 79.4 downstream the plate. It can be moved across the wake
over |y/e| < 11 with the help of a computer controlled XY stepper motor system.

Data acquisition, periodic forcing and probe movements were computer con-
trolled using a HP700 series work station and a 4 channel HP3565 spectrum an-
alyzer. A sweep in forcing amplitude as well as in forcing frequency was possible
using a HP33120A function generator through the HPIB bus. Forcing waveforms
signals were previously amplified by a KEPCO BOP-50-4M amplifier before the
B&K shaker.

The zero attack angle α = 0 was found iteratively, through a cycle of mea-
sures of the symmetry of the velocity profiles downstream the plate. Successive
corrections were done through a micrometer screw to change α.

2.1 Sound scattering

Ultrasound scattering by vortex flows appears as a consequence of non linear
coupling between an incident sound wave and a target vorticity distribution. It
can be found that the scattered acoustic pressure ps by an arbitrary vorticity
field Ω(r, t) is directly proportional to the spatio–temporal Fourier transform
of vorticity, Ω(q, ν). In three dimensions,using the first Born approximation, ps

can be written as [15],
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Fig. 2. (a) Experimental Set Up. (1) A vertical metallic flat plate of small roughness.
(2) Supporting axes mounted on ball bearings. (3) Hot wire probe scanning the whole
test section. (4) Aluminium supporting axes. (5) Shaker. (6) Test section. (b) Sound
scattering experimental set up. Square (size Λ = 15 cm) Sell type ultrasound emitter
and receiver under a symmetric configuration. The scattering angle between the inci-
dent (ki) and the scattered (ks) wave vector is θ = 30o. The beginning of the scattering
volume, xv, corresponds to a xv/b = 13 ratio downstream the plate.

ps(r, ν) = po
iνπ2

c2|r| e
i2πνr/c cos θ

1 − cos θ
sin θ Ωz(q, ν − νo) (1)



Where po is the incident sound pressure, θ the scattering angle, r the distance
from the target, c the speed of sound and νo the incoming sound frequency.
The scattering wave vector is defined by q = ks − ki, and can be written as
q ∼ 4π(νo/c) sin(θ/2)x̂ in our experimental scattering set up (because q · ŷ = 0).

Sound scattering experiments were performed under the symmetrical config-
uration shown by figure 2 b). Both the sound emitter and receiver are square Sell
type transducers of size Λ = 16 cm having a flat response between 5 to 100 kHz
within 10 dB. A detailed description can be found in previous work on sound
scattering experiments [10,11].

The emitter and receiver (placed outside the test section) are focused toward
the wake of the plate (Figure 2 b). The incident, ki, and scattered, ks, wave
vectors forming an angle θ. With such a geometry we probe the vortex flow at
length scales corresponding to the wave vector q = ks − ki whose components
are qy = 0 and qx = 4π(νo/c) sin(θ/2). For the actual set–up, considering a
constant angle θ = 30o, the wave vector q can be varied simply by changing the
emitter frequency νo thus probing different length scales associated to the base
vortex flow.

Diffraction effects coming from the limited size of the sound transducers were
measured with a transmission diffraction grating of constant step 1.70±0.01 cm.
We found a measured diffraction angle of the order of 3o at 40 kHz.

We will see that the presence of the mean flow introduces a frequency shift
on the acoustic signal, a Doppler effect [10], around the incoming frequency
νo. Broadening of scattering peaks is due to diffraction effects which in turn
determine our spectral resolution.

A heterodyne detection procedure (demodulation of the received acoustic sig-
nal) gives us an analytic signal [21] of low-frequency that can be easily sampled.
The phase of this analytic signal is directly related to the Doppler shift. Working
at constant angle θ the theoretical resolution on a single spectral component is
given by, Δq = (4π/Λ)cosθ/2 [11].

3 Results

3.1 Hot Wire Wake Measurements

To know accurately the wake response to different forcing regimes, we performed
systematic measurements of wake velocity profiles using thermal anemometry.
Scanning the cross stream coordinate with the hot wire probe gave us a comple-
mentary picture of the wake dynamics before to proceed with scattering exper-
iments. Note that we use harmonic forcing in time, i.e., ζ(t) = ζm cos(2πtfm)
where the amplitude ζm remains always weak (∼ e). As we mention above, we
will create periodic oscillations of the near wake which are advected downstream,
forming spatial vorticity modes given approximately by a simple dispersion re-
lation of the form λΩ ∼ Uo/fm. Remember that if the system remains as a noise
amplifier, we can obtain a very rich family of wake’s spatial modes.

Once the zero attack angle is obtained, wake velocity recordings without
forcing have the typical aspect shown in figure 3a). We can see also the cross



spatial scale of vorticity computed approximately by ∼ ∂u/∂y. It is evident that
vorticity has two terms Ω = ∂uy/∂x − ∂ux/∂y, but the hot wire probe only
measures absolute values of velocity. So, we get only an approximate of cross
stream velocity gradients. Accurate vorticity measurements are performed in
the scattering experiment.

(a) (b)

Fig. 3. Free wake behavior from hot wire measurements at x/e = 79.4 with α = 0◦ and
Uo = 57 cm/s. (a) Mean velocity profile (�) . We show also an estimation of the wake’s
vorticity (�) using first order numerical derivatives. (b) Wake velocity fluctuations.

Even if the wake’s velocity fluctuations are weak, u′(y)/u of the order of < 0.3
%, two maxima are found precisely where the velocity gradient is maximum
(Figure 3b).

This figure gives us an idea of the spatial extent of vorticity, and in particular,
of the angle β ∼ 2.26o that determines the (weakly) divergent behavior of the
wake. It is an effect of the sharpness of the plate and its width. The Reynolds
number based on the plate’s width, Reb allow to estimate the boundary layer
thickness at the plate’s end; δ = b/

√
(Reb) ∼ 1.7 mm (δ/e ∼ 1). Figure 3a)

shows roughly that the cross spatial scale of vorticity is of the order of 3.8e.
In general, even at very weak forcing amplitudes, the wake velocity fluctu-

ations are very high. In some cases there is a factor of 10 between them and
the natural wake velocity fluctuations (without forcing). On figure 4 we show,
as an example, two temporal series of wake velocity under harmonic forcing of
constant frequency fm = 10 Hz. We see both the fundamental mode far from
the plate y ∼ −8e, and the first harmonic close to the plate.

A fundamental difference between a natural and a forced wake is the cross
stream increased scale of the later. Figure 5 shows how the wake is enlarged
under an harmonic forcing and that this effect is more important at fm = 5 Hz
than fm = 14 Hz.



Fig. 4. Forced wake behavior from hot wire measurements. Forcing with amplitude
ζm = 0.3 mm at fm = 10 Hz and Reynolds number Reb = 1185. Power spectral
density computed at two cross stream sites, y/e = −0.6,−8.1. The subplot shows
typical velocity recordings at those positions.

(a) (b)

Fig. 5. Wake forcing at two different frequencies fm = 5 (◦) and fm = 14 (�) Hz with
same amplitude ζm = 0.3 mm and Reynolds number Reb = 1185. (a) The velocity
fluctuations u′(y)/Uo (x/e = 79.4) and (b) An estimation of the wake vorticity Ω(y).
We indicate the increased cross stream scale of wake velocity fluctuations (Δu) and
vorticity (ΔΩ) with the forcing frequency.



A comprehensive picture of these effects is found on figure 6. The shape of
mean velocity profiles u(y) = u(y, t) and their local fluctuations u′(y) = urms as
a function of the forcing frequency fm (with constant forcing amplitude ζm =
0.3 mm) is compared with the natural situation (without forcing). We note an
increase of both local mean velocity and local fluctuations behind the plate as
the forcing frequency decreases. On figure 7 we show the power spectrum of
velocity fluctuations at different increasing forcing frequencies. This frequency
and its harmonics appears clearly on each plot.

(a) (b)

Fig. 6. Systematic effect of forcing frequency on the wake behavior (x/e = 79.4) at
constant amplitude ζm = 0.3 mm and Reynolds number Reb = 1185. (a) Mean velocity
profiles u/Uo and (b) velocity fluctuations u′/Uo. Note that the free wake behavior is
indicated by a � (fm = 0 Hz).

3.2 Sound Scattering and Spectral Wake Dynamics

As we have shown above, a kind of harmonic forcing like ζ(t) = ζm cos(2πfmt)
traduces into an oscillatory wake pattern. Any wake modulation traduces into a
vorticity modulation at the forcing frequency fm.

If we compute the spatial and temporal Fourier transform of the vorticity
equation in 2D, neglecting diffusion terms, we obtain a dispersion relation relat-
ing frequency and wave number of the form; 2πf = q · u where u corresponds
to the advection velocity of vorticity. This relationship will explain why we find
a Doppler effect associated to scattered pressure signals [11]. We will prove that
a scattering peak is found when the scattering wave vector q matches the wave
length of the spatial vorticity pattern λΩ related to the forcing frequency by
λΩ ∼ Uo/fm.

A first agreement with theory (Eq.1) is the fact that the scattering pressure
signal, ps, shows a Doppler frequency shift (νo − fm), where its sign is given by



Fig. 7. Power spectra of wake velocity fluctuations at different forcing frequencies.
Hot wire measurements performed at y/e = −8.1, x/e = 59.4 for a constant forcing
amplitude ζm = 0.3 mm and Reynolds number of Reb = 103.

the sense of the scattering vector q. After a heterodyne demodulation, the power
spectrum of the scattered pressure signal is centered on νo and one measures
with good accuracy (dν = 50 mHz) the spectral line associated to ps, as shown
by the subplot of figure 8. The scattering peak appears exactly at ν − νo = fm

as predicts the equation 1.
If we change the incoming sound frequency νo, for a constant scattering angle

θ/2, we are exploring a wide band of spectral components of the wake pattern.
Remember that the scattering vector is given by q = 4π(νo/c) sin(θ/2).

After a frequency sweep of the incoming sound frequency, νo, we record the
evolution of the Doppler spectral line at fm as a function of the scattering vector
q. We found, as expected, a resonant behavior for the scattering amplitude ps

as shown in figure 8. A resonant scattering vector qr associated to a particular
sound frequency, corresponds to the fundamental wave vector of the modulated
wake pattern under forcing, as given by the relationship 2π/λΩ . The second peak
in figure 8 (indicated as qΛ

r ), originates by diffraction effects due to the finite size
window of the sound emitter and receiver. The spectral window is theoretically
given by a sinc profile for square windows. Note that the relative position of the
peak qΛ

r − qr does not change with the mean wake velocity as it was already
proved in other experiments [11].

For a constant forcing frequency fm and varying upstream flow velocity Uo,
the spectral wake components will change, obeying to the simple relationship,
λΩ ∼ Uo/fm. If we consider that the sound wave is modulated by the vortic-
ity pattern, the corresponding scattering spectral line obtained at different flow
velocities must not change, even though the resonant wave vector qr must be
different. This is confirmed on figure 9. The Doppler peak on the power spec-
trum (Figure 9a) is independent of the flow velocity. However the corresponding



Fig. 8. Ultrasound scattering by the forced wake (forcing amplitude, frequency and
Reynolds number are: ζm = 0.3, mm, fm = 10 Hz, Reb = 103 respectively). We display
the normalized amplitude of the scattered pressure as a function of the scattering wave
vector q. The spatial resonance is obtained at q = qr (νo = 19.25 kHz). The subplot
shows the corresponding power spectrum of scattered pressure, where a Doppler peak
is found at f − νo = fm.

resonant scattering vectors occur for very different wake pattern wave lengths
(Figure 9b).

So we confirm the validity of the dispersion relation. The scalar product q·u is
exactly conserved using the resonant scattering wave vectors. This picture allow
us to understand the sound scattering mechanism, where the incoming sound
wave is linearly modulated in frequency, which explains the Doppler shift on
scattered pressure signals. This is the reason why we use a heterodyne detection
technique, largely used in the radio frequency domain. The carrier wave at νo is
modulated at fm which corresponds to the scattered pressure by flow vorticity.

If we take a look at the scattering set up (Figure 2b), we see that scatter-
ing pressure comes from the volume defined by the intersected acoustic beams
(incident and scattered beams) downstream the plate. Therefore the advection
velocity for the vorticity field is not exactly the free stream velocity Uo. An ef-
fort was made to determine a characteristic advection velocity from the velocity
profiles measured downstream the plate with the hot wire probe.

The advection velocity is simply defined here as the spatial average (in the
cross stream direction) of u(y), 〈u〉,

〈u〉 =
1
Y

∫ Y/2

−Y/2

u(y)dy

where Y is the characteristic scale of wake velocity profiles at the beginning
of the scattering volume. We can see on figure 10b) that it is a very reasonable
definition of advection velocity, because if we compute the dimensionless number



(a) (b)

Fig. 9. Ultrasound scattering by the forced wake at two different free stream velocities
Reb = 103 (�), Reb = 1.5 × 103 (◦), where the forcing amplitude and frequency are:
ζm = 0.3, mm and fm = 10 Hz, respectively. (a) The power spectra of scattered
pressure display the same Doppler peak at the forcing frequency fm. (b) A sweep of
the scattering wave vector q = 4π(νo/c) sin(θ/2) shows that two clearly different spatial
resonances are found at very definite length scales.

F using this velocity F = fmb/〈u〉, we found that the resonant wave length λr/b
evolves linearly with F as one should expect. Moreover, we found that at F = 1
both λr/b ∼ 1 and the resonant scattered pressure amplitude is maximum.

(a) (b)

Fig. 10. (a) Evolution of the normalized resonant wavelength λr = 2π/qr with the free
stream velocity Uo for a forced wake (ζm = 0.3 mm, fm = 10 Hz). (b) Evolution of the
normalized resonant scattered pressure amplitudes (�) and resonant wavelengths (�)
with the dimensionless parameter F = fmb/〈u〉.



In the vicinity of F = 1 the path of fluid particles is exactly a half of the
plate’s width, b/2 on every half forcing period, so the spatial wake pattern has
a wave length of order b−1. At this scale the associated vorticity of that mode
reaches a maximum, i.e., a vorticity–resonance as a function of the forcing fre-
quency. This behavior was unexpected. But it can be explained as follows: Fluid
particles inside the boundary layer whose path is exactly b/2 acquire a complete
momentum transfer given by the half–forcing cycle, they pick up an increased
cross velocity and so increase the wake velocity gradient and therefore vorticity.

At very weak upstream velocities, Uo, the wake can be considered as linear.
But as Uo is increased we expect the wake to become non linear. Two effects can
be attributed to non linear terms. First, the linear growth of natural as well as
artificial instabilities is actually limited or saturated by non linear terms, and
second the production of higher harmonics which is the richness of a non linear
oscillator system.

Measurements of a non linear wake with hot wire probes make non sense
because of the intrinsic non linear character of the hot wire itself (production
of harmonics of a pure sinusoidal signal). Therefore it is a well controlled scat-
tering experiment which shed light on such a non linear behavior, due to the
fundamental linear relationship between scattering pressure and vorticity (See
equation 1).

(a) (b)

Fig. 11. Example of higher harmonics production by a non linear wake. Forcing ampli-
tude, frequency and Reynolds number are: ζm = 0.3, mm, fm = 10 Hz, Reb = 1.4×103

respectively. (a) Power spectrum of scattered pressure showing two peaks associated to
the fundamental (fm) and first harmonic (2fm). (b) Evolution of the peak amplitude of
the fundamental (◦) and first harmonic (�) as a function of the scattering wave vector
q = 4π(νo/c) sin(θ/2).

Figures 11 and 12 show such a non linear process. At constant forcing fre-
quency fm = 10 Hz, we increase the upstream velocity or the Reynolds number



(a) (b)

Fig. 12. Another example of higher harmonics production by a non linear wake. Forcing
amplitude, frequency and Reynolds number are: ζm = 0.3, mm, fm = 10 Hz, Reb =
1.5×103 respectively. (a) Power spectrum of scattered pressure showing three Doppler
peaks associated to the fundamental, first and second harmonics. (b) Spatial scales
associated to the fundamental (◦), first (�) and second harmonics (�).

Reb. The power spectra in figures 11a) and 12a) show clearly the onset of the
first and second harmonics 2fm and 3fm respectively.

The amplitude of the fundamental, first and second harmonics was obtained
as before, with a frequency sweep of the incoming sound wave ( See figures 11b
and 12b), to resolve accurately each spatial mode.

As we see we are able to resolve the complete temporal and spatial dynamics
of a non linear oscillating wake. With this result in mind we pursued a more
ambitious forcing. At constant upstream velocity, the forcing wave form is the
sum of two waves of incommensurate frequencies.

ζ(t) = ζm(ei2πf1
m + ei2πf2

m)

We digitally synthesized the sum of two pure sinusoidal waves at frequencies
of f1

m = 8 and f2
m = 10 Hz with the same amplitude ζm recorded on the volatile

state memory of the function generator. This forcing serves also to inspect non
linearities of the wake. We should find spectral lines at frequencies δfm = f1

m±f2
m

and successive combinations of the original waves with δfm.
On figure 13 we see that the power spectrum of scattered pressure at Reb =

103 shows four individual spectral lines (peaks) at the following frequencies:
−6,−8,−10,−12 Hz. They are found at the negative frequency axis because of
the sign of the corresponding Doppler effect (q ·u). The spectral line at δfm = 2
Hz can not be seen due to the broadening of the spectral line of the incoming
sound wave. However exact combinations between the original waves and the
δfm wave are demonstrated by the peaks at 6 and 12 Hz.



Again a sweep in wave number q allow us to find the corresponding spatial
modes associated to each peak in the power spectrum. We verify that at each
spectral line corresponds a resonant spatial wave vector as indicated on figure
13b), qr1, qr2, qr3, qr4 On the subplot of figure 13a) we show the experimental
dispersion relation ω(q) for those vorticity modes.

(a) (b)

Fig. 13. Wake modulation at two forcing frequencies f1
m = 8, f2

m = 10 Hz. (ζm =
0.3mm, Reb = 103). (a) Power spectrum of scattered pressure showing four Doppler
peaks (modes). The subplot showing their dispersion relation ω(q). (b) Spatial reso-
nances at each Doppler peak, showing the presence of very different spatial modes in
the wake. Doppler shifts are −6 Hz (◦), −8 Hz (�), −10 Hz (�) et −12 Hz (∗).

It is evident that if increase the number of forcing modes we should speak of
wave packets. The propagating properties of the wake can then be investigated.
This experiment immediately suggests that one can study the evolution of wave
packets introduced into a laminar wake. We can then follow accurately their
evolution in time using ultrasound scattering and try to determine possible en-
ergy transfers between different modes. A work of this kind will permit to better
understand actual ideas at the origin of energy transfers in turbulent open flows.
The mechanical energy being injected at integral length scales is then transferred
toward the smaller scales trough non linear coupling, being finally dissipated as
heat by viscosity [10].

4 Conclusion

The objective of this experimental work was to study the dynamical behavior
of a laminar wake under a linear harmonic forcing. Forcing was introduced by
small amplitude rotary oscillations of the trailing edge of a flat plate.



A throughout investigation of the wake behavior and vorticity modulation
was accomplished using classical hot wire anemometry and ultrasound scattering
methods respectively.

We confirmed the scattering mechanism of sound waves by a target of vortic-
ity. We put forward and confirmed the presence of a Doppler effect in agreement
with recent theoretical findings, in particular that the Doppler shift is accurately
described by the scalar product q · u.

Important findings on shedding vorticity were put forward using sound scat-
tering. In particular, the resonant behavior of vorticity with the forcing fre-
quency.

The fundamental difference between this experiment and those of sound scat-
tering by von Kármán vortices [11] is that here λΩ and Re are not coupled pa-
rameters, since we can vary λΩ independently of the free stream velocity and to
probe a wide band of spectral modes associated to the wake pattern.

Experiments on mixed harmonic forcing (the sum of two harmonic waves)
can be viewed as an introduction to the propagation of wave packets through
laminar wakes. It is the spatial resolution of the spectral measurements, in the
limit of diffraction effects, that must permit to work with a vorticity distribution
including several spectral modes.
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