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in age-structured populations

Caterina Cusulin ∗ and Luca Gerardo-Giorda †

March 10, 2008

Abstract

We propose a method to approximate numerically the diffusion of an age-structured population in a

spatial environment. We integrate separately the age and time variables by finite differences and we discretize

the space variable by finite elements. The method is implicit in time and, inside each time step, implicit

in age. We provide stability and convergence results and we illustrate our approach with some numerical

result.

1 Introduction

Modeling the dynamics of a population involves considerations on a great number of features of the pop-

ulation itself. In particular, empirical evidence suggests that both the spatial diffusion of individuals and

the internal heterogeneity of the population have to be taken into account. In this direction, over the last

decades models for the diffusion of structured populations have been formulated and analyzed, focusing

especially on the case of age-structured populations.

The mathematical problem describing the spreading of an age-structured population in a bounded region

Ω ∈ Rd (d = 1, 2, 3) consists in a reaction-diffusion equation for the population density, together with a given

initial condition, an integral condition at age a = 0, giving the newborns rate, and boundary conditions on

∂Ω depending on the specific features of the population and of the environment (an homogeneous Neu-

mann boundary condition is used to model Ω as an isolated environment, while an homogeneous Dirichlet

boundary condition models an hostile habitat at the boundary of Ω). For an almost complete review of the

results concerning existence, uniqueness and asymptotic behaviour of the solution of age-structured diffusion

models, we refer the interested reader to the book by A. Okubo and S.A. Levin ([9], Sec.10.8).

Classical approaches to the numerical solution of diffusion problems in age-structured population dynamics

integrate along characteristics in age and time (see for instance [4, 5, 8]). Such approach relies historically

on the fact that the earliest age-structured models did not include a spatial distribution of the population

density (see e.g. [3]): under the hypotesis of space homogeneity, indeed, the problem reduces to a pure first
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order hyperbolic partial differential equation, which is naturally solved by integration along characteristics.

The simultaneous discretization in age and time, peculiar of such method, forces the time and age steps to be

equal. However, the presence of different time scales in the dynamics (which is typically the case when space

is involved) suggests the use of different steps in the discretization of time and age, as done by A. de Roos

in [2]. This is also the approach followed by B. Ayati et al. in [1], where the time variable is left continuous,

the age domain is the positive real axis, and an approximation space in age is built by discontinuos piecewise

polynomials subspaces of L2(R+) moving along characteristic lines.

In this paper we present a method where the age and time variables are decoupled and discretized sepa-

rately by finite differences, while the space variable is discretized by finite elements. The proposed method

is implicit in time and, inside each time step, implicit in age.

The paper is organized as follows. In section 2 we briefly recall the linear model we are dealing with. In

section 3 we describe the time discretization and we give an energy estimate for the time discretized solution.

In section 4 we introduce the age and space discretization. Section 5 contains the stability and convergence

analysis of the method. Finally, in section 6 we outline the algorithmic aspects of the procedure, and we

present some numerical results to illustrate our method.

2 Model description

We consider an age-structured population diffusing in a bounded spatial domain Ω ⊂ Rd, d = 1, 2, 3, with

boundary ∂Ω ∈ C2. The density per unit space and age of the population at time t is usually denoted by

p(t, a, x), where a ∈ [0, a†] and x ∈ Ω, thus the total population at time t is then given by

P (t) =

Z

Ω

Z a†

0

p(t, a, x) dadx.

With these notations, given T > 0, the population density p(t, a, x) ∈ C(0, T ;L1(0, a†;H
1(Ω))) satisfies the

linear model problem

∂p

∂t
+
∂p

∂a
+ µ(a) p− div (k(a, x)∇p) = 0 in (0, T ) × (0, a†) × Ω, (2.1)

p(0, a, x) = p0(a, x) in (0, a†) × Ω, (2.2)

p(t, 0, x) =

Z a†

0

β(a)p(t, a, x) da in (0, T ) × Ω, (2.3)

n · k(a, x)∇p = 0 on (0, T ) × (0, a†) × ∂Ω, (2.4)

where the operators div (·) and ∇(·) are the standard divergence and gradient operators in Ω, and n is the

unit vector normal to ∂Ω pointing outwards, while µ(a) and β(a) represent the age-specific mortality and

the age-specific fertility, respectively, which are supposed to be non-negative functions of age only. In (2.2)

p0 is the given non-negative initial age distribution. The integral condition (2.3) is the so-called renewal

condition, providing the newborns rate. Finally, the zero-flux boundary condition (2.4) reflects the absence

of both immigration and emigration.

We assume that the age-specific mortality µ(·) is a measurable function, satisfying

Z a†

0

µ(σ)dσ = +∞, (2.5)
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in order to guarantee that the probability for an individual to survive at age a, which is defined as

π(a) = e−
R

a
0 µ(σ)dσ, (2.6)

vanishes at the maximum age a†.

Concerning the age-specific fertility β(·), we assume that it is measurable and essentialy bounded, namely

there exists a constant β+ such that

0 ≤ β(a) ≤ β+.

Finally, concerning diffusion, we impose the standard conditions on k

k ∈ L∞((0, a†) × Ω), 0 < k0 ≤ k(a, x) ≤ k+.

We refer again to [9] for issues concerning existence and uniqueness of a nonnegative solution of (2.1)-(2.4).

The presence of the unbounded coefficient µ(a) entails some difficulties at the numerical level. In order to

avoid this major drawback of the model, we can rewrite the problem of finding p(t, a, x), the solution of (2.1)-

(2.4), by performing a standard change of variable. By taking p(t, a, x) = π(a)u(t, a, x), where π(a) is the

survival probability defined in (2.6), we are led to the problem of finding u(t, a, x) ∈ C(0, T ;L1(0, a†;H
1(Ω)))

such that
∂u

∂t
+
∂u

∂a
− div (k(a, x)∇u) = 0 in (0, T ) × (0, a†) × Ω, (2.7)

u(0, a, x) = u0(a, x) in (0, a†) × Ω, (2.8)

u(t, 0, x) =

Z a†

0

m(a)u(t, a, x) da in (0, T ) × Ω, (2.9)

n · k(a, x)∇u = 0 on (0, T ) × (0, a†) × ∂Ω, (2.10)

where now u0(a, x) =
p0(a, x)

π(a)
and m(a) = β(a)π(a) is the so called maternity function. Notice that

m ∈ L∞(0, a†) since for all a ∈ (0, a†) we have m(a) ≤ β+.

We focus here on the numerical treatment of the problem and we assume throughout the paper existence

and uniqueness of smooth, nonnegative solutions. In that order, notice that the assumption on the mortality

function (2.5) is satsified by most applications. However, there are cases in which (2.5) is not satisfied: we

address at the end of section 4 how the method presented hereafter can be adapted to such situations.

3 Time discretization

As already pointed out in the introduction, the presence of different time scales suggests the use of different

steps in the discretization of time and age (see [1]).

In this direction, let

tn = n∆t n = 0, 1, . . . , Nt

be a partition of the interval (0, T ) into Nt subintervals of lenght ∆t = T/Nt (for simplicity in presentation

we consider an uniform discretization, adaptivity in time being beyond the scope of this paper). We use a

modified backward Euler scheme where the initial condition at age a = 0 is treated explicitely. For sake of

simplicity in notations, we denote the age-space domain by Q = ((0, a†)×Ω) ⊂ Rd+1, and we introduce the
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differential operators divQ and ∇Q as being the standard divergence and gradient operators in Q.

With these positions, at time level tn (n ≥ 1), we look for un ∈ L1(0, a†;H
1(Ω)) such that

8
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>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

un − un−1

∆t
+ e1 · ∇Qu

n − divQ

" 

0 0

0 k(a, x)

!

∇Qu
n

#

= 0 in Q

un(0, x) =

Z a†

0

m(a)un−1(a, x) da in Ω

n · k(a, x)∇un = 0 on (0, a†) × ∂Ω,

(3.1)

where u0(a, x) = u0(a, x) in Q, and where e1 = (1, 0, . . . , 0) is the first element of the canonical basis in

Rd+1.

The parabolic (in age and space) problem of reaction-diffusion type (3.1) can be recast in variational form

by integrating over the spatial domain Ω in the following way.

Given u0 ∈ L1(0, a†;H
1(Ω)), for all n = 1, . . . , Nt, find un ∈ L1(0, a†;H

1(Ω)) such that

8

>

>

>

<

>

>

>

:

d

da
〈un, v〉 + b(a;un, v) +

1

∆t
(un, v) =

1

∆t
(un−1, v) ∀v ∈ H1(Ω)

un(0, x) =

Z a†

0

m(a)un−1(a, x) da.

(3.2)

Here 〈· , ·〉 is the duality pairing between H1(Ω) and H−1(Ω), (· , ·) is the inner product in L2(Ω), and the

bilinear form b(a;u, v) is given by

b(a;u, v) =

Z

Ω

k(a, x)∇u · ∇v dx.

In the following we denote by ‖ · ‖0 and ‖ · ‖1 the usual L2(Ω) and H1(Ω) norms.

Remark 3.1 The coerciveness and the continuity of the bilinear form b(a; ·, ·)+ 1
∆t

(·, ·) are straightforward.

Moreover the fact that the maternity function m ∈ L∞(0, a†) guarantees that un(0, x) ∈ L2(Ω) as long as

un−1 ∈ L2(Q).

By standard coerciveness arguments one can prove existence and uniqueness for the solution of (3.2), as

stated in the following proposition.

Proposition 3.1 If un(0) ∈ L2(Ω), then for any n = 1, . . . , Nt there exists a unique solution un ∈

L2(0, a†;H
1(Ω)) ∩ C0([0, a†];L

2(Ω)) to problem (3.2), with
∂un

∂a
∈ L2(0, a†;H

−1(Ω)). Moreover, for each

a ∈ [0, a†], the following energy estimate holds

‖un(a)‖2
0 + 2α

Z a

0

‖un(σ)‖2
1 dσ +

1

∆t

Z a

0

‖un(σ)‖2
0 dσ ≤ ‖un(0)‖2

0 +
1

∆t

Z a

0

‚

‚un−1(σ)
‚

‚

2

0
dσ, (3.3)

where α is the coerciveness constant of the bilinear form b(a; ·, ·).

If un(0) ∈ H1(Ω) and k(a, x) ∈ C1(Q), then un ∈ L∞(0, a†;H
1(Ω)) ∩ H1(0, a†;L

2(Ω)) and the following

energy estimate holds

‖un(a)‖2
1 +

1

∆t
‖un(a)‖2

0 +

Z a

0

‚

‚

‚

‚

∂un

∂a
(a)

‚

‚

‚

‚

2

0

da ≤ C

„

‖un(0)‖2
1 +

1

∆t
‖un(0)‖2

0 +
1

(∆t)2

Z a

0

‚

‚un−1(a)
‚

‚

2

0
da

«

,

(3.4)

where the constant Cα > 0 is independent of a†.
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Proof For sake of simplicity, we denote, throughout the proof, by subindeces the partial derivative with

respect to a, i.e we let un
a = ∂un

∂a
. For any fixed a, we have, for all v ∈ H1(Ω),

(un
a , v) + b(a;un, v) +

1

∆t
(un, v) =

1

∆t
(un−1, v). (3.5)

Choosing v = un in (3.5) we get

1

2

d

da
‖un‖2

0 + b(a;un, un) +
1

∆t
‖un‖2

0 =
1

∆t
(un−1, un),

and, owing to the coercivity of b(a; ., .), we have

1

2

d

da
‖un‖2

0 + α‖un‖2
1 +

1

2

1

∆t
‖un‖2

0 ≤
1

2

1

∆t
‖un−1‖2

0. (3.6)

Integrating (3.6) with respect to a we easily get (3.3).

We now turn to estimate (3.4), and in that order we introduce the bilinear form

ba(a;φ, ψ) :=

Z

Ω

ka(a, x)∇φ∇ψ dx, ∀φ, ψ ∈ H1(Ω).

From the boundedness of the coefficients and their derivatives, it follows that there exists a positive constant

γ > 0 such that

|ba(a;φ, ψ)| ≤ γ‖φ‖1 ‖ψ‖1, ∀φ, ψ ∈ H1(Ω). (3.7)

Choosing v = un
a in (3.5) we get

‖un
a‖

2
0 + b(a;un, un

a ) +
1

∆t
(un, un

a) =
1

∆t
(un−1, un

a ).

Since

b(a;un, un
a ) =

1

2

d

da
b(a;un, un) −

1

2
ba(a;un, un),

we have from (3.7), for all ε > 0,

‖un
a‖

2
0 +

1

2

d

da
b(a;un, un) +

1

2

d

da

1

∆t
‖un‖2

0 ≤
1

∆t
ε‖un

a‖
2
0 +

1

∆t

1

4ε
‖un−1‖2

0 + γ‖un‖2
1.

By choosing ε < ∆t/2, we have

1

2
‖un

a‖
2
0 +

1

2

d

da
b(a;un, un) +

1

2

d

da

1

∆t
‖un‖2

0 ≤ C

„

‖un‖2
1 +

1

(∆t)2
‖un−1‖2

0

«

.

Integrating with respect to a, and using (3.3) we conclude the proof. �

4 Age and space discretization

We use a Galerkin finite element method in space to approximate the solution of (3.2). Let then Th be a

regular triangulation of Ω, namely Ω =
SN

j=1Kj , where each Kj = TKj
(E) ∈ Th, E being the reference

element, a simplex (namely the triangle with vertices (0, 0), (1, 0), and (0, 1) when d = 2 or the thetrahedron

with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) when d = 3), or the unit cube [0, 1]d, and where TKj
is

an invertible affine map. We define h as the maximum diameter of the elements of the triangulation, and
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we assume the triangulation to be regular. The associated finite element spaces Xh and Yh (see e.g. [10] for

an introduction to finite element methods) are defined as

Xh =
n

ϕh ∈ C0(Ω) |ϕh|Kj
◦ TKj

∈ P1(E)
o

, Yh =
n

ϕh ∈ C0(Ω) |ϕh|Kj
◦ TKj

∈ Q1(E)
o

,

where P1(E) is the space of polynomials of degree at most one on E, whereas Q1(E) is the space of polyno-

mials of degree at most one with respect to each variable on E.

A semi-discrete problem in space is then obtained by applying a Galerkin procedure and choosing the finite

dimensional space Vh = Xh (notice that the choice Vh = Yh would lead to the same results we present in

the following).

From now on and throughout this section, we omit the dependence on the x variable for all the functions

involved. Since the finite element space does not depend on age, problem (3.2) can be rewritten as follows.

Given u0(a, x), for all n = 1, . . . , Nt, find un
h ∈ L2(0, a†;Vh) such that

8

>

>

>

<

>

>

>

:

∆t
d

da
(un

h(a), vh) + ∆t b(a;un
h(a), vh) + (un

h(a), vh) = (un−1
h (a), vh) ∀vh ∈ Vh

un
h(0) =

Z a†

0

m(a)un−1
h (a) da,

(4.1)

where u0
h = πh u0(a, x), πh being the interpolation operator on Vh.

Owing to (4.1), we introduce the elliptic projection Π1,h : H1(Ω) → Vh, defined, for each w ∈ H1(Ω), as

Π1,hw ∈ Vh : ∆t b(a; Π1,hw, vh) + (Π1,hw, vh) = ∆t b(a;w, vh) + (w, vh) ∀vh ∈ Vh.

As, at each age a ∈ (0, a†), the bilinear form A(·, ·) := ∆t b(a; ·, ·) + (·, ·) is symmetric, the operator Π1,h is

actually an orthogonal projection onto Vh with respect to the scalar product A(·, ·), and satisfies

‖v − Π1,hv‖0 ≤ C h |v|1 ∀v ∈ H1(Ω), (4.2)

where | · |1 denotes the H1 seminorm in Ω.

Let {ϕj}j=1,..,Nh
be the nodal basis of the finite element space Vh. The semi-discrete solution un

h(a, x) is

thus given by

un
h(a, x) =

Nh
X

j=1

un
j (a)ϕj(x).

Denoting by u
n(a) = (un

1 (a), . . . , un
Nh

(a))T , equation (4.1) can be rewritten as

∆tM
dun

da
(a) + [∆tB(a) +M ] u

n(a) = Mu
n−1(a),

where B(a) and M are the stiffness and the mass matrices, defined as

Bij(a) =

Z

Ω

k(a, x)∇ϕj∇ϕi dx Mij =

Z

Ω

ϕjϕi dx. (4.3)

We advance in age problem (4.1) by means of a backward Euler scheme. Let

am = m∆a m = 0, 1, . . . , Na

be a partition of the age interval [0, a†] into Na subintervals of amplitude ∆a = a†/Na. The fully discrete

approximation of (2.7)-(2.10) reads as follows.
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Given u0
h, for n = 1, . . . , Nt, solve

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

un,0
h =

Na
X

m=1

∆a
ˆ

m(am)un−1,m
h

˜

for m = 1, . . . , Na, find un,m
h ∈ Vh such that

∆t

∆a
(un,m

h − un,m−1
h , vh) + ∆t b(am;un,m

h , vh) + (un,m
h , vh) = (un−1,m

h , vh) ∀vh ∈ Vh

(4.4)

Remark 4.1 The initial condition in age is computed, at each time step, by a suitable quadrature formula.

In the next section we prove stability and convergence of the method using the midpoint rule in (4.4), whereas

in the numerical tests we use a Simpson formula over two adjacent intervals.

Remark 4.2 System (4.1) is obtained by advancing in age problem (4.1) by means of a backward Euler

scheme. Such choice relies on issues of simpicity in presentation. Indeed, inside each time step, the problem

to be solved is parabolic in age and space and second order approximation in age can be achieved by means of

a Crank-Nicholson scheme, without additional stability requirements. Moreover, higher order methods in age

can be devised choosing to advance the parabolic problem by means of a multistep or a Runge-Kutta method,

though these latter could entail some stability concerns.

Remark 4.3 The assumption on the mortality term made in Section 2 is actually satisfied by most appli-

cations, but there are important occurrencies in which the mortality term can be bounded and depend on

the whole population, while the age interval is the positive real axis. In such situations the proposed method

cannot be applied as it is, and has to undergo some suitable modification. However, as long as the mortality

term is bounded, the problem inside each time step is no more than a (possibly nonlinear) parabolic problem

in age and space. If the mortality coefficient is independent of the total population, it can be can be treated

implicitely in age, augmenting the coerciveness of the bilinear form in the variational formulation. If the

mortality coefficient depends on the total population, the parabolic problem can be linearized by treating the

mortality term in a semi-implicit way, computing the total population at the previous time step. In these

cases, as the age variable runs up to infinity, it is usual to truncate numerically the age domain at a maximal

value, according to the specific case under investigation.

5 Stability and convergence analysis

In this section we analyse the stability and the convergence of the method. We first prove two intermediate

results.

Lemma 5.1 Let un,m
h be the solution of (4.4). Then, for any n,m > 0,

‖un,m
h ‖

0
≤

∆a

∆t+ ∆a

‚

‚un−1,m
h

‚

‚

0
+

∆t

∆t+ ∆a

‚

‚un,m−1
h

‚

‚

0
. (5.1)

Proof We can rewrite the equation in (4.4) as

 

un,m
h − un,m−1

h

∆a
, vh

!

+ b(am; un,m
h , vh) +

1

∆t
(un,m

h , vh) =
1

∆t
(un−1,m

h , vh), (5.2)
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and, taking vh = un,m
h in (5.2), we get

„

1

∆a
+

1

∆t

«

‖un,m
h ‖2

0
+ b(am;un,m

h , un,m
h ) =

1

∆a
(un,m−1

h , un,m
h ) +

1

∆t
(un−1,m

h , un,m
h ).

Since b(am;un,m
h , un,m

h ) ≥ 0, we have, owing to the Schwarz inequality,

„

1

∆a
+

1

∆t

«

‖un,m
h ‖

0
≤

1

∆a

‚

‚un,m−1
h

‚

‚

0
+

1

∆t

‚

‚un−1,m
h

‚

‚

0
,

and (5.1) follows. �

Lemma 5.2 Let un,m
h be the solution of (4.4). Then, for any n,m > 0,

∆t
n
X

p=1

‖up,m
h ‖

0
+ ∆a

m
X

q=1

‖un,q
h ‖

0
≤ ∆a

m
X

q=1

‚

‚u0,q
h

‚

‚

0
+ ∆t

n
X

p=1

‚

‚up,0
h

‚

‚

0
. (5.3)

Proof For sake of simplicity in notations, let us denote ηn,m = ‖un,m
h ‖

0
.

Owing to (5.1) we have

n
X

p=1

m
X

q=1

ηp,q ≤
∆a

∆t+ ∆a

n−1
X

p=1

m−1
X

q=1

ηp,q +
∆a

∆t+ ∆a

m
X

q=1

η0,q +
∆t

∆t+ ∆a

n−1
X

p=1

m−1
X

q=1

ηp,q

+
∆t

∆t+ ∆a

n
X

p=1

ηp,0 +
∆a

∆t+ ∆a

n−1
X

p=1

ηp,m +
∆t

∆t+ ∆a

m−1
X

q=1

ηn,q ,

which, since
Pn

p=1

Pm
q=1 η

p,q =
Pn−1

p=1

Pm−1
q=1 ηp,q +

Pn−1
p=1 η

p,m +
Pm−1

q=1 ηn,q + ηn,m, is equivalent to

n−1
X

p=1

ηp,m +
m−1
X

q=1

ηn,q +ηn,m ≤
∆a

∆t+ ∆a

n−1
X

p=1

ηp,m +
∆a

∆t+ ∆a

m
X

q=1

η0,q +
∆t

∆t+ ∆a

m−1
X

q=1

ηn,q +
∆t

∆t+ ∆a

n
X

p=1

ηp,0.

This latter inequality can be rearranged to have

∆t

∆t+ ∆a

n
X

p=1

ηp,m +
∆a

∆t+ ∆a

m
X

q=1

ηn,q ≤
∆a

∆t+ ∆a

m
X

q=1

η0,q +
∆t

∆t+ ∆a

n
X

p=1

ηp,0,

and (5.3) follows by multiplying by (∆t+ ∆a). �

We denote by Un
h = (un,0

h , un,1
h , . . . , un,Na

h ) the approximate solution at time t = tn. The stability of the

numerical scheme is guaranteed by the following result.

Proposition 5.1 (Stability) For any n = 1, . . . , Nt, the following estimate holds:

‖Un
h ‖L1(0,a†;L

2(Ω)) ≤
“

1 + ea†β2
+T
”

‚

‚U0
h

‚

‚

L1(0,a†;L2(Ω))
,

where ‖Un
h ‖L1(0,a†;L

2(Ω)) =
PNa

m=0 ∆a ‖un,m
h ‖

0
denotes the discrete L1(0, a†;L

2(Ω)) norm.

Proof We have, owing to (5.3),

‖Un
h ‖L1(0,a†;L2(Ω)) ≤ ∆a

Na
X

q=0

‚

‚u0,q
h

‚

‚

0
+ ∆t

n
X

p=1

‚

‚up,0
h

‚

‚

0
=
‚

‚U0
h

‚

‚

L1(0,a†;L2(Ω))
+ ∆t

n
X

p=1

‚

‚up,0
h

‚

‚

0
.
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Since up,0
h =

PNa

q=0 ∆a
ˆ

m(aq)up−1,q
h

˜

, the boundedness of the maternity function (m(a) ≤ β+) entails

‚

‚up,0
h

‚

‚

0
≤ a†β

2
+

Na
X

q=0

∆a
‚

‚up−1,q
h

‚

‚

0
= a†β

2
+

‚

‚Up−1
h

‚

‚

L1(0,a†;L
2(Ω))

.

Thus, we have

‖Un
h ‖L1(0,a†;L

2(Ω)) ≤
‚

‚U0
h

‚

‚

L1(0,a†;L2(Ω))
+

n−1
X

p=0

a†β
2
+ ∆t ‖Up

h‖L1(0,a†;L2(Ω))
,

and a direct application of the Discrete Gronwall Lemma1 concludes the proof, as n ≤ Nt = T
∆t

. �

Finally, the convergence of the method is given by the following proposition.

Proposition 5.2 (Convergence) Let Th be a regular family of triangulations on Ω. Assume that the

solution u of problem (2.7)-(2.10), is such that, for all t ∈ (0, T ),
∂u

∂a
(t, ·, ·),

∂u

∂t
(t, ·, ·) ∈ L1(0, a†;H

1(Ω)),

and
∂2u

∂a2
(t, ·, ·),

∂2u

∂t2
∈ L1(0, a†;L

2(Ω)). Then, using linear finite elements, the following estimate holds

‖u(tn, ·, ·) − Un
h ‖L1(0,a†;L2(Ω)) ≤

‚

‚U0
h − Πhu0

‚

‚

L1(0,a†;L2(Ω))
+ Ch ‖u(tn, ·, ·)‖L1(0,a†;H

1(Ω))

+ Ch
n
X

p=0

∆t

‚

‚

‚

‚

∂u

∂a
(tp, ·, ·)

‚

‚

‚

‚

L1(0,a†;H1(Ω))

+ Ch

Z tn

0

‚

‚

‚

‚

∂u

∂t
(t, ·, ·)

‚

‚

‚

‚

L1(0,a†;H1(Ω))

dt

+ C∆t

Z tn

0

‚

‚

‚

‚

∂2u

∂t2
(t, ·, ·)

‚

‚

‚

‚

L1(0,a†;L
2(Ω))

dt+ C∆a

n
X

p=0

∆t

‚

‚

‚

‚

∂2u

∂a2
(tp, ·, ·)

‚

‚

‚

‚

L1(0,a†;L2(Ω))

(5.4)

where the constant C > 0 is independent of h, ∆a, and ∆t.

Proof For sake of simplicity, we omit throughout the proof the dependence on the x variable.

We have

‖u(tn, ·) − Un
h ‖L1(0,a†;L2(Ω)) ≤ ‖u(tn, ·) − Π1,hu(t

n, ·)‖L1(0,a†;L2(Ω)) + ‖Π1,hu(t
n, ·) − Un

h ‖L1(0,a†;L
2(Ω)) .

(5.5)

The first term in (5.5) can be estimated, by (4.2), as follows

‖u(tn, ·) − Π1,hu(t
n, ·)‖L1(0,a†;L2(Ω)) =

Na
X

m=0

∆a ‖u(tn, am) − Π1,hu(t
n, am)‖0

≤ Ch

Na
X

m=0

∆a ‖u(tn, am)‖1 = Ch ‖u(tn, ·)‖L1(0,a†;H
1(Ω)) .

(5.6)

Concerning the second term in (5.5), owing to the equation in (4.4), we easily see that the difference

ηn,l
h := un,l

h − Π1,hu(t
n, al) satisfies

1

∆t
(ηn,l

h − ηn−1,l
h , vh) +

1

∆a
(ηn,l

h − ηn,l−1
h , vh) + b(al; ηn,l

h , vh) = (εn−1,l
h , vh), ∀vh ∈ Vh (5.7)

1Let kn be a non-negative sequence, and let φn be a sequence that satisfies
(

φ0 ≤ g0,

φn ≤ g0 +
Pn−1

s=0 ps +
Pn−1

s=0 ksφs (n ≥ 1)

Then, if g0 ≥ 0, and pm ≥ 0 for m ≥ 0, it follows, for n ≥ 1,

φn ≤

 

g0 +

n−1
X

s=0

ps

!

exp

 

n−1
X

s=0

ks

!

.
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where the quantity εn,l−1
h ∈ Vh is defined by the relation

(εn−1,l
h , vh) = −

1

∆t
(Π1,hu(t

n, al) − Π1,hu(t
n−1, al), vh) − b(al; Π1,hu(t

n, al), vh)

−
1

∆a

“

Π1,hu(t
n, al) − Π1,hu(t

n, al−1), vh

”

∀vh ∈ Vh.

(5.8)

Now, since the bilinear form b(al; ·, ·) is continuous, coercive, and symmetric in Vh, there exists a non-

decreasing sequence of eigenvalues 0 < α ≤ µ1,h ≤ µ2,h ≤ . . . ≤ µNh,h and a L2(Ω)-orthonormal basis of

eigenvectors {ωi,h ∈ Vh, i = 1, . . . , Nh} such that

b(al;ωi,h, vh) = µi,h(ωi,h, vh) ∀vh ∈ Vh.

Any function vh ∈ Vh can then be expanded with respect to the system {ωi,h},

vh =

Nh
X

i=1

(vh, ωi,h)ωi,h ‖vh‖
2
0 =

Nh
X

i=1

|(vh, ωi,h)|2 , (5.9)

and in particular we have

ηn,l
h =

Nh
X

i=1

ηn,l
i ωi,h ηn−1,l

h =

Nh
X

i=1

ηn−1,l
i ωi,h ηn,l−1

h =

Nh
X

i=1

ηn,l−1
i ωi,h εn−1,l

h =

Nh
X

i=1

εn−1,l
i ωi,h,

where we have set ηn,l
i = (ηn,l

h , ωi,h), ηn−1,l
i = (ηn−1,l

h , ωi,h), ηn,l−1
i = (ηn,l−1

h , ωi,h), and εn−1,l
i = (εn−1,l

h , ωi,h).

With these positions equation (5.7) is equivalent to

1

∆t
ηn,l

i −
1

∆t
ηn−1,l

i +
1

∆a
ηn,l

i −
1

∆a
ηn,l−1

i + µi,h η
n,l
i = εn−1,l

i

for each i = 1, . . . , Nh. We can rewrite the above expression as

ηn,l
i =

∆a

∆a+ ∆t+ µi,h∆a∆t
ηn−1,l

i +
∆t

∆a+ ∆t+ µi,h∆a∆t
ηn,l−1

i +
∆a∆t

∆a+ ∆t+ µi,h∆a∆t
εn−1,l

i . (5.10)

By taking the absolute value in (5.10), we obtain, from (5.9) and Minkowski inequality,

‖ηn,l
h ‖0 ≤

∆a

∆a+ ∆t
‖ηn−1,l

h ‖0 +
∆t

∆a+ ∆t
‖ηn,l−1

h ‖0 +
∆t∆a

∆a+ ∆t
‖εn−1,l

h ‖0. (5.11)

Summing (5.11) on l, and multiplying the result by (∆a+ ∆t)

Na
X

l=0

∆a ‖ηn,l
h ‖0 ≤

Na
X

l=0

∆a ‖ηn−1,l
h ‖0 + ∆t

Na
X

l=0

∆a ‖εn−1,l
h ‖0 (5.12)

Denoting by η
n =

“

ηn,0
h , . . . , ηn,Na

h

”

, and ε
n =

“

εn,0
h , . . . , εn,Na

h

”

, equation (5.12) is equivalent to

‖ηn‖L1(0,a†;L2(Ω)) ≤
‚

‚η
n−1
‚

‚

L1(0,a†;L2(Ω))
+ ∆t

‚

‚ε
n−1
‚

‚

L1(0,a†;L2(Ω))
,

and, by iteration, we have

‖ηn‖L1(0,a†;L2(Ω)) ≤
‚

‚η
0
‚

‚

L1(0,a†;L2(Ω))
+ ∆t

n−1
X

p=0

‖εp‖L1(0,a†;L2(Ω)) . (5.13)

We now turn to estimate ‖εn‖L1(0,a†;L2(Ω)). Owing to (2.7), we have

„

∂u

∂t
(tn, al), vh

«

+

„

∂u

∂a
(tn, al), vh

«

= −b(al;u(tn, al), vh),
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and, since the operator Π1,h commutes with both ∂
∂t

and ∂
∂a

, equation (5.8) can be rewritten as

(εn−1,l
h , vh) =

„

∂u

∂t
(tn, al), vh

«

−
1

∆t
(Π1,hu(t

n, al) − Π1,hu(t
n−1, al), vh)

+

„

∂u

∂a
(tn, al), vh

«

−
1

∆a

“

Π1,hu(t
n, al) − Π1,hu(t

n, al−1), vh

”

=

„

∂u

∂t
(tn, al) −

u(tn, al) − u(tn−1, al)

∆t
, vh

«

+
1

∆t

 

Z tn

tn−1

(I − Π1,h)
∂u

∂t
(τ, al) dτ, vh

!

„

∂u

∂a
(tn, al) −

u(tn, al) − u(tn−1, al)

∆a
, vh

«

+
1

∆a

 

Z al

al−1

(I − Π1,h)
∂u

∂t
(tn, σ) dσ, vh

!

=
1

∆t

 

Z tn

tn−1

(I − Π1,h)
∂u

∂t
(τ, al) dτ, vh

!

+
1

∆t

 

Z tn

tn−1

(τ − tn−1)
∂2u

∂t2
(τ, al) dτ, vh

!

1

∆a

 

Z al

al−1

(I − Π1,h)
∂u

∂t
(tn, σ) dσ, vh

!

+
1

∆a

 

Z al

al−1

(σ − al−1)
∂2u

∂a2
(tn, σ) dσ, vh

!

.

(5.14)

So far, taking vh = εn−1,l
h in (5.14), and applying Schwarz inequality, we have

‚

‚

‚
εn−1,l

h

‚

‚

‚

0
≤

1

∆t

Z tn

tn−1

‚

‚

‚

‚

(I − Π1,h)
∂u

∂t
(t, al)

‚

‚

‚

‚

0

dt+

Z tn

tn−1

‚

‚

‚

‚

∂2u

∂t2
(t, al)

‚

‚

‚

‚

0

dt

+
1

∆a

Z al

al−1

‚

‚

‚

‚

(I − Π1,h)
∂u

∂a
(tn, a)

‚

‚

‚

‚

0

da+

Z al

al−1

‚

‚

‚

‚

∂2u

∂a2
(tn, a)

‚

‚

‚

‚

0

da,
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and, consequentely, from (4.2),

‖εp‖L1(0,a†;L
2(Ω)) ≤

1

∆t

Na
X

l=0

∆a

Z tp

tp−1

‚

‚

‚

‚

(I − Π1,h)
∂u

∂t
(t, al)

‚

‚

‚

‚

0

dt+

Na
X

l=0

∆a

Z tp

tp−1

‚

‚

‚

‚

∂2u

∂t2
(t, al)

‚

‚

‚

‚

0

dt

+
1

∆a

Na
X

l=0

∆a

Z al

al−1

‚

‚

‚

‚

(I − Π1,h)
∂u

∂a
(tp, a)

‚

‚

‚

‚

0

da+

Na
X

l=0

∆a

Z al

al−1

‚

‚

‚

‚

∂2u

∂a2
(tp, a)

‚

‚

‚

‚

0

da

≤
Ch

∆t

Z tp

tp−1

 

Na
X

l=0

∆a

‚

‚

‚

‚

∂u

∂t
(t, al)

‚

‚

‚

‚

1

!

dt+

Z tp

tp−1

 

Na
X

l=0

∆a

‚

‚

‚

‚

∂2u

∂t2
(t, al)

‚

‚

‚

‚

0

!

dt

+Ch

Z a†

0

‚

‚

‚

‚

∂u

∂a
(tp, a)

‚

‚

‚

‚

1

da+ ∆a

Z a†

0

‚

‚

‚

‚

∂2u

∂a2
(tp, a)

‚

‚

‚

‚

0

da

=
Ch

∆t

Z tp

tp−1

‚

‚

‚

‚

∂u

∂t
(t, al)

‚

‚

‚

‚

L1(0,a†;H
1(Ω))

dt+

Z tp

tp−1

‚

‚

‚

‚

∂2u

∂t2
(t, al)

‚

‚

‚

‚

L1(0,a†;L2(Ω))

dt

+Ch

‚

‚

‚

‚

∂u

∂a
(tp, a)

‚

‚

‚

‚

L1(0,a†;H
1(Ω))

+ ∆a

‚

‚

‚

‚

∂2u

∂a2
(tp, a)

‚

‚

‚

‚

L1(0,a†;L2(Ω))

.

Thus, using this in (5.13), we get

‖ηn‖L1(0,a†;L
2(Ω)) ≤

‚

‚η
0
‚

‚

L1(0,a†;L
2(Ω))

+ ∆t

n
X

p=0

Ch

∆t

Z tp

tp−1

‚

‚

‚

‚

∂u

∂t
(t, ·)

‚

‚

‚

‚

L1(0,a†;H1(Ω))

dt

+ ∆t
n
X

p=0

Z tp

tp−1

‚

‚

‚

‚

∂2u

∂t2
(t, ·)

‚

‚

‚

‚

L1(0,a†;L2(Ω))

dt+ ∆t
n
X

p=0

Ch

‚

‚

‚

‚

∂u

∂a
(tp, ·)

‚

‚

‚

‚

L1(0,a†;H1(Ω))

+ ∆t
n
X

p=0

∆a

‚

‚

‚

‚

∂2u

∂a2
(tp, ·)

‚

‚

‚

‚

L1(0,a†;L
2(Ω))

=
‚

‚η
0
‚

‚

L1(0,a†;L
2(Ω))

+ Ch

Z tn

0

‚

‚

‚

‚

∂u

∂t
(t, ·)

‚

‚

‚

‚

L1(0,a†;L2(Ω))

dt

+ ∆t

Z tn

0

‚

‚

‚

‚

∂2u

∂t2
(t, ·)

‚

‚

‚

‚

L1(0,a†;L2(Ω))

dt+Ch

n
X

p=0

∆t

‚

‚

‚

‚

∂u

∂a
(tp, ·)

‚

‚

‚

‚

L1(0,a†;H1(Ω)))

+ ∆a
n
X

p=0

∆t

‚

‚

‚

‚

∂2u

∂a2
(tp, ·)

‚

‚

‚

‚

L1(0,a†;L
2(Ω))

.

(5.15)
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Since η
n = Π1,hu(t

n, ·) − Un
h (n = 1, . . . , Nt), we eventually obtain (5.4) from (5.5), (5.6), and (5.15). �

An immediate consequence of (5.4) is given by the following corollary, that provides a uniform estimate with

respect to time.

Corollary 5.3 Let the solution u of problem (2.7)-(2.10) satisfy the hypoteses of Proposition 5.2. If, in

addition, u ∈ L∞(0, T ;L1(0, a†;H
1(Ω))), the following estimate holds for any n = 1, . . . , Nt

‖u(tn, ·, ·) − Un
h ‖L1(0,a†;L2(Ω)) ≤

‚

‚U0
h − Πhu0

‚

‚

L1(0,a†;L
2(Ω))

+ Ch sup
t∈(0,T )

‖u(t, ·, ·)‖L1(0,a†;H1(Ω))

+ Ch

Nt
X

p=0

∆t

‚

‚

‚

‚

∂u

∂a
(tp, ·, ·)

‚

‚

‚

‚

L1(0,a†;H1(Ω))

+ Ch

Z T

0

‚

‚

‚

‚

∂u

∂t
(t, ·, ·)

‚

‚

‚

‚

L1(0,a†;H
1(Ω))

dt

+ C∆t

Z T

0

‚

‚

‚

‚

∂2u

∂t2
(t, ·, ·)

‚

‚

‚

‚

L1(0,a†;L2(Ω))

dt+ C∆a

Nt
X

p=0

∆t

‚

‚

‚

‚

∂2u

∂a2
(tp, ·, ·)

‚

‚

‚

‚

L1(0,a†;L2(Ω))

(5.16)

where the constant C > 0 is independent of h, ∆a, and ∆t.

6 Numerical results

We present in this section some numerical results to show the effectiveness of the method, and we first outline

some algorithmic aspects of the proposed method in a slightly more general setting, where the discretization

steps in age and time are not necerssarily uniform.

Let {0 = t0 < t1 < · · · < tNt = T} and {0 = a0 < a1 < · · · < aNa = a†} be suitable discretizations of the

intervals (0, T ) and (0, a†), respectively, and let

∆tn = tn − tn−1 ∆am = am − am−1.

The solution un,m
h (x) to problem (4.4) is given by

un,m
h (x) =

Nh
X

j=1

un,m
j ϕj(x).

We denote by u
n,m = (un,m

1 , . . . , un,m
Nh

)T the unknown vector at time tn and age am.

At time step tn, given u
n−1,l, the solution, for any age level al (l = 0, 1, .., Na), at time step tn−1:

• Compute the initial value u
n,0 from the previous time step via a Simpson quadrature rule over two

adjacent age intervals, i.e. for j = 1, . . . , Nh

u
n,0
j =

Na/2
X

l=1

∆a2l−1 + ∆a2l

6

h

m(a2(l−1)) u
n−1,2(l−1)
j + 4m(a2l−1)u

n−1,2l−1
j +m(a2l) u

n−1,2l
j

i

.

• For l = 1, . . . , Na solve

h

∆tn∆alBl +
“

∆tn + ∆al
”

M
i

u
n,l = ∆alMu

n−1,l + ∆tnMu
n,l−1

where Bl = B(al) and M are the stiffness and the mass matrices, defined in (4.3).
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Remark 6.1 Notice that if the age and time discretization grids are uniform, ∆al and ∆tn are fixed and

the matrices Al = [∆t∆aBl + (∆t+ ∆a)M ] (l = 0, . . . , Na) can be computed once for all. Moreover, if the

diffusion coefficient does not depend on age, the stiffness matrix stays unchanged throughout the computation.

We first consider a one dimensional problem in space. The spatial domain is Ω = (0, 1), the age interval is

[0, 100], and we choose as maximal time T = 30. The numerical simulations are run on MatlabR© 6.5.

We consider a non-symmetric initial distribution of population (with respect to both space and age) given

by

u0(x, a) = e
−

„

(a−30)2

200
+100(x−0.4)2

«

,

and we take the mortality and fertility function as

µ(a) =
1

a† − a
, β(a) =

8

>

>

>

>

<

>

>

>

>

:

0 if a ≤ a1

β(a− a1)
α−1e−

(a−a1)
ϑ

ϑαΓ(α)
if a1 < a < a2

0 if a ≥ a2,

where we set a1 = 17, a2 = 70, β = 7, α = 5, and ϑ = 3.

We plot in figure 1 the resulting maternity function and the initial profile of the problem. We use an uniform

mesh in space, and, at each time level, we use a Simpson quadrature rule over two adjacent subinterbvals to

compute the intial value for the parabolic (in age and space) problem.

In the first test, we choose a constant diffusion coefficient k(a, x) = 10−3, and we investigate numerically
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0.05
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0.25
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Age

m
(a

)

Maternity function

Figure 1: Maternity function (left) and initial age-space profile (right) for the numerical tests

the convergence of the method. In that order, we first vary the mesh size h having fixed ∆a and ∆t, then

we vary ∆a and ∆t, having fixed h. Moreover, in order to investigate the robustness of the method with

respect to the age and time discretization step we vary not only ∆a and ∆t, but also their ratio. We analyze

the relative error
‖u(tn,·,·)−Un

h ‖

‖u(tn,·,·)‖
in the discrete L1(0, a†;L

2(Ω)) norm, with respect to a reference solution

computed using a very fine grid in both age and time with ∆a = ∆t = 0.05 and h = 1/1000. In figure 2

14



we show the work precision, in h for a uniform grid in age and time with ∆a = ∆t = 0.1 (left picture, at

time T = 5 and T = 10), and in ∆t and ∆a (right picture, at time T = 5). For the latter case, we choose

h = 1/100 and we consider different discretization steps in age and time, choosing ∆a/∆t ranging from 1/4

to 4. The method shows the predicted order of convergence. Moreover, it appears to be robust with respect

to the ratio between the age and time discretization (the best choice seems to be ∆t = ∆a/2), and such

feature is quite promising in view of adaptivity in the discretization of these variables.

In the second test, we use a uniform mesh in time and age, with ∆a = 2 and = ∆t = 1, and we give in
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Figure 2: Convergence in L1(0, a†; L
2(Ω)) norm: relative error in h (left) and ∆t and ∆a (right)
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Figure 3: Age-space profiles and contour isolines at different time levels for Test 2, with k(a, x) = 10−3

figure 3 the age-space profiles and contour isolines of the solution at different time levels, with a diffusion
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coefficient homogeneous in space but discontinuous in age, given by

k(a, x) =

8

>

>

<

>

>

:

10−3 if a < 20

5 · 10−3 if 20 ≤ a ≤ 40

10−3 if a > 40.

In figure 4 (left) we give the age-space profiles of the solution at different time levels with k(a, x) = 1. In

the presence of strong diffusion the solution tends rapidly to a spatially homogeneous distribution, showing

a typical age profile, as portrayed in figure 4 (right).

Finally, in the last test, we consider a two-dimensional spatial domain Ω = [0, 1]× [0, 1], with an anisotropic

diffusion coefficient

k(a, x) =

 

kx(a, x) 0

0 ky(a, x)

!

,

where kx(a, x) = 2 · 10−3, and ky(a, x) = 10−3. We use the same mortality and fertility functions of the

previous tests and an initial profile given by

u0(x, a) = e
−

„

(a−30)2

200
+1000[(x−0.5)2+(y−0.75)2]

«

.

We discretize Ω by an unstructured triangular grid consisting of 2601 nodes and 5000 elements, and we

choose ∆t = ∆a = 1. We report in figure 5 the results: on the left we show the time evolution of the total

population, and on the right we show the time evolution of the age profile at point (0.5, 0.74).
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Figure 4: Age-space profiles (left) and age profiles in x = 0.4 (right) at different time levels for Test 2, with

k(a, x) = 10−1

7 Conclusions

We proposed a Galerkin type method for the numerical approximation of the diffusion of an age-structured

population. The method is based on a finite elements discretization in space, and on implicit discretizations
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Figure 5: Space profiles and contour isolines of the total population (left) and age profiles in (0.5, 0.76) (right)

at different time levels for the two-dimensional test

in time and age. The key feature of the method is the separate discretization of time and age. We proved

stability and convergence, and we presented some numerical result to validate the proposed method.

Further directions of research will be the study of separate adaptivity in age and time and the analysis of

a method for a nonlinear problem, where the nonlinearity is not only located in the diffusion coefficient

(quite a straightforward extension) but also in fertility or mortality functions, that can depend on the total

population or on some weighted means of the poulation itself (sizes).
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