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Introduction

This paper summarizes a series of lectures given by the author at the University of Milano in the winter of 2007. It is devoted to a self-contained and elementary approach to the mathematical properties of reversible reactiondiffusion equations, almost entirely based on the entropy estimate.

The only mathematical prerequisites for this paper are some familiarity with PDEs methods (like, for example, Sobolev inequalities), together with a few basic facts about the solutions to linear parabolic equations.

Our goal is to show how the entropy estimate (which, together with the conservation of atoms, is the only physically relevant estimate) can be used in a systematic way in order to get bounds leading to existence of strong or weak solutions, as well as bounds for the rate of convergence to the equilibrium.

We have decided to present the estimates for three typical systems corresponding to basic chemical reactions involving a few species, rather than introducing general systems with an arbitrary number of species and reactions. We hope that this simplified presentation, which retains many of the difficulties of the general case, will help the readers.

Reversible Reactions

Our aim is to study reversible reaction processes for a set of chemical species A i , i = 1, 2, . . . , q, of the type

α 1 A 1 + • • • + α q A q ⇋ β 1 A 1 + • • • + β q A q , α i , β i ∈ N . (1) 
We define by a i := a i (t) the concentration at time t of species A i . Then, thanks to the mass action law, the functions a i , i = 1, 2, . . . , q, satisfy (Cf. for example [START_REF] Giovangigli | Multicomponent flow modeling[END_REF]) the following system of ordinary differential equations (ODEs) :

a ′ i (t) = (β i -α i )   l q j=1 a α j j (t) -k q j=1 a β j j (t)   . (2) 
Here, α i , β i are the stoichiometric coefficients, and k > 0, l > 0 are strictly positive reaction rates corresponding to a reversible reaction.

Convection; Diffusion

We now assume that the chemical reaction happens in a reactor (that is, from the point of view of mathematics, a bounded box Ω ⊂ IR N (N ≥ 1), assumed to be smooth (C 2 ), bounded and connected), where the molecules of the various species are moving.

We shall concentrate on the case when the molecules of the various species diffuse (each species has its own velocity of diffusion) within a nonreactive background supposed to be at rest. It means that the unknown is a i := a i (t, x) ≥ 0, i = 1, . . . , q (where x ∈ Ω). It satisfies (Cf. for example [START_REF] De Masi | Mathematical methods for hydrodynamic limits[END_REF]) the following system of partial differential equations (PDE) :

∂ t a i -d i ∆ x a i = (β i -α i )   l q j=1 a α j j -k q j=1 a β j j   , (3) 
where d i is the diffusion velocity (in the non-reacting background) of species A i .

Note that many important problems involve some form of convection. The simplest modeling involving such a phenomenon concerns the case when the (non-reactive) fluid is not at rest, but has a velocity u := u(t, x) ∈ IR N . In this case, equation (3) becomes

∂ t a i + ∇ x • (u a i ) -d i ∆ x a i = (β i -α i )   l q j=1 a α j j -k q j=1 a β j j   . (4) 
However, the most interesting situation concerns the case of a mixture of reactive gases satisfying reactive Euler equations or reactive Navier-Stokes equations. We refer to [START_REF] Giovangigli | Multicomponent flow modeling[END_REF] for a precise description of such a situation.

We shall assume that the molecules are confined in the reactor, so that the flux of concentration of each species at the boundary ∂Ω is 0. This gives for equation [START_REF] De Masi | Mathematical methods for hydrodynamic limits[END_REF] the homogeneous Neumann boundary condition :

n(x) • ∇ x a i = 0, (5) 
where n(x) is (and always will be in the sequel) the outer normal unit vector at point x of ∂Ω.

Three typical chemical reactions

We shall from now on concentrate on the three typical chemical reactions

A + A ⇋ B, (6) 
A + B ⇋ C, (7) 
and

A + B ⇋ C + D. (8) 
Without loss of generality, it is convenient to assume that (denoting by |Ω| the measure of Ω)

l = k = 1 , |Ω| = 1 . (9) 
This can be obtained (for example in the case of eq. ( 8)) thanks to the rescaling t → 1 k t, x → |Ω| Then, we first describe the system associated to A + A ⇋ B. It can be written as :

∂ t a -d a ∆ x a = -2 ( a 2 -b), ∂ t b -d b ∆ x b = a 2 -b, (10) 
together with the homogeneous Neumann conditions

n(x) • ∇ x a = 0, n(x) • ∇ x b = 0 x ∈ ∂Ω, (11) 
and the nonnegative initial data

a(0, x) = a in (x) ≥ 0, b(0, x) = b in (x) ≥ 0. ( 12 
)
Then, we turn to the system associated to A + B ⇋ C. It writes

   ∂ t a -d a ∆ x a = -a b + c, ∂ t b -d b ∆ x b = -a b + c, ∂ t c -d c ∆ x c = a b -c, (13) 
with a, b, c satisfying homogeneous Neumann conditions

n(x) • ∇ x a = 0, n(x) • ∇ x b = 0, n(x) • ∇ x c = 0 x ∈ ∂Ω, (14) 
and the nonnegative initial data

a(0, x) = a in (x) ≥ 0, b(0, x) = b in (x) ≥ 0, c(0, x) = c in (x) ≥ 0 . (15) 
Finally, we write down the system associated to A + B ⇋ C + D :

       ∂ t a -d a ∆ x a = -a b + c d, ∂ t b -d b ∆ x b = -a b + c d, ∂ t c -d c ∆ x c = a b -c d, ∂ t d -d d ∆ x d = a b -c d, (16) 
with a, b, c, d satisfying homogeneous Neumann conditions

n(x) • ∇ x a = 0, n(x) • ∇ x b = 0, x ∈ ∂Ω, n(x) • ∇ x c = 0, n(x) • ∇ x d = 0 x ∈ ∂Ω, (17) 
and the nonnegative initial data

a(0, x) = a in (x) ≥ 0, b(0, x) = b in (x) ≥ 0, c(0, x) = c in (x) ≥ 0, d(0, x) = d in (x) ≥ 0 . ( 18 
)

Plan of the paper

The rest of the paper is devoted to the mathematical study of the systems (10) -( 12), ( 13) - [START_REF] Temam | Studies in Mathematics and its Applications[END_REF], and ( 16) -(18).

In section 2 are presented the basic a priori estimates for our equations: it is proven there that strong solutions (with strictly positive initial data) are strictly positive, satisfy a set of conservation laws (that is, the conservation of the number of atoms of each kind), and (this will be systematically used in the sequel) an entropy estimate. By exploiting these estimates, a priori L p bounds are proven (with p > 1 depending on the dimension).

Section 3 is devoted to the treatment of the Cauchy problem for our equations. For systems ( 10) -( 12) and ( 13) - [START_REF] Temam | Studies in Mathematics and its Applications[END_REF], it is possible to obtain an L ∞ a priori estimate, either thanks to a maximum principle, or to the use of the properties of the heat kernel. This enables to prove the existence (and uniqueness) of a strong solution for those systems. The situation is completely different for system ( 16) -(18). No L ∞ a priori estimate is known in this case, except in dimension 1 (and, thanks to a very recent work, Cf. [START_REF] Goudon | Regularity analysis for systems of reactiondiffusion equations[END_REF], in dimension 2). It is however possible to prove the existence of weak solutions to this system in L 2 (for any dimension), thanks to a method based on duality arguments.

Finally, we present in Section 4 an estimate of exponential decay toward equilibrium for the solution of system (10) - [START_REF] Martin | Nonlinear reaction-diffusion systems[END_REF]. This estimate is a direct consequence of the entropy inequality, together with a Cziszar-Kullback type inequality.

A priori estimates; Formal computations

We now prove the standard a priori estimates for systems (10) -( 12), ( 13) - [START_REF] Temam | Studies in Mathematics and its Applications[END_REF], and ( 16) -(18). For this, we assume that we have strong (for example C 2 ([0, T [×Ω) for some T > 0) solutions of one of these systems.

Strict positivity

We begin with the question of strict positivity. The following proposition gives a classical general sufficient condition on the coefficients of a parabolic equation for propagation of strict positivity :

Proposition 2.1 Let Ω be a smooth (C 2 ) bounded open set of IR N , T > 0, and d > 0. We also consider coefficients a ∈ C 2 ([0, T ] × Ω) and b ∈ C 2 ([0, T ] × Ω, IR + ). We suppose that u := u(t, x) is a solution in C 2 ([0, T ] × Ω) to equation ∂ t u(t, x) -d ∆ x u(t, x) = a(t, x) u(t, x) + b(t, x), (19) 
together with Neumann boundary condition and initial datum

∇ x u(t, x) • n(x) = 0, u(0, x) = u in (x) > 0,
where

u in ∈ C 2 (Ω).
Then, for all t ∈ [0, T ] and x ∈ Ω, u(t, x) > 0.

Proof of proposition 2.1 : We define t 0 > 0 as the infimum of times t > 0 such that there exists x 0 ∈ Ω satisfying u(t 0 , x 0 ) = 0. For t ∈ [0, t 0 [, we can consider f (t, x) = ln u(t, x). Then, f satisfies the inequality

∂ t f (t, x) -d ∆ x f (t, x) = a(t, x) + b(t, x) u(t, x) + d |∇ x u(t, x)| 2 u(t, x) 2 ≥ -||a|| ∞ , ∇ x f (t, x) • n(x) = 0, f (0, x) = ln u in (x) ≥ -|| ln u in || ∞ .
We consider (for any ε > 0) the auxiliary quantity

f ε (t, x) = f (t, x) + ||a|| ∞ t + || ln u in || ∞ + ε (t + 1
). This quantity satisfies the inequality

∂ t f ε -d ∆ x f ε ≥ ε.
together with Neumann boundary condition and initial datum

∇ x f ε • n(x) = 0, f ε (0, x) ≥ ε.
We define t 1 ≤ t 0 as the infimum of times t > 0 such that there exists x 0 ∈ Ω satisfying f ε (t 1 , x 0 ) = 0. Note that (according to the definition of t 1 ), the function x → f ε (t 1 , x) reaches its infimum at point x 0 , and that t 1 > 0.

If

x 0 ∈ Ω, then ∆ x f ε (t 1 , x 0 ) ≥ 0, so that ∂ t f ε (t 1 , x 0 ) > 0. Since t 1 > 0, this is impossible.
If x 0 ∈ ∂Ω, then, we know that ∇ x u(t 1 , x 0 ) • τ (x 0 ) = 0 (where τ (x 0 ) is any vector tangeant to ∂Ω at point x 0 ), so that thanks to the Neumann boundary condition, ∇ x f ε (t 1 , x 0 ) = 0. Therefore, ∆ x f ε (t 1 , x 0 ) ≥ 0, and we conclude as in the case when x 0 ∈ Ω.

Finally, t 1 = t 0 , so that f ε (t, x) > 0 when t ∈ [0, t 0 [, and (letting

ε go to 0), f (t, x) ≥ -||a|| ∞ t -|| ln u in || ∞ (still when t ∈ [0, t 0 [).
This finally ensures that t 0 = T , so that proposition 2.1 is proven. This proposition can be used directly for proving the strict positivity of the concentrations in systems ( 10) -( 12), ( 13) -( 15) and ( 16) -(18). Proposition 2.2 Let T > 0, Ω be a bounded regular C 2 domain of IR N , d a , d b > 0 (together with d c , d d > 0, depending on the system considered) be diffusivity constants, a in := a in (x) > 0, b in := b in (x) > 0 (together with c in := c in (x) > 0, d in := d in (x) > 0 depending on the system considered) be initial data in C 2 (Ω). Let also a := a(t, x), b := b(t, x) (together with c := c(t, x), d := d(t, x), depending on the system considered) be solutions in C 2 ([0, T [×Ω) of one of the systems (10) -( 12), ( 13) - [START_REF] Temam | Studies in Mathematics and its Applications[END_REF], or ( 16) -(18).

Then, for all t ∈ [0, T [ and x ∈ Ω, one has a(t, x) > 0, b(t, x) > 0 (and c(t, x) > 0, d(t, x) > 0 depending on the system considered).

Proof of proposition 2.2 : We consider only the system (10) - [START_REF] Martin | Nonlinear reaction-diffusion systems[END_REF], since the other ones can be treated in the same way.

It is enough to consider the time t 0 defined as the infimum of the times t where there exists x 0 ∈ Ω such that a(t, x 0 ) = 0 or b(t, x 0 ) = 0. On the interval [0, t 0 ], it is possible to put the two equations of system [START_REF] Kullback | A lower bound for discrimination information in terms of variation[END_REF] under the form (19). Then, one can use proposition 2.1 in order to show that a(t 0 , •) > 0 and b(t 0 , •) > 0, which leads to a contradiction.

Conservation of the number of molecules

We begin by noticing that the flow of equations ( 10) -( 12), ( 13) - [START_REF] Temam | Studies in Mathematics and its Applications[END_REF], or ( 16) -(18), conserves a quantity equivalent to the total L 1 -norm : Proposition 2.3 Let T > 0, Ω be a bounded regular (C 2 ) open set of IR N , d a , d b > 0 (together with d c , d d > 0, depending on the system considered) be diffusivity constants, a in := a in (x) > 0, b in := b in (x) > 0 (together with c in := c in (x) > 0, d in := d in (x) > 0 depending on the system considered) be initial data in C 2 (Ω). Let also a := a(t, x), b := b(t, x) (together with c := c(t, x), d := d(t, x), depending on the system considered) be solutions in C 2 ([0, T ] × Ω) of one of the systems (10) -( 12), ( 13) - [START_REF] Temam | Studies in Mathematics and its Applications[END_REF], or ( 16) -(18).

Then, for all t ∈ [0, T ] and x ∈ Ω, one has the following properties of conservation : 1. For system (10) - [START_REF] Martin | Nonlinear reaction-diffusion systems[END_REF] :

M := Ω a(t, x) + 2 b(t, x) dx = Ω a in (x) + 2 b in (x) dx . (20) 2.
For system (13) - [START_REF] Temam | Studies in Mathematics and its Applications[END_REF] :

       M 1 := Ω a(t, x) + c(t, x) dx = Ω a in (x) + c in (x) dx , M 2 := Ω b(t, x) + c(t, x) dx = Ω b in (x) + c in (x) dx . (21)
3. Finally, for system ( 16) -(18) :

               M 1 := Ω a(t, x) + c(t, x) dx = Ω a in (x) + c in (x) dx , M 2 := Ω b(t, x) + c(t, x) dx = Ω b in (x) + c in (x) dx , M 3 := Ω b(t, x) + d(t, x) dx = Ω b in (x) + d in (x) dx . ( 22 
)
Proof of proposition 2.3 : Those conservations are simply obtained by taking linear combinations of the equations, and by integrating on the domain Ω, taking into account the Neumann boundary condition.

This ends the proof of proposition 2.3.

Taking into account the properties of strict positivity and the previous properties of conservation, we see that there is a natural L ∞ ([0, T ]; L 1 (Ω)) estimate for all the concentrations appearing in systems (10) -( 12), ( 13) - [START_REF] Temam | Studies in Mathematics and its Applications[END_REF], and ( 16) -(18).

Entropy estimate

Our main tool in the sequel will be the entropy/entropy dissipation conservation property. In order to state it precisely, we introduce the following definitions of entropy E i and entropy dissipation D i (i = 1, .., 3 corresponds to each system), defined as functions of the concentrations, seen as functions of x. For a general definition of the entropy of a mixture of reactive species, we refer to [START_REF] Giovangigli | Multicomponent flow modeling[END_REF]. We start with system (10) -( 12) :

E 1 (a, b) := Ω a (ln a -1) + b (ln b -1) dx , (23) 
D 1 (a, b) = d a Ω |∇ x a| 2 a dx + d b Ω |∇ x b| 2 b dx + Ω (a 2 -b) (ln(a 2 ) -ln b) dx . (24) 
Then, we turn to system (13) -( 15) :

E 2 (a, b, c) := Ω a (ln(a) -1) + b (ln(b) -1) + c (ln(c) -1) dx , (25) 
D 2 (a, b, c) = d a Ω |∇ x a| 2 a dx + d b Ω |∇ x b| 2 b dx + d c Ω |∇ x c| 2 c dx + Ω (ab -c) (ln(ab) -ln c) dx . (26) 
Finally, we introduce the quantities corresponding to system ( 16) -( 18) :

E 3 (a, b, c, d) := Ω a (ln(a) -1) + b (ln(b) -1) +c (ln(c) -1) + d (ln(d) -1) dx , (27) 
D 3 (a, b, c, d) := d a Ω |∇ x a| 2 a dx + d b Ω |∇ x b| 2 b dx + d c Ω |∇ x c| 2 c dx +d d Ω |∇ x d| 2 d dx + Ω (a b -c d) (ln(a b) -ln(c d)) dx . ( 28 
)
We are able to prove the following a priori estimates : 12), ( 13) - [START_REF] Temam | Studies in Mathematics and its Applications[END_REF], or ( 16) -(18).

Then, for all t ∈ [0, T ] and x ∈ Ω, one has the following identity : (for the i ∈ {1, .., 3} corresponding to the system under consideration)

∂ t E i = -D i . (29) 
Moreover, this identity entails the following a priori estimate (for all T ∈ ]0, +∞]) :

sup t∈[0,T ] E i (t) + T 0 D i (s) ds ≤ E i (0). ( 30 
)
Proof of proposition 2.4 : Note first that we already know that our solutions are strictly positive, so that we can compute quantities like the logarithms of concentrations. Then, we detail the computation only in the case of system ( 10) -( 12) :

∂ t E 1 = Ω (ln a ∂ t a + ln b ∂ t b) dx = - Ω d a |∇ x a| 2 a + d b |∇ x b| 2 b dx + ∂Ω (ln a ∇ x a • n(x) + ln b ∇ x b • n(x)) dσ(x) + Ω -2 ln a (a 2 -b) + ln b (a 2 -b) dx.
We conclude by using the Neumann boundary condition.

The a priori estimate is obtained by integrating between times 0 and t (0 < t < T ) identity (29). This concludes the proof of proposition 2.4.

Consequences of the entropy estimate

The a priori estimate obtained above can be exploited in order to obtain L p type bounds for our solutions. More precisely, it is possible to obtain the following proposition (Cf. [START_REF] Desvillettes | About global existence for quadratic systems of reaction-diffusion[END_REF]) :

Proposition 2.5 Let T > 0, Ω be a bounded regular (C 2 ) and connected open set of IR N , d a , d b > 0 (together with d c , d d > 0, depending on the system considered) be diffusivity constants, a in := a in (x) > 0, b in := b in (x) > 0 (together with c in := c in (x) > 0, d in := d in (x) > 0 depending on the system considered) be initial data in C 2 (Ω). Let also a := a(t, x), b := b(t, x) (together with c := c(t, x), d := d(t, x
), depending on the system considered) be solutions in C 2 ([0, T ] × Ω) of one of the systems ( 10) -( 12), ( 13) -( 15), or ( 16) -(18).

Then, for all t ∈ [0, T ] and x ∈ Ω, and for α denoting any concentration appearing in one of the three systems, there exists C > 0 depending only on the initial data and the diffusivity constants such that :

||α|| L inf(1+2/N,2) ([0,T ]×Ω) ≤ C (1 + T ) sup(2,N/(N +2)) . ( 31 
)
Proof of proposition 2.5 : Thanks to the a priori estimate (30), we see that for any concentration α appearing in any of the three systems considered (that is, α = a, b, c or d), there exists a constant C depending only on the initial data (in fact, the initial entropy of the mixture) such that

T 0 Ω |∇ x √ α| 2 dxdt ≤ C. ( 32 
)
We use the Sobolev-Wirtinger estimate (valid for u ∈ H 1 (Ω), where Ω is a bounded, regular, and connected open set of IR N of volume 1, Cf. [START_REF] Brézis | Analyse Fonctionnelle[END_REF]) :

Ω |u(x) -ū| p * dx 2/p * ≤ K Ω |∇ x u| 2 dx, (33) 
where ū = Ω u(y) dy, p * = 2N N -2 , and K := K(Ω). When N = 2, this estimate is true for all p * ∈ [1, +∞[, and when N = 1, it is replaced by the stronger inequality

sup x∈Ω |u(x) -ū| 2 ≤ K Ω |∇ x u| 2 dx. ( 34 
)
Thanks to the Poincaré-Wirtinger inequality, estimate (32) becomes

T 0 Ω α(t, x) - Ω α(t, y) dy p * dx 2/p * dt ≤ C. Then, T 0 Ω | α(t, x)| p * dx 2/p * dt ≤ 2 2(p * -1)/p * T 0 Ω α(t, x) - Ω α(t, y) dy p * dx 2/p * dt +2 2(p * -1)/p * T 0 Ω α(t, x) dx 2 dt ≤ 2 2(p * -1)/p * C + T 0 Ω α(t, x) dxdt .
Using the conservation of number of atoms (20), (21), or ( 22), and the definition of p * , we see that that for some constant C depending only on the initial data,

T 0 Ω |α(t, x)| N/(N -2) dx (N -2)/N dt ≤ C (1 + T ). ( 35 
)
When N = 2, this estimate is replaced by

T 0 Ω |α(t, x)| p dx 1/p dt ≤ C (1 + T ), for all p ∈ [1, +∞[. Finally, when N = 1, it becomes T 0 sup x∈Ω α(t, x) dt ≤ C (1 + T ).
We shall now interpolate estimate (35) with the estimate coming out of the conservation of number of atoms :

sup t∈[0,T ] Ω α(t, x) dx ≤ C. We compute T 0 Ω (α(t, x)) 1+2/N dxdt ≤ T 0 Ω α(t, x) (α(t, x)) 2/N dxdt ≤ T 0 Ω (α(t, x)) N/(N -2) dx (N -2)/N Ω α(t, x) dx 2/N dt ≤ T 0 Ω (α(t, x)) N/(N -2) dx (N -2)/N dt × sup t∈[0,T ] Ω α(t, x) dx 2/N ≤ C (1 + T ) C 2/N .
Finally, we see that for some constant C depending only on the initial data (and when N ≥ 3),

||α|| L 1+2/N ([0,T ]×Ω) ≤ C (1 + T ) N/(N +2) .
This estimate is replaced by

||α|| L p ([0,T ]×Ω) ≤ C (1 + T ) 1/p (36)
for all p ∈ [1, 2[ when N = 2, and by

||α|| L 2 ([0,T ]×Ω) ≤ C (1 + T ) 1/2 (37) 
when N = 1.

In order to treat the case N = 2, we use a refinement of Sobolev-Wirtinger's inequality.

Trudinger's inequality

In order to obtain estimate (36) in the case when N = 2, we first recall Trudinger's inequality (Cf. [START_REF] Brézis | Analyse Fonctionnelle[END_REF]), which is a limit case of Poincaré inequality, saying that (when Ω is a bounded and regular (C 2 ) open set of IR 2 ), there are two absolute strictly positive constants s 0 and C 0 such that, for all u ∈ H 1 (Ω),

Ω exp s 0 |u(x)| 2 u 2 H 1 (Ω) ≤ C 0 . ( 38 
)
As a consequence, we can also find two strictly positive absolute constants s and C such that (for all functions u ∈ H 1 (Ω)),

Ω |u(x)| 2 u 2 H 1 (Ω) exp s |u(x)| 2 u 2 H 1 (Ω) ≤ C . (39) 
Using this inequality for u = √ α(t, •), and integrating in time between 0 and T , we get the estimate

T 0 Ω α(t, x) exp s α(t, x) √ α(t, •) 2 H 1 (Ω) dxdt ≤ C T 0 √ α(t, •) 2 H 1 (Ω) dt ≤ C (1 + T ). ( 40 
)
We note that thanks to Young's inequality (valid for x, y, γ > 0)

x y ≤ e γx + y γ (log( y γ ) -1),
applied to γ = log a a + s q and x = y = a, we have for all a > e and s, q > 0,

a 2 ≤ a e sa q + a log a a + s q log a log a a + s q -1 ≤ a e sa q + aq s log(a 2 ).
Using this last inequality with s being the constant in inequality (39), q = √ α(t, •) 2 H 1 (Ω) and a = max(e, α(t, x)), and using also estimates (40) and (the first part of) (30), we end up with

α 2 L 2 ([0,T ]×Ω) ≤ min{α, e} 2 L 2 ([0,T ]×Ω) + max{α, e} 2 L 2 ([0,T ]×Ω) ≤ e 2 T + T 0 Ω α(t, x) exp s α(t, x) √ α(t, •) 2 H 1 (Ω) dxdt + 2 s T 0 Ω α(t, x) log(α(t, x)) dx √ α(t, •) 2 H 1 (Ω) dt ≤ e 2 T + C (1 + T ) + 2 s C (1 + T ),
which is exactly estimate (37), but in dimension 2.

Existence, uniqueness and smoothness

In this section, we study the traditional problems associated to the systems we are interested in (that is, systems ( 10) -( 12), ( 13) - [START_REF] Temam | Studies in Mathematics and its Applications[END_REF], and ( 16) -( 18)), that is, existence, uniqueness and smoothness of the solutions. More precisely, we shall show that for the two first systems, existence ans uniqueness of a smooth solution holds, while we only can prove existence of a weak solutions to the third system (except in small dimensions).

Linear Parabolic Equations

We begin by recalling a few classical facts about linear parabolic equations.

Existence, uniqueness and smoothness for linear parabolic equations

We first state the following theorem (Cf. for example [START_REF] Ladyzhenskaya | Linear and quasilinear equations of parabolic type[END_REF]) for the heat equation with Neumann boundary condition : Then, there exists a unique weak solution u ∈ L p ([0, T ] × Ω) to the linear parabolic initial-boundary value problem :

   ∂ t u -d ∆ x u = φ, ∇ x u • n = 0 on ∂Ω, u(0, x) = u in (x). (41) Moreover, u ∈ W 1,p (]0, T [×Ω).
Finally, if we know that for some

α ∈]0, 1[, φ ∈ C 0,α ([0, T ] × Ω), then u ∈ C 1,α ([0, T ] × Ω), and if φ ∈ C 1,α ([0, T ] × Ω), then u ∈ C 2 ([0, T ] × Ω).
Note that in this last case, the solution is in fact strong.

The case of the 1D heat equation

In the one-dimensional case, it is easy to give a complete explicit formula for problem (41), using Fourier series.

Proposition 3.1 Let u in ∈ C 2 ([0, 1]) be an initial datum (compatible with the Neumann boudary condition) and φ ∈ C 2 ([0, T ] × [0, 1]) be a second member.
Then, the unique solution u := u(t, x) to eq. ( 41) is given by the formula

u(t, x) = 1 2 √ π 1 -1 ũin (y) ∞ k=-∞ 1 √ d t e -(2k+x-y) 2 4 d t dy + 1 2 √ π t 0 1 -1 φ(s, y) ∞ k=-∞ 1 √ d (t-s) e - (2k+x-y) 2 4d (t-s) dy ds ,
where

ũin (x) = u in (x) x ∈ [0, 1], u in (-x) x ∈ [-1, 0], (42) 
and φ(t, x) = φ(t, x) x ∈ [0, 1], φ(t, -x) x ∈ [-1, 0]. ( 43 
)
Proof of proposition 3.1 : The proof uses Fourier series, which simplify when (41) is mirrored evenly around x = 0, i.e. when the functions are extended like

ũ(t, x) = u(t, x) x ∈ [0, 1], u(t, -x) x ∈ [-1, 0], (44) 
and when φ and ũin are defined analogously by (42), (43). Then, the eigenvalue-problem ψxx = λ ψ on [-1, 1] with homogeneous Neumann boundary and periodicity conditions is satisfied by the eigenvalue-eigenfunction pairs

(λ k , ψk (x)) = (-(kπ) 2 , cos(kπx)) for k = 0, 1, 2, . . . ,
and yields the Fourier representation

ũ(t, x) = 1 -1 ũin (y) dy + 2 ∞ k=1 e λ k dt 1 -1 ũin (y) ψk (y) dy ψk (x) + t 0 1 -1 φ(s, y) dyds (45) +2 ∞ k=1 t 0 e λ k d (t-s) 1 -1 φ(s, y) ψk (y)dy ds ψk (x) . ( 46 
)
Thanks to Poisson's summation formula (Cf. for example [START_REF] Cl | Eléments d'Analyse pour l'Agrégation[END_REF] in this context), we can write down the final form of the explicit solution to the 1-D heat equation with Neumann boundary condition :

ũ(t, x) = 1 2 √ π 1 -1 ũin (y) ∞ k=-∞ 1 √ d t e -(2k+x-y) 2 4 d t dy + 1 2 √ π t 0 1 -1 φ(s, y) ∞ k=-∞ 1 √ d (t-s) e -(2k+x-y) 2 4d (t-s) dy ds .
This ends the proof of proposition 3.1.

Nonlinear reaction-diffusion equations with bounded r.h.s.

We now turn to the problem of building solutions to nonlinear reactiondiffusion systems. Thanks to a simple fixed point argument in L 2 , it is classical to prove the following theorem, which holds when the nonlinearity lies in the space W 1,∞ of bounded and Lipschitz-continuous functions (we refer for example to [START_REF] Rothe | Global solutions of reaction-diffusion systems[END_REF] for many results on reaction-diffusion systems including variants of the result below) :

Proposition 3.2
Let Ω be a bounded and regular (C 2 ) open set of IR N , and let D be a diagonal matrix with entries

d i > 0, i = 1, .., k. We consider an initial datum U in ∈ C 2 (Ω, IR k ) compatible with the Neumann boundary con- dition, and f ∈ C 2 (IR k ; IR k ). We suppose moreover that f ∈ W 1,∞ (IR k ; IR k )
(space of bounded and globally Lipschitz-continous functions), which means that there exists K > 0, such that for all x, y ∈ IR k ,

|f (x)| ≤ K, |f (x) -f (y)| ≤ K |x -y|.
Then, there exists a unique strong solution

U ∈ C 2 (IR + × Ω; IR k ) to equation    ∂ t U -D∆ x U = f (U ), n • ∇ x U = 0 for x ∈ ∂Ω, U (0, x) = U in (x). ( 47 
)
Proof of proposition 3.2 : We introduce U 0 (t, x) = U in (x). According to theorem 3.1 for linear parabolic equations, we know that for any integer n ≥ 0, there exists a (unique) function

U n+1 ∈ C 2 (IR + × Ω; IR k ) such that    ∂ t U n+1 -D∆ x U n+1 = f (U n ), n(x) • ∇ x U n+1 (t, x) = 0 for x ∈ ∂Ω, U n+1 (0, x) = U in (x). (48) We denote r n (t) = ||U n -U n-1 || 2 L 2 (Ω) (t).
We multiply the difference of (48) for n + 1 and (48) for n by U n+1 -U n , and perform an integration by parts. Denoting by U j n the components of U n , we get

∂ t Ω 1 2 |U n+1 -U n | 2 dx + k j=1 d j Ω |∇ x (U j n+1 -U j n )| 2 dx = Ω (U n+1 -U n ) (f (U n ) -f (U n-1 )) dx, so that Ω |U n+1 -U n | 2 dx(t) ≤ t 0 Ω |U n+1 -U n | 2 dx(s) + K Ω |U n -U n-1 | 2 dx(s) ds,
which we can rewrite as

r n+1 (t) ≤ t 0 r n+1 (s) + K r n (s) ds.
Then, we observe that

r 1 (t) ≤ R T := 2 ||U in || 2 L 2 (Ω) + 2 (||U in || L 2 (Ω) + K T ) 2
for all t ∈ [0, T ]. Using the auxiliary quantity

w n (t) = e -t t 0 r n (s) ds, it is possible to prove that w n+1 (t) ≤ K t 0 w n (s) ds, so that w n (t) ≤ R t (K t) n-1
(n-1)! . This in turn implies that for all t ∈ [0, T ],

r n (t) ≤ (2 R T K (1 + T ) e T ) (K t) n-2 (n -2)! .
Since this sequence is the general term of a series which converges uniformy on [0, T ], and recalling that L ∞ ([0, T ]; L 2 (Ω)) is complete, we see that U n converges to some function U in this space.

Passing to the limit in eq. ( 48), we obtain that U is a weak solution of eq. ( 47) on [0, T ].

We now use the "smoothness" part of theorem 3.1. Since U is a (weak) solution (on [0, T ]) of the heat equation with a r.h.s. in L ∞ , it lies in W 1,p (]0, T [×Ω) for all p > 1, and therefore in C 0,α ([0, T ]×Ω) for all α ∈]0, 1[. Thanks to the hypothesis on f , this is also true of f (U ). As a consequence, still using theorem 3.1, U ∈ C 1,α ([0, T ]×Ω) for all α ∈]0, 1[, and (still thanks to the hypothesis on f ), so does f (U ). We use a last time theorem 3.1, and get that U ∈ C 2 ([0, T ] × Ω), so that U is a strong solution to the system (47) on [0, T ].

Uniqueness of strong solutions to system (47) on [0, T ] is easily obtained by noticing that if U, V are two such strong solutions, then taking the difference of the equations for U and V , multiplying by U -V , and integrating by parts, we obtain :

∂ t ||U -V || L 2 (Ω) (t) ≤ K ||U -V || L 2 (Ω) (t). ( 49 
)
Finally, it is possible to build a unique strong solution U to system (47) on IR + by sticking together all the solutions to system (47) on [0, T ], with T > 0. This concludes the proof of proposition 3.2.

Nonlinear reaction-diffusion equations with unbounded r.h.s : use of L ∞ bounds

Proposition 3.2 can be used in order to prove existence (together with uniqueness and smoothness) of solutions to reaction-diffusion systems with general r.h.s, once some L ∞ bound has been proven for the unknowns. Such bounds are not available in general, but they can be obtained for particular systems (among which ( 10) -( 12) and ( 13) -( 15) in any dimension, and ( 16) -( 18) in small dimension). They can be based either on "geometrical properties" of the r.h.s. (here we shall follow the method described in [START_REF] Kirane | On stabilization of solutions of the system of parabolic differential equations describing the kinetics of an autocatalytic reversible chemical reaction[END_REF] for systems of two equations), or on the fact that (the nonnegative part of) the r.h.s. is a function of the unknowns that does not increase too much (we refer to [START_REF] Rothe | Global solutions of reaction-diffusion systems[END_REF] for examples of such a situation).

In general, L ∞ bounds are obtained all the more easily than the system has few equations, and the dimensionality of the space is low.

Maximum principle

We begin with a maximum (and minimum) principle property of our simplest system (namely system (10) -( 12)). It writes like this : 10) - [START_REF] Martin | Nonlinear reaction-diffusion systems[END_REF]. We suppose that the initial conditions satisfy :

∀x ∈ Ω, 0 < A 0 < a in (x) < A 1 , 0 < B 0 < b in (x) < B 1 , (50) 
for some constants A 0 , A 1 , B 0 , B 1 > 0.

Then, a and b satisfy the bounds

∀t ∈ [0, T ], x ∈ Ω, inf(A 0 , B 0 ) ≤ a(t, x) ≤ sup(A 1 , B 1 ), ( 51 
) ∀t ∈ [0, T ], x ∈ Ω, inf(A 2 0 , B 0 ) ≤ b(t, x) ≤ sup(A 2 1 , B 1 ). ( 52 
)
Proof of proposition 3.3 : The proof shall be carried out following the ideas of [START_REF] Kirane | On stabilization of solutions of the system of parabolic differential equations describing the kinetics of an autocatalytic reversible chemical reaction[END_REF]. Let us consider the functions

a ε (t, x) = a(t, x) e ε t , b ε (t, x) = b(t, x) e ε t . (53) 
From equations [START_REF] Kullback | A lower bound for discrimination information in terms of variation[END_REF], it follows that the evolution of a ε , b ε is governed by the system

   ∂ t a ε -d a ∆ x a ε = -2 ((a ε ) 2 e -εt -b ε ) + ε a ε , ∂ t b ε -d b ∆ x b ε = ((a ε ) 2 e -εt -b ε ) + ε b ε . ( 54 
)
We define the set B ε as

B ε = τ > 0 : a ε (t, x) > inf (A 0 , B 0 ), b ε (t, x) > inf(A 2 0 , B 0 ) e -εt , ∀ (t, x) ∈ [0, τ [× Ω . (55) 
Then, we consider t = sup B ε . Note first that t > 0. Then, there must exist x ∈ Ω such that at least one of the following equalities holds :

a ε ( t, x) = inf (A 0 , B 0 ) or b ε ( t, x) = inf(A 2 0 , B 0 ) e -εt .
Case 1:

a ε ( t, x) = inf (A 0 , √ B 0 )
. By definition of t and x, the function x → a ε ( t, x) takes it miminum at point x, so that ∆ x a ε ( t, x) ≥ 0 . Evaluating the chemical contributions in the first line of (54) at ( t, x), we get

-2 (a ε ) 2 ( t, x) e -ε t + 2 b ε ( t, x) + 2 ε a ε ( t, x) = -2 inf (A 0 , √ B 0 ) 2 e -ε t + 2 b ε ( t, x) + 2 ε inf (A 0 , √ B 0 ) ≥ -2 inf (A 0 , √ B 0 ) 2 e -ε t + 2 inf(A 2 0 , B 0 ) e -εt + 2 ε inf (A 0 , √ B 0 ) > 0.
Consequently, eq. ( 54) for a ε implies that ∂ t a ε ( t, x) > 0, hence a ε (t, x) < a ε ( t, x) for some t < t, contradicting the definition of t.

Case 2: b ε ( t, x) = inf(A 2 0 , B 0 ) e -εt . In this case, we have b ε ( t, x) ≤ b ε ( t, x) ∀x ∈ Ω, so that b ε ( t, x) takes its minimum at point x = x. Therefore we get, as above, ∆ x b ε ( t, x) ≥ 0. As concerns the r.h.s. of the second line of (54), we obtain

(a ε ) 2 ( t, x) e -ε t -b ε ( t, x) + ε b ε ( t, x) = (a ε ) 2 ( t, x) e -ε t -inf(A 2 0 , B 0 ) e -ε t + ε inf(A 2 0 , B 0 ) e -ε t , ≥ (inf A 0 , √ B 0 ) 2 e -ε t -inf(A 2 0 , B 0 ) e -ε t + ε inf(A 2 0 , B 0 ) e -ε t > 0.
It follows that ∂ t b ε ( t, x) > 0, which leads to a contradiction as in case 1. Consequently, the set B ε is unbounded, and

∀t ≥ 0, x ∈ Ω, a ε (t, x) > inf (A 0 , B 0 ), b ε (t, x) > inf(A 2 0 , B 0 ) e -ε t .
This means that a(t, x) > inf (A 0 , √ B 0 ) e -ε t and b(t, x) > inf(A 2 0 , B 0 ) e -2 ε t . Thus, passing to the limit ε → 0, we have a(t, x) ≥ inf (A 0 , √ B 0 ) and b(t, x) ≥ inf(A 2 0 , B 0 ).

This ends the proof of the minimum principle for system (10) -( 12). The maximum principle can be proven in exactly the same way. We have therefore finished the proof of proposition 3.3

We are now in position to state a theorem of existence (and uniqueness, smoothness) for system (10) -( 12 

∀x ∈ Ω, 0 < A 0 < a in (x) < A 1 , 0 < B 0 < b in (x) < B 1 . (56) 
Then, there exists a unique (strong) solution a, b in C 2 (IR + × Ω) to system ( 10) -( 12) such that : 

∀t ∈ IR + , x ∈ Ω, inf(A 0 , B 0 ) ≤ a(t, x) ≤ sup(A 1 , B 1 ), inf(A 2 0 , B 0 ) ≤ b(t, x) ≤ sup(A 2 1 , B 1 ). ( 57 
lies in C 2 (IR 2 , IR 2 ) ∩ W 1,∞ (IR 2 , IR 2 ). According to proposition 3.2, there exists a solution U = (a, b) ∈ C 2 (IR + × Ω) to the system    ∂ t U -D∆ x U = f (U ), n • ∇ x U = 0 for x ∈ ∂Ω, U (0, x) = (a in (x), b in (x)), ( 58 
)
where D is a (2 × 2) diagonal matrix with entries d a , d b .

On any interval of time [0, T ] for which (for all

x ∈ Ω) |a(t, x)|, |b(t, x)| ≤ 2 sup(A 1 , A 2 1 , √ B 1 , B 1 ), (a, b
) is also a (strong) solution of system ( 10) - [START_REF] Martin | Nonlinear reaction-diffusion systems[END_REF], and according to proposition 3.3, it satisfies

|a(t, x)|, |b(t, x)| ≤ sup(A 1 , A 2 1 , B 1 , B 1 ).
Proof of lemma 3.1: We recall that according to proposition 3.1, the solution of the heat equation ( 59) is given by formula (42) :

u(t, x) = 1 2 √ π 1 -1 ũin (y) ∞ k=-∞ 1 √ dt e -(2k+x-y) 2 4 d t dy (62) + 1 2 √ π t 0 1 -1 φ(s, y) ∞ k=-∞ 1 √ d (t-s) e - (2k+x-y) 2 4 d (t-s) dy ds .
This yields the estimate

u L r ([0,T ]×[-1,1]) ≤ 1 2 √ π ũin * x S L r ([0,T ]×[-1,1]) + 1 2 √ π φ * t,x S L r ([0,T ]×[-1,1]) , (63) 
where

S(t, x) := ∞ k=-∞ 1 √ d t e -(2k+x) 2 4 d t satisfies (for q ∈ [1, 3[) S(t, •) L 1 ([-1,1]) = 2 √ π , S L q ([0,T ]×[-1,1]) ≤ C 1 + T 1 q + 1 2 . (64) 
The second formula of (64) can be obtained by using (when n = 0) (2n + x) 2 ≥ |2n + x| ≥ 2n -1 in order to estimate

S L q ([0,T ]×[-1,1]) ≤ (d t) -1 2 e -x 2 4 d t + 2 ∞ n=1 e -2n-1 4 d t L q ([0,T ]×[-1,1]) ≤ (d t) -1 2 e -x 2 4 d t L q ([0,T ]×[-1,1]) + 2 (d t) -1 2 e 1/4 d t -e -1/4 d t -1 L q ([0,T ]×[-1,1]) ≤ T 0 (d t) -q/2 2 √ π d t q erf √ q 2 √ d t dt 1/q + 4 T 0 |2(d t) 1/2 | q dt 1/q .
Returning to (63), we can estimate each term in the right-hand side in order to obtain lemma 3.1, the last term being the most difficult. In order to treat it, we apply Young's inequality φ * S L r ≤ φ L p S L q for 1 r +1 = 1 p + 1 q (remember that 1 r + 2 3 > 1 p , which is compatible with q ∈ [1, 3[), and estimate (64) for S L q . The same is true when r = ∞ and p > 3 2 . This concludes the proof of lemma 3.1.

Remark : The lemma above extends to dimension N > 1, with a certain number of changes in the assumption and the conclusion. The main one is that 1 r + 2 3 > 1 p is replaced by 1 r + 2 N +2 > 1 p , so that the solution of the heat equation lies in a L r space which is not as good as in dimension 1.

We use this lemma in order to prove an a priori L ∞ estimate for the concentrations solving system ( 13) -( 15) in dimension 1. 13) - [START_REF] Temam | Studies in Mathematics and its Applications[END_REF].

Then, there exists a constant C T (which grows at most polynomially with T , and depend only on the initial data) such that

||a, b, c|| L ∞ ([0,T ]×[0,1]) ≤ C T . ( 65 
)
Proof of proposition 3.4 : According to proposition 2.5, we already know that ||a, b, c|| L 2 ([0,T ]×[0,1]) ≤ C T , where C T is (and will systematically be in the sequel of this proof) a constant which grows at most polynomially with T . Then,

||a -b c|| L 1 ([0,T ]×[0,1]) ≤ C T . We see thanks to lemma 3.1 that ||a, b, c|| L r ([0,T ]×[0,1]) ≤ C T for all r < 3. As a conse- quence, ||a -b c|| L 3/2 ([0,T ]×[0,1]) ≤ C T . A second use of lemma 3.1 yields ||a, b, c|| L r ([0,T ]×[0,1]) ≤ C T for all r < +∞. Then, ||a -b c|| L r/2 ([0,T ]×[0,1]) ≤
C T for all r < +∞, and a third use of lemma 3.

1 yields ||a, b, c|| L ∞ ([0,T ]×[0,1]) ≤ C T .
This ends the proof of proposition 3.4.

Remark : We note that the same proof holds for system ( 16) -( 18) in dimension 1.

A variant of this proof (in which the nonnegativity of the concentrations is used : the nonpositive part of the r.h.s of the equations is not estimated) shows that the L ∞ estimate also remains valid for system (13) -( 15) in any dimension.

This a priori estimate enables to prove the existence (and uniqueness, smoothness) of a (strong) solution to system ( 13) -( 15 Then, the function

f (a, b, c) = ((b c -a) χ K (a, b, c), (a -b c) χ K (a, b, c), (a -b c) χ K (a, b, c)) lies in C 2 (IR 3 , IR 3 ) ∩ W 1,∞ (IR 3 , IR 3 
). According to proposition 3.2, there exists a (strong

) solution U = (a, b, c) ∈ C 2 (IR + × [0, 1]) to the system    ∂ t U -D∆ x U = f (U ), n • ∇ x U = 0 for x ∈ ∂Ω, U (0, x) = (a in (x), b in (x), c in (x)), ( 66 
)
where D is the diagonal matrix with entries d a , d b , d c .

On any interval of time [0, T ] for which (for all x ∈ Ω) |a(t, x)|, |b(t, x)|, |c(t, x)| ≤ K, the functions (a, b, c) are also a (strong) solution of system ( 13) - [START_REF] Temam | Studies in Mathematics and its Applications[END_REF]. According to proposition 3.4, we can thus build a (strong) solution to system ( 13) -( 15) on any interval [0, T ] such that C T ≤ K.

Letting K → +∞ and using the "uniqueness" part of proposition 3.2 (on bounded time intervals), we obtain a (strong) solution of system ( 13) -( 15) on IR + by sticking together solutions on [0, T ] (remember that C T < +∞ for all T > 0 since C T grows at most polynomially with T ).

Finally, if we now have two solutions of system ( 13) -( 15) on IR + which satisfy estimate (65), they are also solutions to system (66) for a certain K on a time interval [0, T ] depending on K but arbitrarily large (that is, T is going to +∞ when K → +∞). Thanks to the "uniqueness" part of proposition 3.2, they are equal on this time interval. This concludes the proof of theorem 3.3.

Unbounded Source : The duality method

Duality for parabolic equations with non smooth coefficients

We begin with the following proposition, which shows that the solutions of a parabolic differential inequality with bounded coefficients satisfy a natural L 2 bound. We refer to [START_REF] Martin | Nonlinear reaction-diffusion systems[END_REF] for this type of arguments of duality : Proposition 3.5 Let T > 0 and Ω be a bounded, connected and regular

(C 2 ) open set of IR N . We suppose that A : [0, T ] × Ω → IR is a smooth (belonging to C 2 ([0, T ] × Ω)) function such that A 0 ≤ A(t, x) ≤ A 1 , for some strictly positive constants A 0 , A 1 .
We assume that z : [0, T ] × Ω → IR is a strong (belonging to C 2 ([0, T ] × Ω)) nonnegative solution to the parabolic inequation :

   ∂ t z -∆ x (A z) ≤ 0, ∇ x (A z) • n = 0 on ∂Ω, z(0, •) = z in . (67) 
Then, there exists a constant C (depending on T, A 0 , A 1 ) such that

||z|| L 2 ([0,T ]×Ω) ≤ C ||z in || L 2 (Ω) .
Proof of proposition 3.5 : For any smooth (C 2 ) nonnegative function H := H(t, x), let us consider the nonnegative (smooth) solution of the dual problem:

   -∂ t w -A∆ x w = H, ∇ x w • n = 0, on ∂Ω, w(T, •) = 0. (68) 
Integrating by parts, we see that

T 0 Ω z ∂ t w + A∆ x w dxdt = - T 0 Ω w ∂ t z -∆ x (A z) dxdt - Ω z in (x) w(0, x) dx + T 0 ∂Ω z A ∇ x w • n dσ(x) dt - T 0 ∂Ω w ∇ x (A z) • ndσ(x) dt.
Using the Neumann boundary conditions, we end up with

- T 0 Ω z(t, x) H(t, x) dxdt ≥ - Ω z in (x) w(0, x) dx. (69) 
Let us estimate w(0, •) in L 2 (Ω). Multiplying eq. ( 68) by -∆ x w and integrating by parts in the variable x gives (for any time t ∈ [0, T ])

- 1 2 
d dt Ω |∇ x w(t, x)| 2 dx + Ω A(t, x) (∆ x w(t, x)) 2 dx = - Ω H(t, x) ∆ x w(t, x) dx ≤ Ω A 0 2 (∆ x w(t, x)) 2 + 1 2 A 0 H 2 (t, x) dx.
It follows, after integration in time, that

T 0 Ω (∆ x w(t, x)) 2 dxdt ≤ 1 A 2 0 T 0 Ω H 2 (t, x) dxdt.
Integrating eq. ( 68) between times 0 and T , we obtain

w(0, x) + T 0 A(s, x) ∆ x w(s, x) ds = T 0 H(s, x) ds, so that Ω w(0, x) 2 dxdt ≤ 2 T + 2 T A 2 1 A 2 0 T 0 Ω H 2 (t, x) dxdt.
Therefore, thanks to estimate (69), we see that

T 0 Ω z(t, x) H(t, x) dxdt ≤ Ω z in (x) w(0, x) dx ≤ z in L 2 (Ω) w(0) L 2 (Ω) ≤ 2 T + 2 T A 2 1 A 2 0 1/2 z in L 2 (Ω) H L 2 ([0,T ]×Ω) .
By density, this estimate is true for any nonnegative function H in L 2 , and, using H = H + -H -, we see that for any function H in L 2 , one has (for

C = (2 T + 2 T A 2 1 A 2 0 ) 1/2 ) T 0 Ω z(t, x) H(t, x) dxdt ≤ C z in L 2 (Ω) H L 2 ([0,T ]×Ω) .
By duality (L 2 is the dual of itself), this gives a bound for z in L 2 (0, T ] × Ω) in terms of z in L 2 (Ω) , and the proof of proposition 3.5 is ended.

The L 2 LogL estimate

We shall now follow [START_REF] Desvillettes | About global existence for quadratic systems of reaction-diffusion[END_REF] and use the duality argument of proposition 3.5 in order to build a weak (L 2 ) solution to problem ( 16) -(18) : Then, there exists a weak solution a, b, c, d ∈ L 2 loc (IR + ; L 2 (Ω)) to system ( 16) -(18).

Proof of theorem 3.4 : We introduce the approximated system :

             ∂ t a n -d a ∆ x a n = - an bn-cn dn 1+ 1 n (a 2 n +b 2 n +c 2 n +d 2 n ) , ∂ t b n -d b ∆ x b n = - an bn-cn dn 1+ 1 n (a 2 n +b 2 n +c 2 n +d 2 n ) , ∂ t c n -d c ∆ x c n = an bn-cn dn 1+ 1 n (a 2 n +b 2 n +c 2 n +d 2 n ) , ∂ t d n -d d ∆ x d n = an bn-cn dn 1+ 1 n (a 2 n +b 2 n +c 2 n +d 2 n ) , (70) 
together with the homogeneous Neumann conditions

n(x) • ∇ x a n = 0, n(x) • ∇ x b n = 0, n(x) • ∇ x c n = 0, n(x) • ∇ x d n = 0, x ∈ ∂Ω, (71) 
and the strictly positive initial data

a n (0, x) = a in (x), b n (0, x) = b in (x), c n (0, x) = c in (x), d n (0, x) = d in (x) . (72) 
We know thanks to proposition 3.2 that there exists a unique strong solution to this system, since the right-hand side is C 2 , bounded and globally Lipschitz continuous (W 1,∞ ). We introduce the quantity

z n = φ(a n ) + φ(b n ) + φ(c n ) + φ(d n )
, where φ(x) = x ln x -x + 1. Note that φ is a nonnegative function whose second derivative is x → 1

x . The computation gives

∂ t z n -d a ∆ x φ(a n ) -d b ∆ x φ(b n ) -d c ∆ x φ(c n ) -d d ∆ x φ(d n ) = -ln a n a n b n -c n d n 1 + 1 n (a 2 n + b 2 n + c 2 n + d 2 n ) -ln b n a n b n -c n d n 1 + 1 n (a 2 n + b 2 n + c 2 n + d 2 n ) + ln c n a n b n -c n d n 1 + 1 n (a 2 n + b 2 n + c 2 n + d 2 n ) + ln d n a n b n -c n d n 1 + 1 n (a 2 n + b 2 n + c 2 n + d 2 n ) -d a |∇ x a n | 2 a n -d b |∇ x b n | 2 b n -d c |∇ x c n | 2 c n -d d |∇ x d n | 2 d n .
Therefore,

∂ t z n -d a ∆ x φ(a n ) -d b ∆ x φ(b n ) -d c ∆ x φ(c n ) -d d ∆ x φ(d n ) + d a |∇ x a n | 2 a n + d b |∇ x b n | 2 b n + d c |∇ x c n | 2 c n + d d |∇ x d n | 2 d n ≤ 0, (73) 
and finally

∂ t z n -∆ x (A n z n ) ≤ 0,
where

A n = d a φ(a n ) + d b φ(b n ) + d c φ(c n ) + d d φ(d n ) z n . Note that ∀t > 0, x ∈ Ω, inf(d a , d b , d c , d d ) ≤ A n (t, x) ≤ sup(d a , d b , d c , d d ),
and

∇ x (A n z n ). • n(x) = 0 for x ∈ ∂Ω.
According to proposition 3.5, we obtain the estimate

||z n || L 2 ([0,T ]×Ω) ≤ C ||φ(a in )|| L 2 (Ω) + ||φ(b in )|| L 2 (Ω) +||φ(c in )|| L 2 (Ω) + ||φ(d in )|| L 2 (Ω) ,
where C does not depend on n (but depends on T and the diffusivity constants). This ensures that the sequences a n , b n , c n and d n are bounded in the space L 2 (ln L) 2 ([0, T ] × Ω). In particular, the quantities a n b n and c n d n are equiintegrable.

We conclude the proof ot theorem 3. We start again from estimate (73). Integrating between times 0 and T and for x ∈ Ω this estimate, we see that

Ω z n (T, x) dx + d a T 0 Ω |∇ x a n | 2 a n (t) dxdt + d b T 0 Ω |∇ x b n | 2 b n (t) dxdt + d c T 0 Ω |∇ x c n | 2 c n dxdt + d d T 0 Ω |∇ x d n | 2 d n dxdt ≤ Ω z(0, x) dx.
As a consequence, we obtain that

∇ x ( √ 1 + a n ) is bounded in L 2 ([0, T ] × Ω), and therefore in L 1 ([0, T ] × Ω).
Then, we compute

(∂ t -d a ∆ x ) √ 1 + a n = d a 4 |∇ x a n | 2 (1 + a n ) 3/2 + 1 2 c n d n -a n b n √ 1 + a n (1 + 1 n (a 2 n + b 2 n + c 2 n + d 2 n )) , so that (∂ t -d a ∆ x ) √ 1 + a n is bounded in L 1 ([0, T ] × Ω).
We consider now g n = √ 1 + a n , and we prove that this quantity is strongly compact (in L 1 loc (]0, T [×Ω)), using the fact that ∇ x g n is bounded in L 1 ([0, T ] × Ω) and that (∂ t -d a ∆ x ) g n is also bounded in L 1 ([0, T ] × Ω). This is a variant of Aubin's lemma (Cf. [START_REF] Temam | Studies in Mathematics and its Applications[END_REF]).

We denote by ω ν the set x ∈ Ω : d(x, ∂Ω) > ν . Let x ∈ ω ν (with ν positive and such that ω ν is not an empty set), and

k ∈ IR N , with | k| ≤ ν. Since ∇ x g n is bounded in L 1 ([0, T ] × Ω), we know that T 0 ων | g n (t, x + k) -g n (t, x)| dxdt ≤ C T | k| , (74) 
where C T is some constant depending on T . Then, introducing any smooth function φ := φ(x), with compact support in Ω, we have

∂ t Ω g n φ dx = d a Ω g n ∆ x φ dx + Ω β n φ dx ,
where β n is bounded in L 1 ([0, T ] × Ω). Therefore T 0 ∂ t Ω g n φ dx dt ≤ d a g n L 1 ∆ x φ L ∞ + β n L 1 φ L ∞ (75) ≤ C T φ W 2,∞ .
We introduce ν > 0 and a mollifying sequence φ δ (x) = δ -N φ(x/δ) of smooth functions with compact support B(0, δ), so that B(0, δ) + ω ν ⊂ Ω when δ < ν. Then, for any t ∈ [µ, T -µ] ⊂ [0, T ] (0 < µ < T /2), and for any h ∈ IR, | h| ≤ µ, we get

T -µ µ ων | g n (t + h, x) -g n (t, x)| dxdt ≤ T -µ µ ων | (g n * x φ δ )(t + h, x) -(g n * x φ δ )(t, x)| dxdt + 2 T 0 ων | (g n * x φ δ )(t, x) -g n (t, x)| dxdt ≤ T -µ µ ων | (g n * x φ δ )(t + h, x) -(g n * x φ δ )(t, x)| dxdt + 2 C T δ.
Using (75), we see that

T -µ µ ων | g n (t + h, x) -g n (t, x)| dxdt ≤ T -µ t=µ x∈ων |h| 1 u=0 y∈Ω g n (•, y) φ δ (x -y) dy ′ (t + uh)du dxdt + 2 C T δ ≤ | h| x∈ων 1 u=0 T t=0 ∂ t y∈Ω
g n (t, y) φ δ (x -y) dy dtdudx

+ 2 C T δ ≤ C T | h| x∈ων ||φ δ (x -•)|| W 2,∞ dx + 2 C T δ .
Finally, optimizing in δ, we get

T -µ µ ων | g n (t + h, x) -g n (t, x)| dxdt ≤ C T | h| δ -N -2 + 2 C T δ ≤ C T |h| 1/(N +3) .
Recalling estimate (74), we obtain

T -µ µ ων | g n (t + h, x + k) -g n (t, x)| dxdt ≤ C T |h| 1/(N +3) + |k| .
This ensures that g n is a strongly compact sequence in L 1 (]µ, T -µ[×ω ν ) for all (sufficiently small) µ > 0, ν > 0, or, more simply, that g n is a strongly compact sequence in L 1 loc (]0, T [×Ω).

Then, up to extraction of a subsequence, g n converges a.e., and so does a n . The same proof applied to the other concentrations shows that b n , c n and d n also converge (up to extraction) a.e..

It is now possible to pass to the limit in the weak formulation of system (70) -(72).

We recall that this formulation (written here only for the first equation) is the following : for any smooth (C 2 ) test function ϕ := ϕ(t, x) with compact support in [0, +∞[×Ω and such that n(x)

• ∇ x ϕ(t, x) = 0 for x ∈ ∂Ω , +∞ 0 Ω a n ∂ t ϕ dxdt + Ω a in (x) ϕ(0, x) dx + +∞ 0 Ω d a a n ∆ x ϕ dxdt = +∞ 0 Ω cn d -an bn 1+ 1 n (a 2 n +b 2 n +c 2 n +d 2 n ) ϕ dxdt . (76) 
At this point, let us recall that since a n converges a.e. (up to a subsequence), and is bounded in L 2 (ln L) 2 ([0, T ] × Ω), it converges strongly in L 2 ([0, T ] × Ω) to a function a lying in this space (and so do the other concentrations), so that the quantity a n b n and c n d n , which are equiintegrable, converge respectively to a b and c d in L 1 .

We can pass finally to the limit in the left-hand side of (76), obtaining

+∞ 0 Ω a ∂ t ϕ dxdt + Ω a in ϕ(0, •) dx + +∞ 0 Ω d a a ∆ x ϕ dxdt. (77) 
As concerns the right-hand side of (76), we see that

+∞ 0 Ω c n d -a n b n 1 + 1 n (a 2 n + b 2 n + c 2 n + d 2 n ) ϕ dxdt converges to +∞ 0 Ω (c d -a b) ϕ dxdt .
We end up in this way with the weak form of the (first equation) of system ( 16) -(18).

4 Large Time Behaviour

Entropy dissipation estimate : general theory

We first describe the traditional strategy (sometimes called entropy/entropy dissipation method in the context of kinetic equations) used to get explicit estimates of convergence toward equilibrium for equations where dissipative effects are predominant.

Lyapounov functionals; De La Salle Principle

The principles of the approach described below and many applications can be found in [START_REF] Desvillettes | Entropic methods for the study of the long time behavior of kinetic equations[END_REF].

We consider an abstract equation

∂ t f = A f, (78) 
where A is an operator which can be linear or nonlinear, and can involve derivatives or integrals. We suppose that there exists a (bounded below) Lyapounov functional H := H(f ) (usually called entropy (or opposite of the entropy)) and a functional D := D(f ) (usually called entropy dissipation) such that (what is called in kinetic theory the first and second part of Boltzmann's H-theorem) holds :

∂ t H(f ) = -D(f ) ≤ 0, (79) 
D(f ) = 0 ⇐⇒ A f = 0 ⇐⇒ f = f eq , (80) 
where f eq is a given function.

Then, one can often prove that the decreasing function t → H(f (t)) converges toward its minimum, that t → D(f (t)) converges toward 0, and that as a consequence lim t→+∞ f (t) = f eq (81)

in a convenient topology (a precise theorem could for example be written down, in the case when H is coercive). Unfortunately, the situation described above is often slightly more intricate, because one has to take into account quantities which are conserved in the evolution of eq. (78). In particular, in eq. ( 80), f eq is in general not a given function, but a set of functions depending on a number of parameters equal to the number of conserved quantities.

Use of the Gronwall Lemma

In order to obtain an explicit rate of convergence toward equilibrium, one looks for functional inequalities of the form

D(f ) ≥ Φ(H(f ) -H(f eq )), (82) 
where Φ : IR + → IR + is a function such that Φ(x) = 0 ⇐⇒ x = 0. One tries to find a function Φ which increases as much as possible near 0.

Note that we look for such an inequality for functions f which are not necessarily solutions of eq. (78) (they do not even depend upon t !). This is a way of transforming a problem on PDEs in a problem of functional inequalities.

In the case when there are conserved quantities in the evolution of eq. ( 78), it is enough to prove estimate (82) when the corresponding quantities are fixed.

Assuming that estimate (82) holds, we apply it to the function f := f (t) solution of eq. ( 78) and get thanks to estimate (79) the differential inequality

∂ t (H(f )(t) -H(f eq )) ≤ -Φ(H(f )(t) -H(f eq )).
(83)

Then, Gronwall's lemma ensures that

H(f )(t) -H(f eq ) ≤ R(t), (84) 
where R is the reciprocal of a primitive of -1/Φ. When one can take, for some constant C 0 > 0, Φ(x) = C 0 x, one gets R(t) ≤ Cst e -C 0 t . Sometimes, it is however only possible to take Φ(x) = Cst ε x 1+ε for some (or all) ε > 0, and consequently R(t) = Cst ε t -1/ε .

Cziszar-Kullback inequality

It is often more interesting to estimate ||f (t) -f eq || for some norm || ||, than to estimate the more abstract quantity H(f (t)) -H(f eq ). Therefore, we are interested in inequalities of the form

H(f ) -H(f eq ) ≥ ψ ||f (t) -f eq || , (85) 
where we look for a function ψ ≥ 0 which increases as much as possible near 0. Note that since H reaches its minimum at f = f eq , we expect at best that ψ behaves quadratically at point 0.

Next proposition, sometimes called Cziszar-Kullback or Pinsker inequality (Cf. [START_REF] Csiszar | Information-type measures of difference of probability distributions and indirect observations[END_REF] and [START_REF] Kullback | A lower bound for discrimination information in terms of variation[END_REF]), enables to prove such an estimate in the case when

H(f ) = Ω (f ln f -f ), where Ω ⊂ IR N . Proposition 4.1 Let Ω be a measurable subset of IR N and f, g : Ω → R + . Then Ω f (x) ln f (x) g(x) -f (x) + g(x) dx ≥ 3 2 Ω f (x) dx + 4 Ω g(x) dx × Ω |f (x) -g(x)| dx 2 .
Proof of proposition 4.1 : We recall the following elementary inequality, due to Pinsker : for all u ∈ IR,

3 |u -1| 2 ≤ (2 u + 4) (u log u -u + 1). Then, Ω |f (x) -g(x)| dx = Ω f (x) g(x) -1 g(x) dx ≤ Ω 2 f (x) g(x) + 4 f (x) g(x) ln f (x) g(x) - f (x) g(x) + 1 g(x) √ 3 dx ≤ 1 √ 3 Ω (2 f (x) + 4 g(x)) dx Ω f (x) ln f (x) g(x) -f (x) + g(x) dx.
This concludes the proof of proposition 4.1.

In the sequel, since we shall use Lyapounov functionals which are sums of quantities like Ω (α ln α -α), for various concentrations α, we shall have to use Cziszar-Kullback inequality in order to obtain estimates like (85).

The case of Two reaction-diffusion equations

Large time behavior : the result

We now present a result which gives an explicit estimate about the speed of convergence of a solution to system (10) - [START_REF] Martin | Nonlinear reaction-diffusion systems[END_REF] towards equilibrium. This result is extracted from [START_REF] Desvillettes | Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations[END_REF]. Then, the unique strictly positive smooth (C 2 ) solution t ∈ IR + → (a(t), b(t)) to equations ( 10) -( 12) obeys the following estimate of exponential decay toward equilibrium:

a(t, •) -a ∞ 2 L 1 (Ω) + b(t, •) -b ∞ 2 L 1 (Ω) ≤ C 1 e -C 2 t ,
where C 1 , C 2 > 0.

Here, a ∞ and b ∞ are the unique nonnegative numbers which satisfy the equation

a 2 ∞ = b ∞ , a ∞ + 2b ∞ = M. (86) 
4.2.2 The proof : the entropy dissipation estimate Proof of theorem 4.1: We recall that since the initial data are strictly positive and smooth, system (10) -( 12) has indeed a unique smooth C 2 solution, which moreover satisfies (for some constants A 0 , A 1 , B 0 and

B 1 > 0) ∀t ≥ 0, x ∈ Ω, A 0 ≤ a(t, x) ≤ A 1 , B 0 ≤ b(t, x) ≤ B 1 . (87) 
This is a direct application of theorem 3.2.

We then prove the following proposition, which corresponds to estimate (82) in the abstract formulation of subsection 4.1 : Proof of proposition 4.2 : We systematically denote the average over Ω of a quantity z by z = Ω z(x) dx (remember that Ω is of measure 1).

We start with the identity |∇xa| 2 a ≥ |∇xa| 2 ||a|| L ∞ , and apply Poincaré's inequality (with Poincaré's constant P ), so that

Ω |∇ x a| 2 a dx ≥ P Ω |a -ā| 2 ||a|| L ∞ dx.
We do the same for b, but we also use the identity

Ω |∇ x b| 2 b dx = 4 Ω |∇ x √ b| 2 dx ≥ P Ω | √ b - √ b| 2 dx.
Using then the inequality (x -y)(ln(x) -ln(y)) ≥ 4 (

√ x - √ y) 2
and the L ∞ bound on a and b, we get (for a strictly positive constant which we denote by C, as any other strictly positive constant in the sequel)

D 1 (a, b) ≥ C a - √ b 2 L 2 + a -a 2 L 2 + b -b 2 L 2 + √ b - √ b 2 L 2 . ( 90 
)
We shall prove that the r.h.s. of ( 90) is bounded below by (some constant times) the relative entropy E(a, b) -E(a ∞ , b ∞ ).

Firstly, we use the conservation law (89) to rewrite the relative entropy as

E 1 (a, b) -E 1 (a ∞ , b ∞ ) = Ω a ln a a ∞ -(a -a ∞ ) + b ln b b ∞ -(b -b ∞ ) dx .
We use the elementary inequality ∀a > 0, a ln a -a + 1 ≤ (a -1) 2 , in order to obtain

E 1 (a, b) -E 1 (a ∞ , b ∞ ) ≤ 1 a ∞ a -a ∞ ≤ √ b - √ b 2 L 2 .
Thus, we only have to show that for some constant C > 0,

|a -b| 2 ≥ C |a -a ∞ | 2 + |b -b ∞ | 2 .
Note that this is a statement on numbers and not on functions.

We recall that a + 2 b = a ∞ + 2b ∞ , and that a 2 ∞ = b ∞ , so that we only have to show that for some constant C > 0,

|(a) 2 + 1 2 a -a 2 ∞ - 1 2 a ∞ | 2 ≥ C |a -a ∞ | 2 .
This is easily obtained by noticing that if f (x) = x 2 + 1 2 x, then |(f -1 ) ′ (x)| ≤ 2. This ends the proof of proposition 4.2.

The Cziszar-Kullback type inequality

We now turn to another proposition, which shows that the relative entropy E 1 (a, b) -E 1 (a ∞ , b ∞ ) defined by ( 23) and (86) controls (from above) the squares of the L 1 -distances to the equilibrium : Proposition 4.3 Let Ω be an open subset of IR N of measure 1. For all (measurable) nonnegative functions a, b : Ω → IR such that Ω (a(x) + 2b(x)) dx = M > 0,

E 1 (a, b) -E 1 (a ∞ , b ∞ ) ≥ C a -a ∞ 2 L 1 + b -b ∞ 2 L 1 , (92) 
where definitions ( 23) and ( 86) have been used. + (q(a) -q(a ∞ )) + (q(b) -q(b ∞ )) .

We first note that thanks to Cziszar-Kullback inequality (Cf. 

Q ′′ (a) = 1 a + 1 2 1 M -a ≥ 3 + 2 √ 2 2M , (93) 
and

R ′′ (b) = 1 b + 4 M -b ≥ 6 + 4 √ 2 M , (94) 
we combine 2/3 of (93) and 1/3 of (94) to Taylor-expand (q(a) -q(a ∞ )) + (q(b) -q(b ∞ ))

≥ 3 + 2 √ 2 6M |a -a ∞ | 2 + 3 + 2 √ 2 3M |b -b ∞ | 2 .
Finally, we observe that

a -a ∞ 2 L 1 ≤ 6 + 2 √ 2 3 + 2 √ 2 a -a 2 L 1 + 3 + 2 √ 2 3 |a -a ∞ | 2 ,

1 N

 1 x, (a, b, c, d) → k l (a, b, c, d).

Proposition 2 . 4

 24 Let T > 0, Ω be a bounded regular (C 2 ) open set of IR N , d a , d b > 0 (together with d c , d d > 0, depending on the system considered) be diffusivity constants, a in := a in (x) > 0, b in := b in (x) > 0 (together with c in := c in (x) > 0, d in := d in (x) > 0 depending on the system considered) be initial data in C 2 (Ω). Let also a := a(t, x), b := b(t, x) (together with c := c(t, x), d := d(t, x), depending on the system considered) be solutions in C 2 ([0, T ] × Ω) of one of the systems (10) -(

Theorem 3 . 1

 31 We consider a smooth (C 2 ) bounded and connected open subset Ω of IR N . Let u in ∈ C 2 (Ω) be an initial datum (compatible with the Neumann boundary condition) and φ ∈ L p ([0, T ] × Ω) (for some T > 0 and p ∈]1, +∞[) be a right-hand side.

Proposition 3 . 3 (

 33 Minimum and maximum principle) We assume that Ω is a bounded, smooth (C 2 ), and connected open subset of IR N , and that d a , d b are strictly positive diffusivity constants. Let a := a(t, x) and b := b(t, x) be a solution in C 2 ([0, T ] × Ω) to system (

) : Theorem 3 . 2

 32 Let Ω be a bounded, connected and regular (C 2 ) open set of IR N (N ≥ 1), and d a , d b be strictly positive diffusivity constants. We consider initial data a in , b in ∈ C 2 (Ω) (compatible with the Neumann boundary condition) which satisfy the bound :

) Proof of theorem 3 . 2 :

 32 We consider a function χ := χ(a, b) in C 2 (IR 2 , IR) such that χ(a, b) = 1 when |a|, |b| ≤ 2 sup(A 1 , A 2 1 , √ B 1 , B 1 ), and χ(a, b) = 0 when |a| or |b| ≥ 4 sup(A 1 , A 2 1 , √ B 1 , B 1 ). Then, the function f (a, b) = (-2 (a 2 -b) χ(a, b), (a 2 -b) χ(a, b))

Proposition 3 . 4

 34 Let a in , b in and c in be strictly positive initial data lying in C 2 ([0, 1]), and d a , d b , d c be strictly positive diffusivity constants. We consider a, b, c a (strong) solution in C 2 ([0, T ] × [0, 1]) of system (

) in dimension 1 : 3 . 3

 133 Theorem Let a in , b in and c in be strictly positive initial data lying in C 2 ([0, 1]), and d a , d b , d c be strictly positive diffusivity constants. Then, there exists a unique solution a, b, c ∈ C 2 (IR + × [0, 1]) to system (13) -(15) such that ||a, b, c|| L ∞ ([0,T ]×[0,1]) ≤ C T (where C T grows at most polynomially with T ). Proof of theorem 3.3 : We consider a function χ K := χ K (a, b, c) in C 2 (IR 3 , IR) such that χ K (a, b, c) = 1 when |a|, |b|, |c| ≤ K, and χ K (a, b, c) = 0 when |a| or |b| or |c| ≥ 2 K.

Theorem 3 . 4

 34 Let Ω be a bounded, regular (C 2 ) and connected open set of IR N , let d a , d b , d c and d d be strictly positive diffusivity constants, and let a in , b in , c in , d in be strictly positive initial data in C 2 (Ω).

  4 in next paragraph, by showing the strong convergence (i.-e. the convergence a.e.) of the sequences a n , b n , c n and d n .

3. 4 . 3

 43 Existence of weak L 2 solutions In the previous paragraph, we proved that there exists for each n ≥ 1 a smooth solution (a n , b n , c n , d n ) to system (70) -(72) Moreover, we have shown that the sequences a n , b n , c n and d n are bounded in L 2 (ln L) 2 ([0, T ] × Ω), so that the quantities a n b n and c n d n are equiintegrable.

Theorem 4 . 1

 41 Let Ω be a bounded, regular (C 2 ) and connected open set of IR N (N ≥ 1) of measure 1, and d a , d b be two strictly positive diffusivity constants. Let the initial data a in , b in be two strictly positive functions of C 2 (Ω) with mass Ω (a in + 2 b in ) dx = M > 0.

Proposition 4 . 2

 42 Let Ω be a bounded, smooth (C 2 ), and connected subset of IR N of measure 1. We consider d a , d b > 0 two strictly positive diffusion constants.Let a, b : Ω → IR be two functions such that (for some constants A 0 , A 1 , B 0 andB 1 > 0) ∀x ∈ Ω, A 0 ≤ a(x) ≤ A 1 , B 0 ≤ b(x) ≤ B 1 ,(88)andΩ (a(x) + 2 b(x)) dx = M > 0. (89)Then, there exists a constant C > 0 (depending onΩ, M , d a , d b , A 0 , A 1 , B 1 and B 2 ) such that D 1 (a, b) ≥ C (E 1 (a, b) -E 1 (a ∞ , b ∞ )),where a ∞ , b ∞ are defined by (86), and functionals E 1 , D 1 are defined by formulas (23) and (24).

Proof of proposition 4 . 3 :

 43 We still use the notations a = Ω a dx and b = Ω b dx, and define q(x) := x ln x -x. Then,E 1 (a, b) -E 1 (a ∞ , b ∞ ) =

1 ,

 1 and moreover a ≤ M and b ≤ M/2 by (89). Then, we consider Q(a) := q(a) + q( M -a 2 ) for a ∈]0, M [ and R(b) := q(b) + q(M -2b) for b ∈]0, M/2[. Since

Therefore, the sup of all T such that (for all x ∈ Ω) |a(t, x)|, |b(t, x)| ≤ 2 sup(A 1 , A 2 1 , √ B 1 , B 1 ) is infinite, and therefore (a, b) is a (strong, C 2 ) solution of system ( 10) - [START_REF] Martin | Nonlinear reaction-diffusion systems[END_REF] on IR + , which satisfies (thanks to proposition 3.2) estimate (57).

If we now have two solutions of system ( 10) -( 12) on IR + which satisfy estimate (57), they are also solutions of system (58), and thanks to the "uniqueness" part of proposition 3.2, they are equal. This concludes the proof of theorem 3.2.

Using the properties of the heat kernel

We introduce here the idea of using the smoothing properties of the heat kernel in order to obtain L ∞ bounds for system (13) - [START_REF] Temam | Studies in Mathematics and its Applications[END_REF]. Those bounds are only local in time (that is, in L ∞ ([0, T ] × Ω) for a given T > 0), but we take care of controlling what happens when T → +∞.

We give complete proofs for system ( 13) -( 15) in dimension 1, and briefly indicate how these proofs can be extended to the case of system ( 13) -( 15) in any dimension, or to the case of system ( 16) -( 18) in dimension 1.

Those proofs are inspired by the book of Rothe [START_REF] Rothe | Global solutions of reaction-diffusion systems[END_REF].

We begin with a standard estimate of the smoothing effect of the heat equation in dimension 1. 

and assume for the initial data u(0, x) = u in (x) and for the source term φ := φ(t, x) that

for some p ≥ 1.

Then, for any exponent r > 1 such that 1 r + 2 3 > 1 p and for all T > 0, the norm u L r ([0,T ]×[0,1]) grows at most polynomially in T like

In the case when p > 3 2 , one can take r = ∞ in estimate (61).

by Young's inequality. This concludes the proof of proposition 4.3.

We come back to the proof of theorem 4.1.

We consider the unique smooth solution t → (a(t), b(t)) to system (10) -( 12) obtained at the beginning of the proof. We apply proposition 4.2 to a = a(t) and b = b(t). This is possible since condition (88) is satisfied thanks to estimate (87), and condition (89) is satisfied thanks to the conservation property (20). As a consequence, we see that

Thanks to the entropy estimate (29), we obtain

and thanks to Gronwall's lemma :

Using now proposition 4.3 with a = a(t) and b = b(t) (and noticing again that the conservation property (20) enables to fulfill the assumptions of this proposition), we conclude the proof of theorem 4.1.