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New Method for Identifying Finite Degree Volterra Series ⋆

Wael SULEIMAN and André MONIN

LAAS - CNRS, University of Toulouse
7 avenue du Colonel Roche, 31077 Toulouse cedex 4

France

Abstract

In this paper, the identification of a class of nonlinear systems which admits input-output maps described by a finite degree Volterra series is
considered. In actual fact, it appears that this class can model many important nonlinear multivariable processes not only in engineering, but
also in biology, socio-economics, and ecology.

To solve this identification problem, we propose a method based on a local gradient search in a local parameterization of the state space
realization of finite degree Volterra series with infinite horizon. Using the local parameterization not only reduces the amount of the gradient
calculations to the minimal value, but also overcomes the nonuniqueness problem of the optimal solution.

Moreover, we propose a sequential projection method to provide an initial estimation of the parameters of finite degree Volterra series
realization. This estimation is used to initialize the gradient search method.

Key words: Identification; nonlinear systems; Volterra series; optimization.

1 Introduction

During the last thirty years, the development of identifica-
tion theory of dynamic systems has been a subject of ac-
tive research, such a development is the result of the neces-
sity of reliable models in process control, aerospace appli-
cations, biomedical systems, ecology, physiology, biology,
and socio-economics (Lakshmikantham, 1988; Nijmeijer &
van der Schaft, 1996; Sastry, 1999; Schetzen, 1981; Koren-
berg & Hunter, 1990; Schuppen & Jan, 2004).

The developments of linear subspace identification methods
have recently offered a significantly practical tool to deal
with the identification of multivariable linear or pseudo lin-
ear system (Söderström & Stoica, 1989; Moonen et al., 1989;
Overschee & Moor, 1994; Viberg, 1995; Ljung, 1999).
However, in practice, the identification of nonlinear multi-
variable systems is becoming crucial since many systems in
nature are nonlinear. In the theory of nonlinear systems, the
term ”nonlinear” defines a class of systems for which the
linear approximation fails to be an efficient model able to
capture the dynamic of the system. The class of nonlinear
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56 133 6969.
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systems is a complex class, and defining an universal repre-
sented model of this class is a very complicated task.
Therefore, anyone interested in nonlinear modeling is com-
pelled to focus on specific model classes (Billings, 1980;
Haber & Unbeheauen, 1990; Lee, 1998; Mathews & Sicu-
ranza, 2000; Pearson, 1995, 2000; Doyle et al., 2001).

In this paper, we focus on the representation of nonlinear
system by Volterra series with infinite horizon (Volterra,
1930; Brockett, 1972, 1976). The expansion of a finite degree
Volterra series has the following form

yt =
l

∑
n=1

∞

∑
τ1=0

τ1

∑
τ2=0

. . .
τn−1

∑
τn=0

wn(τ1,τ2, . . . ,τn)

×ut−τ1
⊗ut−τ2

⊗ . . .⊗ut−τn + vt

(1)

where ut ∈ R
m is the input signals, yt ∈ R

p is the output
signals. The measurement noise vt is assumed to be a white-
noise that is independent of the input signal and with zero
mean, and ⊗ denotes the Kronecker product. The functions

wn(τ1,τ2, . . . ,τn) ∈ R
p×mn

denote the Volterra kernels. As

the last term in the series involves the lth kernel, they will
be called Volterra series of degree l with infinite horizon.
This class of Volterra series is dense, in the L2 sense, in
nonlinear analytic input-output systems (Brockett, 1976).
Approximating nonlinear systems by Volterra series has
been used in many research areas, such as filtering (Monin
& Salut, 1996), predictive control (Allgöwer & Zheng,
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2000), ecology (Takeuchi, 1996), biology (Thieme, 2003),
and system control (Nijmeijer & van der Schaft, 1996;
Doyle et al., 2001).
In reality, the direct calculation of the Volterra kernels from
Equation (1) is not feasible in practice. This because it in-
volves the integral past of input signal and the size of the
matrices which should be manipulated increases exponen-
tially.
For that, the horizon of finite degree Volterra series is fixed
(Rugh, 1981; Schetzen, 1989). The obtained class is called
truncated finite degree Volterra series of degree l.
It has the following form

yt =
l

∑
n=1

T

∑
τ1=0

τ1

∑
τ2=0

. . .
τn−1

∑
τn=0

wn(τ1,τ2, . . . ,τn)

×ut−τ1
⊗ut−τ2

⊗ . . .⊗ut−τn + vt

(2)

where T is the length of the considered horizon. In this
case, the estimation of Volterra kernels becomes trivial and
can be obtained by least-square methods. However, if we
consider that the Volterra kernels are fully parameterized,
then the number of parameters which should be estimated
is the following 1

C (l,T ) = p

{

l

∑
n=1

(T +n)!

n!T !
mn

}

(3)

recall that p and m are the dimensions of the output and
input signals respectively. It is clear that C (l,T ) increases
exponentially with respect to l and T . For that, in the
case of multivariable systems, we are obligated to operate
high dimensional matrices, which are often ill-conditioned
(Nowak & Veen, 1994).

The main contribution of this paper is defining a new method
to identify a state-space realization of finite degree Volterra
series with infinite horizon (1). The initial estimation of the
realization’s parameters is obtained by a sequential projec-
tion method that we have developed thanks to the recursive
property of the realization structure, then the realization pa-
rameters are optimized using a local gradient search method.

The paper is organized as follows. In Section 2, a realiza-
tion of finite degree Volterra series in finite dimension state
space representation is defined. In Section 3, the output error
identification problem is formulated and the structure’s pa-
rameters are chosen. A local parameterization of the realiza-
tion of finite degree Volterra series is developed in Section 4.
In Section 5, we propose a sequential projection method to
calculate an initial estimation of the structure’s parameters.
In Section 6, we summarize the algorithm of identification.
Finally, Section 7 presents some illustrative examples and
a comparison with some system identification methods for
nonlinear systems.

1 See Appendix.A for the details of calculation.

1.1 General notations

As a general rule in this paper, selecting elements of matrices
is done using MATLABTM standard matrix operations, e.g.
M(:, i : j) stands for the sub-matrix of the matrix M which

contains the columns from the ith to jth columns.

2 Realization of a finite degree Volterra series

(Brockett, 1976) has proved that any observable realization
of a finite Volterra series of degree l can be approximated
by an recursive realization of the form

Z1
t = A1Z1

t−1 +B1ut , Z1
0 = 0

Z2
t = A2Z2

t−1 +B2(ut ⊗Z1
t ) , Z2

0 = 0

...

Zl
t = AlZl

t−1 +Bl(ut ⊗Zl−1
t ) , Zl

0 = 0

yt =
l

∑
i=1

CiZi
t + vt

(4)

The direct relation between yt and ut , can be obtained by
using the property FG⊗HJ = (F⊗H)(G⊗ J) and a simple
development of (4) leads to

yt =
l

∑
i=1

t−1

∑
τ1=0

τ1

∑
τ2=0

. . .

τi−1

∑
τi=0

CiΦi(τ1, . . . ,τi)

×ut−τ1
⊗ut−τ2

. . .⊗ut−τi
+ vt

(5)

where

Φ1(τ1) = (A1)τ1B1

and for i ≥ 2:

Φi(τ1,τ2, . . . ,τi) = (Ai)τ1Bi
[

Im⊗Φi−1(τ2, . . . ,τi)
]

(6)

By comparing (1) and (5), we observe that Realization (4)
leads to Volterra series similar to (1), in which we suppose
that ut = 0 for t ≤ 0, and the Volterra kernels are approxi-
mated by a sum of matrix products.
In fact, this approximation depends on the dimensions of
the states {Zi

t : i = 1,2, · · · , l}, and it is clear that it becomes
better if we increase the dimensions of states. On the other
hand, for practical purposes these dimensions should be cho-
sen as lower as possible in order to find a compromise be-
tween the approximation and numerical complexity issues.
Obviously, Realization (4) is not unique, assume that the

states of Structure (4) transform into X i
t =

(

T i
)−1

Zi
t where

T i ∈R
ni×ni nonsingular matrices, and ni is the dimension of
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the state Zi
t . The structure becomes

X1
t = Ā1X1

t−1 + B̄1ut

X2
t = Ā2X2

t−1 + B̄2(ut ⊗X1
t )

...

X l
t = ĀlX l

t−1 + B̄l(ut ⊗X l−1
t )

yt =
l

∑
i=1

C̄iX i
t + vt

where

[

Āi B̄i

C̄i 0

]

=

[

(

T i
)−1

AiT i
(

T i
)−1

BiT i−1
m

CiT i 0

]

(7)

and {T j
m : j = 0,1,2, · · · , l−1} are defined as follows

T j
m = Im⊗T j, T 0

m = Im : Im is the identity matrix

Lemma 1 The realization of finite degree Volterra series (4)
is asymptotically stable if and only if:

For i = 1,2, · · · , l : ρ(Ai) < 1 (8)

where ρ(Ai) stands for the spectral radius of Ai.

PROOF. Each subsystem may be viewed as a linear sys-

tem with input (ut ⊗ Zi−1
t ). So, Zi

t will be asymptotically

stable if and only if the linear system is stable
(

ρ(Ai) < 1
)

and ut ⊗ Zi−1
t is bounded. Assuming that Z1

t is stable
(

ρ(A1) < 1
)

, so ut ⊗Z1
t is bounded and Z2

t is stable if and

only if
(

ρ(A2) < 1
)

. And so on. �

3 Output error identification

Our goal is to determine the coefficient matrices of Structure
(4). Assume that all matrices are fully parameterized, so the
structure’s parameters can be given by

θ =































vec(A1)

vec(B1)

vec(C1)
...

vec(Al)

vec(Bl)

vec(Cl)































(9)

where vec(.) denotes the vectorization operator defined as
follows

vec : M ∈ Rm×n→ Rm·n

vec(M) = vec
[

m1 m2 · · ·mn

]

=
[

mT
1 mT

2 · · ·m
T
n

]T

Given the input ut and output yt of the real system, the model
corresponding to θ can be given as follows

Ẑ1
t = A1(θ)Ẑ1

t−1 +B1(θ)ut

Ẑ2
t = A2(θ)Ẑ2

t−1 +B2(θ)(ut ⊗ Ẑ1
t )

...

Ẑl
t = Al(θ)Ẑl

t−1 +Bl(θ)(ut ⊗ Ẑl−1
t )

ŷt(θ) =
l

∑
i=1

Ci(θ)Ẑi
t

(10)

Note that as Zi
t depends on θ , the mapping ŷt(θ) is nonlinear

with θ . Our goal is achieved if the output ŷt(θ) approximates
the output of the real system accurately. This criterion can be
transformed into the minimization of the output error with
respect to the parameters θ . Considering a data of length N,
the output-error cost function is given by

JN(θ) =
1

N

N

∑
k=1

‖yk− ŷk(θ)‖2
2 =

1

N
EN(θ)T EN(θ) (11)

where

EN(θ) =
[

e(1)T e(2)T · · ·e(N)T
]T

(12)

is the error vector in which e(k) = yk− ŷk(θ). The minimiza-
tion of (11) is clearly a nonlinear, nonconvex optimization
problem. The numerical solution of this problem can be cal-
culated by different algorithms, e.g. gradient search method
(Levenberg-Marquard method) is a popular one. This itera-
tive method is based on the updating of the system param-
eters θ as follows

θ i+1 = θ i− (ψT
N (θ i)ψN(θ i)+λ i+1I)−1ψT

N (θ i)EN(θ i)
(13)

Where λ i is the regularization parameter and

ψN(θ) ,
∂EN(θ)

∂θ T
(14)

is the jacobian of the error vector EN(θ). As we mentioned in
Section (2), the structure (4) is not unique. As a consequence,
the minimization of JN(θ) does not have a unique solution.
The nonuniqueness solution of θ is the consequence of the
full parameterization of the matrices of the realization.
However, the optimal solution can be made unique by choos-
ing a suitable canonical parameterization. As each subsys-
tem of the realization can be considered as a linear system,
one could use a classical parameterization of the various
parameterization proposed for the linear systems. Unfortu-
nately, these parameterizations are not numerically robust
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(McKelvey & Helmersson, 1997).
To overcome the nonuniqueness problem of the optimal θ
and keep the full parameterization of the matrices, Ribarits
et al (Ribarits et al., 2004) have proposed a method for the
linear systems, in which the directions that do not change
the cost of output error function are identified and projected
out at each iteration.
For that only the active parameters are updated. In analogues
way, we will define a local parameterization of the realiza-
tion of finite degree Volterra series (4) in order to define the
directions in which the cost function JN(θ) does not change.

4 Local parameterization

Recall that two realizations of a finite degree Volterra se-
ries (4) are similar if their coefficient matrices are related
by Equation (7), where the transformation matrices {T i :
i = 1,2, · · · , l} parameterize the subset of equivalent models.
The obtained subset defines a manifold. In order to iden-
tify the tangent plane of this manifold at (Ai,Bi,Ci : i =
1,2, · · · , l), we linearize Relation (7) around the identity ma-
trices. Considering a small perturbation T i = Ini

+ ∆T i, we

suppose that ρ(∆T i)≪ 1 then by using the approximation
(

Ini
+∆T i

)−1
≃ Ini

−∆T i and neglecting all second order
terms, we obtain

[

Āi B̄i

C̄i 0

]

=

[

Ai Bi

Ci 0

]

+

[

−∆T iAi +Ai∆T i −∆T iBi

Ci∆T i 0

]

+

[

0 Bi∆T i−1
m

0 0

] (15)

By defining

Λ
j
i ,

[

0n j×(i−1)n j
In j

0n j×(m−i)n j

]

it is possible to write ∆T
j

m as follows

∆T j
m =

m

∑
i=1

Λ
j
i

T
∆T jΛ

j
i

If we consider the following vectors of parameters

θ =































vec(A1)

vec(B1)

vec(C1)
...

vec(Al)

vec(Bl)

vec(Cl)































and θ̄ =































vec(Ā1)

vec(B̄1)

vec(C̄1)
...

vec(Āl)

vec(B̄l)

vec(C̄l)































(16)

the relation between θ and θ̄ can be obtained using the
property vec(ABC) =

(

CT ⊗A
)

vec(B)

θ̄ = θ +Mθ









vec(∆T 1)
...

vec(∆T l)









(17)

where for 1≤ j ≤ l−1

Mθ

(

:,1+
j−1

∑
k=1

n2
k :

j

∑
k=1

n2
k

)

=



































0α j×n2
j

−
(

A j
)T
⊗ In j

+ In j
⊗A j

−
(

B j
)T
⊗ In j

In j
⊗C j

0n2
j+1×n2

j
m

∑
i=1

Λ
j
i

T
⊗
(

B j+1Λ
j
i

T
)

0γ j×n2
j



































and

Mθ

(

:,1+
l−1

∑
k=1

n2
k :

l

∑
k=1

n2
k

)

=















0αl×n2
l

−
(

Al
)T
⊗ Inl

+ Inl
⊗Al

−
(

Bl
)T
⊗ Inl

Inl
⊗Cl















(18)
with

α j = ∑
j−1
i=1 ni(ni +mni−1 + p)

γ j = pn j+1 +∑
l
i= j+2 ni(ni +mni−1 + p)

Lemma 2 The left null space of Mθ (18) defines a basis of
the directions in which the parameters should be modified to
lead a change in the value of cost function JN(θ).

PROOF. Equation (17) shows that, the tangent space of
the manifold of equivalent realizations at (Ai,Bi,Ci : i =
1,2, · · · , l) is equal to the column space of the matrix Mθ

(18). Since the left null space of the matrix Mθ is orthogonal
complement to the column space, the directions in which the
value of the cost function JN(θ) changes are those related
to left null space of Mθ . �

Let the QR decomposition of Mθ be given by

Mθ =
[

Q1 Q2

]

[

R

0

]

(19)
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then a basis of the null space of Mθ is Q2.
Thus, the update rule should be modified such that we project
out the directions in which the cost function does not change.
The new update rule becomes

θ i= θ i−1−Q2

(

QT
2 ψT

N ψNQ2 +λ iI
)−1

QT
2 ψT

N EN
(20)

where Q2, ψN and EN depend on θ i−1. Note that since Q2

depends on the past parameter θ i−1, the QR decomposition
(19) must be computed at each iteration.

4.1 Computing the iterative parameter update

In order to compute the update rule (20), the quantities
EN(θ) and ψN(θ) should be computed. Computing the vec-
tor EN(θ) can be done by simulating the system (10) with

θ = θ i−1. At the same time, this simulation brings out the
states {Ẑi

t : i = 1,2, · · · , l}. In order to simulate the gradi-

ent ψN(θ i−1), we should compute the derivative of ŷt with

respect to θ i−1. Let us define

ζ
j

t,k =
∂ Ẑ

j
t

∂θk

(21)

then the computation of
∂ ŷt

∂θ T =
[

∂ ŷt

∂θ1
· · · ∂ ŷt

∂θq

]

, where q is

the number of parameters in θ , can be made as follows

ζ 1
t,k =A1ζ 1

t−1,k +
∂A1

∂θk

Ẑ1
t−1 +

∂B1

∂θk

ut

ζ 2
t,k =A2ζ 2

t−1,k +
∂A2

∂θk

Ẑ2
t−1 +

∂B2

∂θk

(ut ⊗ Ẑ1
t )+B2(ut ⊗ζ 1

t,k)

...

ζ l
t,k =Alζ l

t−1,k +
∂Al

∂θk

Ẑl
t−1 +

∂Bl

∂θk

(ut ⊗ Ẑl−1
t )+Bl(ut ⊗ζ l−1

t,k )

∂ ŷt

∂θk

=
l

∑
j=1

C jζ
j

t,k +
∂C j

∂θk

Ẑ
j
t

(22)

In fact, if we consider the local parameterization of finite
degree Volterra realization, then computing the update rule
(20) can be done without calculate ψN first. Let us define

ΩN , ψNQ2 =
∂EN

∂θ T
Q2 (23)

So, the update rule can be expressed as follows

θ i= θ i−1−Q2

(

ΩT
NΩN +λ iI

)−1
ΩT

NEN
(24)

Consider the t p elements of the sth column of ΩN

ΩN((t−1) p+1 : t p,s) =
q

∑
k=1

∂ ŷt

∂θk

Q2(k,s) (25)

In order to calculate this sum, let us define

ζ
j

t =
q

∑
k=1

∂ Ẑ
j
t

∂θk

Q2(k,s) (26)

Using (22), the computation of (25) can be done as follows

ζ 1
t =A1ζ 1

t−1 +∆A1Ẑ1
t−1 +∆B1ut

ζ 2
t =A2ζ 2

t−1 +∆A2Ẑ2
t−1 +∆B2(ut ⊗ Ẑ1

t )+B2(ut ⊗ζ 1
t )

...

ζ l
t =Alζ l

t−1 +∆Al Ẑl
t−1 +∆Bl(ut ⊗ Ẑl−1

t )+Bl(ut ⊗ζ l−1
t )

q

∑
k=1

∂ ŷt

∂θk

Q2(k,s) =
l

∑
j=1

C jζ
j

t +∆C jẐ
j
t

(27)
where

∆A j =
q

∑
k=1

∂A j

∂θk

Q2(k,s) : j = 1,2, · · · , l (28)

and ∆B j,∆C j are defined analogously. These matrices can
be obtained from































vec(∆A1)

vec(∆B1)

vec(∆C1)
...

vec(∆Al)

vec(∆Bl)

vec(∆Cl)































=
q

∑
k=1

∂θ
∂θk

Q2(k,s)

=
q

∑
k=1

ek Q2(k,s)

(29)

where

ek = [0 . . . 0 1

↑

k

0 . . . 0]T

Note that the number of columns of ΩN is smaller than that of
ψN because the first one is the number of active parameters
and the second one is the total number of parameters.

5 Computing an initial estimation

The reason why a good initial estimation is crucial is that
the local gradient search method converges to the nearest
local optimum in the neighborhood of initial guess of solu-
tion. Moreover, the initial estimation should also provide a
stable realization that verifies the constrain (8).
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In this section, we propose a sequential projection method
in order to provide an initial estimation of the realization’s
vector of parameters (θ ). The basic idea is to use the con-
secutive property of finite degree Volterra series realization
to define a sequential projection procedure. Recall that, the
error introduced in the projection process is due to the non
orthogonality of the subprocesses (linear, quadratic, cubic,
· · · ), and as well the effect of the noise on the observed out-
put signal. The algorithm of projection can be resumed as
follows

(1) Estimate the best linear stable approximation (the linear
subsystem) of the nonlinear system.

(2) From the simulation of the linear subsystem, we project
the residual on the class of 2-degree subsystems.

(3) From the simulation of linear + 2-degree subsystems,
we project the residual on the class of 3-degree sub-
system.

(4) Etc.

Moreover, this projection procedure yields an estimation
of the dimensions of the states {Zi

t : i = 1,2, · · · , l}, which
means the set {ni : i = 1,2, · · · , l}. Furthermore, it yields the
degree of the realization (l) by defining a precision criterion
as it will appear in the sequel.

5.1 Identification of linear subsystem

Estimating the best linear stable approximation of nonlinear
system can be formulated as a minimization problem

min L1
N =

1

N

N

∑
t=1

‖ yt − y1
t ‖

2
2

where

Z1
t = A1Z1

t−1 +B1ut

y1
t = C1Z1

t

with the constraint

ρ
(

A1
)

< 1

(30)

The parameters of the optimization problem, which should
be estimated, are the triple (A1,B1,C1). The above mini-
mization problem can be transformed into the following ma-
tricial form (Gopinath, 1969; DeMoor et al., 1988)

min ‖ Yα,N−Γ1
α Z1

0,N−α −Φ1
αUα,N ‖

2
F

subject to

ρ
(

A1
)

< 1

(31)

where ‖ . ‖F denotes Frobenius norm. The input and output

are stocked in Hankel matrices form

Uα,N ,















u1 u2 · · · uN−α+1

u2 u3 · · · uN−α+2

...
...

. . .
...

uα uα+1 · · · uN















where α and N refer to the number of rows in the matrix
and data length respectively. The output Hankel matrix Yα,N

is defined analogously to Uα,N . The matrices Γ1
α , Φ1

α and

Z1
0,N−α are defined as follows

Γ1
α =















C1

C1A1

...

C1(A1)(α−1)















Φ1
α =















C1B1 0 0 · · · 0

C1A1B1 C1B1 0 · · · 0

...
. . .

. . .
. . .

...

C1(A1)(α−1)B1 · · · · · · · · · C1B1















Z1
0,N−α =

[

Z1
0 Z1

1 · · ·Z
1
N−α

]

.

Note that the number of rows (α) should be roughly chosen
to be greater than the expected linear system order n1. This
condition guarantees that the extended matrix of observabil-
ity Γ1

α has a full rank. Our objective is to estimate the ma-

trices Γ1
α and Φ1

α . Since only the data matrices Uα,N and
Yα,N are known, instead of solving the minimization prob-

lem (30) with respect to Γ1
α and Φ1

α , we can transform it into

an equivalent one involving only the matrix Γ1
α as follows

min ‖ Yα,NΠ⊥
UT

α,N
−Γ1

α Z1
0,N−α Π⊥

UT
α,N
‖2

F

subject to

ρ
(

A1
)

< 1

(32)

where Π⊥
UT

α,N
is the orthogonal projection onto the nullspace

of Uα,N

Π⊥
UT

α,N
= I−UT

α,N

(

Uα,NUT
α,N

)−1
Uα,N (33)

such that

Uα,NΠ⊥
UT

α,N
= 0 (34)

The inverse of the matrix
(

Uα,NUT
α,N

)

exists if the input is

persistently exciting and N > mα . In fact, the origin of the
idea of subtracting the term that involves the input signal

6



belongs to the direct 4SID method, which is a classical sub-
space method (DeMoor et al., 1988).
To solve the problem (32), one could use the Singular Value
Decomposition (SVD). Recall that, the extended observabil-
ity matrix (Γ1

α) is a full rank matrix. Consider the following
SVD

Yα,NΠ⊥
UT

α,N
=
[

Qs Qn

]

[

Ss 0

0 Sn

][

V T
s

V T
n

]

(35)

where the matrix Ss contains the principals singular values
(further than threshold).
The dimension of this matrix yields n1 (the dimension of Z1

t ).

The estimation of the matrix Γ1
α can be done by solving the

following problem of minimization

min ‖ Γ1
α −Qs ‖

2
F

subject to

ρ
(

A1
)

< 1

(36)

By using the property

Γ1
α(1 : (α−1)p, :)A1 =Γ1

α(p+1 : α p, :) (37)

and replacing the stability condition ρ(A1) < 1 by equivalent
Lyapunov inequalities

ρ(A1) < 1 ⇐⇒ ∃P≥ δ In1
: P−A1PA1T

≥ δ In1

where δ > 0, we can transform the minimization problem
(36) into the following one

min J
(

A1
)

,‖ LA1

(

Q
†
s −Q

‡
s A1
)

RA1‖2
F

subject to
[

P−δ In1
XT

X P

]

≥ 02n1

(38)

where
Q

†
s , Qs(p+1 : α p, :)

Q
‡
s , Qs(1 : (α−1) p, :)

X , A1P

(39)

If we let RA1 , P and LA1 be equal to the identity ma-
trix, the problem is converted to an optimization problem
that involves minimizing a linear function over symmetric
cones and can be solved using SeDuMi MATLABTM pack-
age (Sturm, 1999) (see (Lacy & Bernstein, 2003) for more
details).

Solving the minimization problem (38) provides an estima-
tion of a stable matrix A1. The matrix C1 can be estimated

using the following formula

C1 =

(

α−1

∑
k=0

Qs (kp+1 : (k +1)p, :)

)

ΛT
A1

(

ΛA1 ΛT
A1

)−1

(40)

where ΛA1 , In1
+∑

α−1
i=1

(

A1
)i

. Note that as A1 verifies that
ρ(A) < 1, ΛA1 is a full rank matrix and the matrix inverse

exists. The matrix Φ1
α can be estimated by considering the

least-squares solution to the overdetermined system of equa-
tions

Q
T
n Yα,NUT

α,N

(

Uα,NUT
α,N

)−1
= Q

T
n Φ1

α (41)

Finally, the matrix B1 can be easily calculated from the
estimation of Φ1

α .

5.2 Identification of higher order subsystems

After using the procedure described in the previous section,
an estimation of (A1,B1,C1) is available. Calculating the

state Z1
t and the output y1

t for t = 1, ..,N of the linear sub-
system can be done by evaluating the following model

Z1
t = A1Z1

t−1 +B1ut

y1
t = C1Z1

t

The next task is to project the residual on the class of 2-
degree subsystem. We define the residual as follows

ỹt = yt − y1
t (42)

The estimation of the best 2-degree subsystem can be done
by solving the following optimization problem

min L2
N =

1

N

N

∑
t=1

‖ ỹt − y2
t ‖

2
2

where

Z2
t = A2Z2

t−1 +B2
(

ut ⊗Z1
t

)

y2
t = C2Z2

t

with the constraint

ρ
(

A2
)

< 1

(43)

As ut ⊗ Z1
t is computed thanks to the previous step, this

minimization problem is similar to (30). So, by using an
analogous logic, we obtain an estimation of the matrices
A2,B2,C2.

Then, this procedure is reiterated until we get an appreciated
precision. Defining this precision criterion is the objective
of the following section.
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5.3 Determining the realization’s degree

Consider that, the subsystems of order inferior to j are avail-
able. In order to verify that the nonlinear system is accu-
rately fitted by the finite degree Volterra series realization,
we evaluate the following criterion

ŷt =
j

∑
i=1

yi
t

(

1−
∑

N
t=1 (yt − ŷt)

T (yt − ŷt)

∑
N
t=1 (yt − ȳ)T (yt − ȳ)

)

×100≥ η (44)

where η is a user-defined constant and ȳ denotes the mean
of the output signals defined as follows

ȳ =
1

N

N

∑
t=1

yt (45)

If the criterion (44) is true, the algorithm stops and the real-
ization’s degree is j. Otherwise we estimate the subsystem
of order j +1.
Note that the measurement noise vt should be considered
when we define η as follows

0 < η <

(

1−
∑

N
t=1 vT

t vt

∑
N
t=1 (yt − ȳ)T (yt − ȳ)

)

×100 (46)

6 Identification algorithm

We can resume the algorithm of identification as follows

(1) Calculate an initial estimation of the realization’s
parameters using the sequential projection de-
scribed in Section 5. Recall that, this procedure
yields the realization degree (l), the dimensions of
the states Zi

t {ni : i = 1,2, · · · , l}, and the matrices
{

Ai,Bi,Ci : i = 1,2, · · · , l
}

. The estimated vector of

parameters θ 0 is used as an initial guess for the opti-
mization process and k← 0.

(2) Calculate the states {Zi
t : i = 1,2, · · · , l} and ŷt by sim-

ulating the system (10) with θ = θ k.
(3) Compute EN(θ) using (12).
(4) Calculate the matrix Mθ using (18).
(5) Calculate the QR decomposition of Mθ (19), from

which we obtain Q2.
(6) Calculate ∆A j,∆B j and ∆C j : j = 1,2, · · · , l using (29).
(7) Calculate the matrix ΩN using (25) and (27), we sup-

pose that {ζ j
0 = 0 : j = 1,2, · · · , l}.

(8) Calculate the update rule of the gradient search algo-
rithm using (24) and k← k +1.

(9) Perform the termination test for minimization, If true,
the algorithm stops. Otherwise, return to step (2), i.e.
compute the values JN

(

θ k−1
)

and JN

(

θ k
)

using (11)

and test if ‖JN

(

θ k
)

− JN

(

θ k−1
)

‖2 is small enough.

7 Illustrative examples

In this section, first we compare the computational com-
plexity of the direct gradient search and gradient search in
the local parameterization of finite degree Volterra realiza-
tion as a function of realization degree. At the same time,
we corroborate that the method is able to identify the real-
ization of finite degree Volterra series. Second, we consider
two examples of nonlinear system, and we compare the ca-
pability of finite degree Volterra realization to approximate
the considered examples with some of state-of-the-art sys-
tem identification methods for nonlinear systems.
In order to validate the obtained models, for a data of N
samples, we have used Tid = N

2
samples for the identification

purpose, and the rest of them Tval = T −Tid = N
2

samples for
the validation purpose. The validation step, can be viewed
as an evaluation of prediction accuracy of the models, and
in order to verify that the models are capable to extract the
real output signal from the measured noised one, we con-
sider the output signal without the measurement noise in the
validation step. The model accuracy is defined as the Per-
cent Variance Accounted For (%VAF)

%VAF ,

(

1−
∑

N
t=1 (yt − ŷt)

T (yt − ŷt)

∑
N
t=1 (yt − ȳ)T (yt − ȳ)

)

×100

where ŷt denotes the estimated output signal and ȳ is the
mean of the output signals.

7.1 Computational complexity

In this section, we figure out that using a local parameteriza-
tion accelerates the convergence of gradient search method.
For that, we consider a finite degree Volterra series real-
ization (4), where the states {Zi

t : i = 1,2, · · · , l} have the
same dimension which is equal to n = 10. The identifica-
tion experiment for each value of the realization’s degree is
repeated 10 times. Each one has a length of 4000 samples.
The average of optimization time is then computed.
The optimization time is the required time to reach a specific
precision (local optimum). Each experiment has three inputs
( ut ∈R

3 ) which have been chosen to be uniform white noise
and three outputs ( yt ∈R

3 ) . The measurement noise vt is a
Gaussian white noise scaled such that the signal to noise ra-
tio SNR = 10 dB. The initial estimation of the realization’s
vector of parameters (θ ) is computed using the sequential
projection method explained in Section 5. The computation
time of sequential projection method is calculated and given
in Fig. 2. The optimization time as a function of realiza-
tion degree (l) for the direct gradient search method and the
gradient search in local parameterization space is given in

8



Fig. 1. The implementation of two approaches is done using
MATLABTM programming environment.
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Fig. 1. Optimization time for the direct gradient search method (cir-
cle mark) and gradient search in local parameterization space (plus
mark).
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Fig. 2. Computation time of the sequential projection method.

It is clear from Fig. 1 that using local parameterization re-
duces the time of computation. This reducing becomes ad-
vantageous when the realization degree increases.

Table 1
Accuracy of the identified models

Identification Initial estimated Optimized

model model

Accuracy (%VAF) 82.3 ± 2.7 89.1± 1.8

Validation

Accuracy (%VAF) 86.9 ± 1.3 98.6 ± 0.7

In order to corroborate that the proposed method is able
to identify the finite Volterra series efficiently, we calculate
the average and the standard deviation of the accuracies of
the obtained models. The accuracies are reported in Table
1 where the initial estimated model is the model obtained
by the sequential projection explained in Section 5 and the
optimized model is that obtained by local gradient search in
local parameterization space. These accuracies demonstrate

that the proposed method has efficiently identified the fi-
nite degree Volterra realization and the sequential projection
method provides a good initial guess for the optimization
process.

7.2 First example of nonlinear system

Consider the following example

x1
t =0.7 x1

t−1 +ut ,x1
0 = 0

x2
t =0.7 x2

t−1 +
(

x1
t

)2
+ x1

t +ut ,x2
0 = 0

yt =
(

x1
t

)2
+ x2

t + vt

(47)

The input signal ut ∈R is chosen to be uniform white noise
with standard deviation is equal to 0.5 and zero mean, its
length is equal to 1000 samples. The measurement noise
vt is a Gaussian white noise scaled such that, the signal to
noise ratio SNR = 10 dB. We compare the performance of
finite Volterra series realization with neural network based
nonlinear system identification, which is a popular approach
(Billings et al., 1992; Sjoberg et al., 1994; Nørgaard et al.,
2000). For comparison, we have chosen two nonlinear model
structures

(1) Neural Network Output Error (NNOE) model with 10
hidden hyperbolic tangent units in the hidden layer.
The output function generated by the neural network
can be calculated as follows

ϕt =
[

ŷt−1(θ) ŷt−2(θ) ŷt−3(θ) ut ut−1 ut−2

]T

ŷt(θ) = g(ϕt ,θ)
(48)

where ϕt is a vector containing the regressors, θ is
a vector containing the weights and g is the function
realized by the neural network.

(2) Neural Network State Space Innovation Form
(NNSSIF) model which determines a nonlinear state
space model of the dynamic system

x̂t(θ) = g(x̂t−1(θ),ut)

ŷt = Cx̂t(θ)
(49)

where x̂t(θ) is the state vector and its dimension is nx,
g is the function realized by the neural network and C
is a constant matrix.
In this example, the best performance was obtained by
nx = 6 and neural network with 10 hidden hyperbolic
tangent units in the hidden layer. The neural network
is trained with the Levenberg-Marquardt method.

The implementation of two models (NNOE and NNSSIF)
is done using Neural Network Based System Identification
toolbox (Nørgaard, 2000).

Note that the dimensions of the states (Zi
t : i = 1,2) of the

quadratic system (Volterra series realization of degree two)
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Table 2
Accuracy of the identified models

Identification Quadratic NNOE NNSSIF

system model model

Accuracy (%VAF) 85.7 76.5 63.9

Validation

Accuracy (%VAF) 98.0 81.9 73.4

are 2 and 3 respectively. Recall that these dimensions are
obtained using the sequential projection method explained
in Section 5. The accuracies reported in Table 2 show the
outperformance of a quadratic system in comparison with
NNOE and NNSSIF models.

To deal with a clear graphical representation, we represent
the results in the validation interval over a window of 150
samples in Fig. 3.

7.3 Second example of nonlinear system

Consider the following example of nonlinear system

x1
t =0.8x1

t−1 +0.8ut(1)+0.6ut(2)+0.8ut(3)

x2
t =0.5

(

x1
t−1

)2
+0.5x2

t−1 +0.9(ut(2))3 +ut(1)ut(2)x1
t−1

x3
t =0.7x2

t−1 +0.7x3
t−1 +0.8ut(2)ut(3)x1

t−1 +0.9(ut(1))3 · · ·

+0.9(ut(2))3

yt =









0.6 0.3 0.6

0.2 0.7 0.6

0.3 0.0 0.5

















x1
t

x2
t

x3
t









+ vt

(50)

where the non observed nonlinear state is xt =
[

x1
t , x2

t , x3
t

]T

,

and ut(i) denotes the ith element of the input signal ut ∈R
3.

The system is simulated with three dimensional uniform
white noise with standard deviation is equal to 1 as input and

with the initial condition
[

x1
0, x2

0, x3
0

]T

=
[

0, 0, 0

]T

. The

length of the input data is equal to 2000 samples. The mea-
surement noise vt is a Gaussian white noise is scaled such
that the SNR = 15dB. We compare the performance of finite
degree Volterra series realization with NNSSIF model which
can handle Multiple Inputs - Multiple Outputs (MIMO) sys-
tems. The best performance was obtained by nx = 10 and
15 hidden hyperbolic tangent units in the hidden layer.

Note that the dimensions of the states (Zi
t : i = 1,2,3) of the

cubic system (Volterra series realization of degree three) are
6, 9 and 13 respectively. The accuracies reported in Table 3
show the outperformance of a cubic system in comparison
with NNSSIF model. To deal with a clear graphical repre-
sentation, we represent the results in the validation interval
over a window of 150 samples in Fig. 4.

Table 3
Accuracy of the identified models

Identification Accuracy (%VAF)

Cubic system NNSSIF model

First output 96.8 79.2

Second output 96.9 82.4

Third output 96.0 86.5

Validation

First output 98.0 82.3

Second output 97.6 83.8

Third output 97.3 88.5

It well be of interest to compare the performance of finite
Volterra series realization with truncated Volterra series
which has the same degree. Therefore, the accuracies and
the number of parameters of truncated Volterra series of
degree three with various horizon lengths T are calculated
and reported in Table 4. Note that the accuracy reported in
Table 4 is the total accuracy of the output signal yt ∈ R

3.

Table 4
Accuracy comparison between cubic system and truncated Volterra
series of degree three

Number of Identification Validation

parameters Accuracy Accuracy

Cubic system 901 96.7 97.9

Truncated Volterra series of

degree three and horizon T

T = 7 10764 99.1 38.4

T = 9 19395 99.2 59.9

T = 10 25047 99.4 61.6

T = 11 31698 99.3 61.4

T = 12 39429 99.0 58.8

T = 15 69912 99.4 48.4

From Table 4, three remarks can be concluded

(1) The number of parameters of cubic system is much
smaller than that of truncated Volterra series of degree
three .

(2) The validation accuracy of cubic system is much higher
than that of truncated Volterra series of degree three.
This result is particularly interesting. The reason why
the prediction of cubic system is more accurate than
truncated Volterra series is that the cubic system con-
sider the integral past of the input signal and its param-
eters are optimized such that the output of the model
accurately approximates the real output of system. On
the contrary, the truncated Volterra series consider a
fixed horizon and calculate the Volterra kernels which
correspond to this horizon.
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(3) On the contrary of theoretical expectations, the vali-
dation accuracy of truncated Volterra series decreases
with increasing the horizon T . This because the num-
ber of parameters increases and as well the size of ma-
trices which become ill-conditioned.

8 Conclusion

In this paper, we have presented a new method to identify
a recursive state-space realization of finite degree Volterra
series with infinite horizon. The method is based on a lo-
cal parameterization of the state-space representation of the
realization and subsequent gradient search in the resulting
local parameter space. Furthermore, we have proposed a se-
quential projection procedure to calculate an initial estima-
tion of the realization’s parameters.

The method has successfully applied to identify various
illustrative examples, and a comparison with some meth-
ods from the state-of-the-art nonlinear system identifica-
tion methods have pointed out the outperformance of finite
Volterra series realization.
Moreover, a comparison with truncated Volterra series of the
same degree has borne out that not only the number of pa-
rameters of finite Volterra series realization is much smaller
than that of truncated Volterra series, but also the prediction
accuracy of finite Volterra series realization is superior to
that of truncated Volterra series.

Our future work will focus on the improvement of the op-
timization algorithm in order to guarantee the convergence
to the global optimum. Moreover, we will work on the de-
velopment of control techniques for this realization in order
to control real world nonlinear systems.

A Appendix

Consider that the total number of parameters of a truncated
Volterra series of degree l and horizon length T is C (l,T ).
Let us define Cn (T ) as the total number of parameters of the
Volterra kernels of degree n ( the number of elements of the
matrices wn(τ1,τ2, . . . ,τn), 0 ≤ τn ≤ τn−1 ≤ ·· · ≤ τ1 ≤ T ).
It is obvious that

C (l,T ) =
l

∑
n=1

Cn (T ) (A.1)

Suppose S is any finite set of elements and denote the number
of these elements ♯S, then

Cn (T ) = ♯{0≤ τn ≤ τn−1 ≤ ·· · ≤ τ1 ≤ T} pmn

=
T

∑
k=0

♯{0≤ τn ≤ τn−1 ≤ ·· · ≤ τ1 ≤ k} pmn

=
T

∑
k=0

(

k +n−1

n−1

)

pmn

(A.2)

where

(

.

.

)

denotes the binomial coefficient defined as fol-

lows
(

N

K

)

=
N!

K!(N−K)!
(A.3)

Using the following properties

(

K

N

)

=

(

N

N−K

)

∑
T
k=0

(

k +q

k

)

=

(

T +q+1

T

) (A.4)

One could rewrite Cn(T ) as follows

Cn(T ) =

(

T +n

T

)

pmn =

(

T +n

n

)

pmn (A.5)

Finally, by using (A.1) and (A.5) we obtain

C (l,T ) = p

{

l

∑
n=1

(

T +n

n

)

mn

}

= p

{

l

∑
n=1

(T +n)!

n!T !
mn

}
(A.6)
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Billings, S. (1980). Identification of nonlinear systems: a
suvey. IEE Proceedings, 127, 272–285.

Billings, S., Jamaluddin, H. & Chen, S. (1992). Properties
of neural networks with applications to modelling non-
linear dynamical systems. Int. J. Control, 55, 193–224.

Brockett, R. (1972). System theory on group manifolds and
coset spaces. SIAM J.Control, 10, 265–284.

Brockett, R. (1976). Volterra series and geometric control
theory. Automatica, 12, 167–176.

DeMoor, B., Vandewalle, J., Vandenberghe, L. & Mieghem,
P.V. (1988). A geometrical strategy for the identication of
state space models of linear multivariable systems a geo-
metrical strategy for the identication of state space models
of linear multivariable system with singular value decom-
position. In Proc. IFAC 88, 700–704, Beijing, China.

Doyle, F.J., Pearson, R.K. & Ogunnaike, B.A. (2001). Iden-
tification and Control Using Volterra Models. Springer.

Gopinath, B. (1969). On the identification of linear time-
invariant systems from input-ouput data. Bell Syst. Tech.
J., 48, 1101–1113.

11



Haber, R. & Unbeheauen, H. (1990). Structure identification
of nonlinear dynamic systems - a survey on input/output
approaches. Automatica, 26, 651–677.

Korenberg, M. & Hunter, I. (1990). The identification of
nonlinear biological systems: Wiener kernel approaches.
Ann Biomed Eng., 18, 629–654.

Lacy, S.L. & Bernstein, D.S. (2003). Subspace identification
with guaranteed stability using constrained optimization.
IEEE Trans. Automatic Control, 48, 1259–1263.

Lakshmikantham, V. (1988). Stability Analysis of Nonlinear
Systems. Marcel Dekker.

Lee, J. (1998). Modeling and identification for nonlinear
predictive control: Requirements, current status and fu-
ture research needs. In International Symposium on Non-
linear Model Predictive Control: Assessment and Future
Directions, 91–107, Ascona, Switzerland.

Ljung, L. (1999). System Identification: Theory for the User.
Prentice Hall Informations and Systems Sciences, 2nd
edn.

Mathews, V. & Sicuranza, G. (2000). Polynomial Signal Pro-
cessing. Wiley.

McKelvey, T. & Helmersson, A. (1997). System identifica-
tion using an over-parametrized model class- improving
the optimization algorithm. In 31th IEEE Conf. Decision
Control, San Diego, California USA.

Monin, A. & Salut, G. (1996). I.I.R. Volterra filtering with
application to bilinear systems. IEEE Trans. Signal Pro-
cessing, 44, 2209–2221.

Moonen, M., Moor, B., Vandenberghe, L. & Vandewalle,
J. (1989). On- and off-line identification of linear state-
space models. Int. J. Control, 49, 219–232.

Nijmeijer, H. & van der Schaft, A. (1996). Nonlinear Dy-
namical Control Systems. Springer.

Nørgaard, M. (2000). Neural Network Based System Identi-
fication Toolbox. Department of Automation, Department
of Mathematical Modeling, Technical University of Den-
mark.

Nørgaard, M., Ravn, O., Poulsen, N.K. & Hansen, L.K.
(2000). Neural networks for Modelling and Control of Dy-
namic Systems. Springer-Verlag, London, UK.

Nowak, R. & Veen, B.V. (1994). Efficient methods for iden-
tification of Volterra filter models. Signal Processing, 38,
417–428.

Overschee, P.V. & Moor, B.D. (1994). N4SID: subspace al-
gorithms for the identification of combined deterministic-
stochastic systems. Automatica, 30, 75–93.

Pearson, R. (1995). Nonlinear input/output modeling. J. Pro-
cess Control, 5, 197–211.

Pearson, R. (2000). Discrete-Time Dynamic Models. Oxford.
Ribarits, T., Deistler, M. & McKelvey, T. (2004). An analysis

of the parametrization by data driven local coordinates for
multivariable linear systems. Automatica, 40, 789–803.

Rugh, W.J. (1981). Nonlinear System Theory: The
Volterra/Wiener Approach. The Johns Hopkins.

Sastry, S. (1999). Nonlinear Systems: Analysis, Stability and
Control. Springer.

Schetzen (1989). The Volterra and Wiener theories of non-
linear systems. New York: Wiley-Interscience.

Schetzen, M. (1981). Nonlinear system modeling based on

the wiener theory. Proc. of IEEE, 69, 1557–1573.
Schuppen, V. & Jan, H. (2004). System theory for system

identification. J. Econometrics, 118, 313–339.
Sjoberg, J., Hjalmarsson, H. & Ljung, L. (1994). Neural net-

works in system identification. In 10th IFAC symposium
on system identification, Copenhagen, Denmark.
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(a) The real output without the measurement noise (solid line) with the outputs of quadratic system (dashed line) and NNOE model (dash-
dotted line), and their errors.
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(b) The real output without the measurement noise (solid line) with the outputs of quadratic system (dashed line) and NNSSIF model (dash-
dotted line), and their errors.

Fig. 3. Comparison of the results of quadratic system, NNOE model, and NNSSIF model.
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Fig. 4. The real outputs without the measurement noise (solid line) with the outputs of cubic system (dashed line) and NNSSIF model
(dash-dotted line), and their errors are superimposed.
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