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EXISTENCE OF SOLUTIONS TO PERIODIC BOUNDARY

VALUE PROBLEMS FOR IMPULSIVE NONCONVEX

FUNCTIONAL DIFFERENTIAL INCLUSIONS

MUSTAPHA LAKRIB

Abstract. In this paper we prove an existence theorem for periodic boundary
value problems for impulsive first order functional differential inclusions with
nonconvex valued right-hand sides. Our approach is based on the nonlinear
alternative of Leray-Schauder combined with a continuous selection theorem
due to Bressan and Colombo.

1. Introduction

This paper is concerned with the existence of solutions of the following peri-
odic boundary value problem for a first order functional differential inclusion with
impulses and nonconvex valued right-hand side

ẋ(t) − λx(t) ∈ F (t, xt), a.e. t ∈ J, t 6= tk, k = 1, . . . ,m,(1.1)

∆x|t=tk
= Ik(x(tk)), k = 1, . . . , m,(1.2)

x0 = φ, x(0) = x(1),(1.3)

where λ ∈ R, λ 6= 0, J = [0, 1], 0 = t0 < t1 < · · · < tm < tm+1 = 1, Ik : R
n → R

n,
k = 1, 2, . . . , m, F : J × D → P(Rn) is a given multivalued function, D = {ψ :
J0 → R

n; ψ is continuous everywhere except for a finite number of points at which
ψ has a discontinuity of the first type and is left continuous}, J0 = [−r, 0], φ ∈ D,
r > 0, P(Rn) is the collection of all subsets of R

n and ∆x|t=tk
= x(t+k ) − x(t−k ),

k = 1, 2, . . . , m.
Our approach is based on the nonlinear alternative of Leray-Schauder [6] com-

bined with a continuous selection theorem due to Bressan and Colombo [5].
In many references (see for example [2, 4, 9, 10, 11] and references therein; see

also monographs [1, 3, 8, 12]) authors prove results on the existence of solutions
for impulsive differential equations and inclusions under restrictive conditions on
the impulses (Lipschitz, boundedness, etc.). In this paper our existence result is
presented under fairly general conditions on the multivalued function F and the
only continuity condition on the Ik, k = 1, . . . , m.

2. Preliminaries

For ψ ∈ D, the norm of ψ is defined by

‖ψ‖D = sup{|ψ(θ)| : θ ∈ J0}.
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Let PC(J, Rn) be the space of functions x : J → R
n such that x is continuous

everywhere except for t = tk, k = 1, . . . , m, at which x has a discontinuity of the
first type and is left continuous. Set Ω = {x : J1 → R

n / x ∈ D ∩ PC(J, Rn)},
where J1 = [−r, 1]. Then Ω is a Banach space with the norm

‖x‖ = sup{|x(t)| : t ∈ J1}, x ∈ Ω.

Obviously, for any x ∈ Ω and any t ∈ J , the history function xt : J0 → R
n defined

by xt(θ) = x(t + θ), for θ ∈ J0, belongs to D.
Also, for any k = 0, . . . , m, we denote by AC((tk, tk+1), R

n) the space of all
absolutely continuous functions x : (tk, tk+1) → R

n.
Let L1(J, Rn) be the Banach space of measurable functions x : J → R

n which
are Lebesgue integrable, normed by

‖x‖L1 =

∫ 1

0

|x(t)|dt.

A nonempty subset A of L1(J, Rn) is decomposable if for all u, v ∈ A and I ⊂ J
measurable, the function uχI + vχJ\I belongs in A, where χI is the characteristic
function of the set I.

Let M be a measurable space, X a Banach space and H : M → P(X) a
multivalued function with nonempty closed values. H is measurable if the set
{t ∈ M : H(t) ∩ A 6= ∅} is measurable for any closed A in X.

Let X1 and X2 be two Banach spaces, E a nonempty closed subset of X1,
and G : E → P(X2) a multivalued function with nonempty closed values. G is
lower semi-continuous (abbreviated as l.s.c.) (respectively upper semi-continuous
(u.s.c.)) if the set {x ∈ E : G(x)∩A 6= ∅} is open (respectively closed) for any open
(respectively closed) set A in X2. If G is l.s.c. and u.s.c., then G is continuous. G

is completely continuous if G(A) is compact for all bounded sets A ⊂ E.

Next we state a selection theorem [5] due to Bressan and Colombo. Let X be
a metric space and G : X → P(L1(J, Rn)) a multivalued function. We say that G
has property (BC) if

(i) G is l.s.c.
(ii) G has nonempty closed and decomposable values.

Theorem 2.1. [5] Let X be a separable metric space and let G : X → P(L1(J, Rn))
be a multivalued function which has property (BC). Then G has a continuous se-
lection, i.e. there exists a continuous function (single valued) g : X → L1(J, Rn)
such that g(x) ∈ G(x) for every x ∈ X.

Let F : J × D → P(Rn) be a multivalued function with nonempty compact
values. Throughout this paper, F will satisfy the following conditions:

(C1) (i) t 7→ F (t, x) is measurable for every x ∈ D,
(ii) x 7→ F (t, x) is continuous for a.e. t ∈ J .

(C2) |F (t, x)| ≤ q(t)ψ(‖x‖D), for almost all t ∈ J and all x ∈ D, for some
q ∈ L1(J, R) with q(t) > 0 for a.e. t ∈ J and some increasing continuous
function ψ : [0,∞) → [0,∞) such that

(2.1) lim sup
ρ→∞

ρ

ψ(ρ)
= ∞.

(C3) Each function Ik : R
n → R

n, k = 1, . . . , m, is continuous.
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We denote S1
F (·,x

·
) = {h ∈ L1(J, Rn) : h(t) ∈ F (t, xt) for a.e. t ∈ J} the set of

selections of F that belong to L1(J, Rn). By a solution of (1.1)-(1.3) we mean a
function x ∈ Ω ∩ AC((tk, tk+1), R

n), k = 0, . . . , m, such that

ẋ(t) − λx(t) = h(t), a.e. t ∈ J, t 6= tk, k = 1, . . . , m,

∆x|t=tk
= Ik(x(tk)), k = 1, . . . , m,

x0 = φ, x(0) = x(1),

where h ∈ S1
F (·,x

·
).

Note that for a multivalued function F : J × D → P(Rn) satisfying conditions
(C1) and (C2) above, the set S1

F (·,x
·
) is nonempty.

Now consider the multivalued operator F : Ω → P(L1(J, Rn)) defined by

F(x) = S1
F (·,x

·
).(2.2)

We say that F is of lower semi-continuous type (l.s.c. type) if F , given above,
has property (BC).

The following crucial result will be used later.

Theorem 2.2. [7] Let F : J×D → P(Rn) be a multivalued function with nonempty
compact values. Assume that (C1) and (C2) hold. Then F is of l.s.c. type.

Finally we state the following well-known fixed point result often referred to as
the nonlinear alternative of Leray-Schauder [6], which will be used to prove the
main result of this paper.

Theorem 2.3. Let X be a Banach space and K ⊂ X be convex. Assume that U
is an open subset of K with 0 ∈ U . Let Γ : U → K be continuous and completely
continuous. Then, either

(i) Γ has a fixed point in U ; or
(ii) there is a x ∈ ∂U (the boundary of U) and a λ ∈ (0, 1) such that x = λΓx.

3. Existence result

In this section we state and prove our existence result for problem (1.1)-(1.3).

Theorem 3.1. Let F : J × D → P(Rn) be a multivalued function with nonempty
compact values. Suppose (C1), (C2) and (C3) are satisfied. Then (1.1)-(1.3) has
a solution.

Before proving Theorem 3.1 we need to prove the following lemma.

Lemma 3.2 (A priori bounds on solutions). If the conditions of Theorem 3.1 hold,
then there exists a constant ρ > 0 such that every solution x of the problem (1.1)-
(1.3) satisfies ‖x‖ ≤ ρ.

Proof. Let x be a possible solution of problem (1.1)-(1.3). It follows from the
definition of solutions that

ẋ(t) − λx(t) = h(t), a.e. t ∈ J, t 6= tk, k = 1, . . . , m,

∆x|t=tk
= Ik(x(tk)), k = 1, . . . , m,

x0 = φ, x(0) = x(1)
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for some h ∈ S1
F (·,x

·
). It is easy to verify that x is given by

x(t) =











φ(t) for t ∈ J0,
∫ 1

0

g(t, s)h(s)ds +

m
∑

k=1

g(t, tk)Ik(x(tk)) for t ∈ J

where

g(t, s) =
1

e−λ − 1

{

e−λ(1+s−t), 0 ≤ s ≤ t ≤ 1

e−λ(s−t), 0 ≤ t < s ≤ 1.
(3.1)

We note that

|g(t, s)| ≤
e|λ|

|e−λ − 1|
, for all t ∈ J and all s ∈ [0, t].

First we consider x|[−r,t1]. It satisfies, for t ∈ [0, t1],

x(t) =

∫ 1

0

g(t, s)h(s)ds.

Condition (C2) yields

(3.2) |x(t)| ≤
e|λ|

|e−λ − 1|

∫ 1

0

q(s)ψ(‖xs‖D)ds.

Let ̺1 = max{|x(t)| : t ∈ [−r, t1]}. We have ‖xt‖D ≤ ̺1 for all t ∈ [0, t1] and there
is t∗ ∈ [−r, t1] such that ̺1 = |x(t∗)|. If t∗ < 0, we have ̺1 ≤ ‖φ‖D. If t∗ ≥ 0, from
(3.2) it follows that

̺1 ≤
e|λ|

|e−λ − 1|
ψ(̺1)‖q‖L1 .(3.3)

Now the condition (2.1) on ψ shows that there exists ρ∗ > 0 such that, for ρ > ρ∗,

ρ >
e|λ|

|e−λ − 1|
ψ(ρ)‖q‖L1 .(3.4)

Comparing these last two inequalities (3.3) and (3.4) we see that ̺1 ≤ ρ∗.
Thus, we have

max{|x(t)| : t ∈ [−r, t1]} = ̺1 ≤ max{ρ∗, ‖φ‖D} := ρ1.

Next we consider x|[−r,t2]. Then, for t ∈ [0, t2], we have

x(t) =

∫ 1

0

g(t, s)h(s)ds + g(t, t1)I1(x(t1)).

Hence

(3.5) |x(t)| ≤
e|λ|

|e−λ − 1|

{
∫ 1

0

q(s)ψ(‖xs‖D)ds + sup{|I1(u)| : |u| ≤ ρ1}

}

.

Denote ̺2 = max{|x(t)| : t ∈ [−r, t2]}. Then, for t ∈ [0, t2], we have ‖xt‖D ≤ ̺2.
Let t∗ ∈ [−r, t2] be such that ̺2 = |x(t∗)|. In case t∗ < 0 we have ̺2 ≤ ‖φ‖D. But,
if t∗ ≥ 0, (3.5) yields

̺2 ≤
e|λ|

|e−λ − 1|

{

ψ(̺2)‖q‖L1 + sup{|I1(u)| : |u| ≤ ρ1}
}
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which implies

|e−λ − 1|

e|λ|‖q‖L1

·
̺2

ψ(̺2)
≤ 1 +

sup{|I1(u)| : |u| ≤ ρ1}

‖q‖L1ψ(̺2)
.(3.6)

Again by condition (2.1) there exists ρ∗1 > 0 such that, for ρ > ρ∗1,

|e−λ − 1|

e|λ|‖q‖L1

·
ρ

ψ(ρ)
> 2.(3.7)

On the other hand, since ψ is increasing, there exists ρ∗2 > 0 such that, for ρ > ρ∗2,

sup{|I1(u)| : |u| ≤ ρ1}

‖q‖L1ψ(ρ)
< 1.(3.8)

Combining (3.7) and (3.8), we deduce that, for ρ > max{ρ∗1, ρ
∗
2} := ρ∗∗,

|e−λ − 1|

e|λ|‖q‖L1

·
ρ

ψ(ρ)
> 1 +

sup{|I1(u)| : |u| ≤ ρ1}

‖q‖L1ψ(̺)
.(3.9)

Comparing inequalities (3.6) and (3.9) we see that ̺2 ≤ ρ∗∗.
Finally, we obtain

max{|x(t)| : t ∈ [−r, t2]} = ̺2 ≤ max{ρ∗∗, ‖φ‖D} := ρ2.

We reiterate this process for x|[−r,t3], . . . , x|J1
, to complete the proof as

‖x‖ ≤ ρ

for some constant ρ := ρm+1 > 0. ¤

We now turn to the proof of Theorem 3.1.
First, by Theorem 2.2 together with Theorem 2.1, the multivalued function F ,

given by (2.2), has a continuous selection f0 : Ω → L1(J, Rn) such that f0(x) ∈ F(x)
for all x ∈ Ω. By analogy with the single valued case, we denote f(·, x·) = f0(x)(·),
for x ∈ Ω.

Consider then the problem

ẋ(t) − λx(t) = f(t, xt), a.e. t ∈ J, t 6= tk, k = 1, . . . , m,(3.10)

∆x|t=tk
= Ik(x(tk)), k = 1, . . . , m,(3.11)

x0 = φ, x(0) = x(1).(3.12)

Clearly any solution of problem (3.10)-(3.12) is a solution of problem (1.1)-(1.3).
To transform the problem above into a fixed point problem, we define the oper-

ator Γ : Ω → Ω by

(Γx)(t) =



















φ(t) for t ∈ J0,

∫ 1

0

g(t, s)f(s, xs)ds +

m
∑

k=1

g(t, tk)Ik(x(tk)) for t ∈ J

where g is given by (3.1). Our purpose is to use Theorem 2.3 to prove that Γ has
a fixed point x ∈ Ω. Then x is a solution of problem (3.10)-(3.12).

We shall show that Γ is continuous and completely continuous. The proof will
be given in several steps.
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Step 1. Γ is continuous.
Let {xn} with xn → x in Ω. For t ∈ J , we obtain

(3.13)

|(Γxn)(t) − (Γx)(t)|

≤
e|λ|

|e−λ − 1|

{
∫ 1

0

|f(s, xns) − f(s, xs)|ds +

m
∑

k=1

|Ik(xn(tk)) − Ik(x(tk))|

}

.

Now, for each s ∈ J , xns → xs, and by the continuity of f(t, x) in x, we have
f(s, xns) → f(s, xs) as n → ∞. Let B = {u ∈ Ω : ‖u‖ ≤ ρ} for some ρ > 0 such
that ‖xn‖, ‖x‖ ≤ ρ, for all n. Since, by (C2),

|f(s, xns) − f(s, xs)| ≤ 2ψ(ρ)q(s), a.e. on J

then by the continuity of Ik, k = 1, . . . ,m, and the Lebesgue’s convergence theo-
rem, from (3.13) we deduce that Γxn → Γx; which completes the proof that Γ is
continuous.

Step 2. Γ maps bounded sets into bounded sets.
To show this, let B be a bounded set in Ω. Then there exists a real number

ρ > 0 such that ‖x‖ ≤ ρ, for all x ∈ B. Let x ∈ B and t ∈ J . We have

|(Γx)(t)| ≤

∫ 1

0

|g(t, s)||f(s, xs)|ds +

m
∑

k=1

|g(t, tk)||Ik(x(tk))|

≤
e|λ|

|e−λ − 1|

{

ψ(ρ)‖q‖L1 +

m
∑

k=1

sup{|Ik(u)| : |u| ≤ ρ}

}

:= η0.

If t ∈ J0, then |(Γx)(t)| ≤ ‖φ‖D. Thus

‖Γx‖ ≤ η = max{‖φ‖D, η0}, for all x ∈ B,

that is, Γ is bounded on bounded subsets of Ω.

Step 3. Γ maps bounded sets into equicontinuous sets.
Let B be, as in Step 2, a bounded set and x ∈ B. Let t̄, t ∈ (tk, tk+1] ∩ J , for

some k = 0, . . . , m. After some standard calculations we get

(3.14)

|(Γx)(t̄) − (Γx)(t)|

≤
e|λ|

|e−λ − 1|

∣

∣

∣

∣

∣

∫ t̄

0

f(s, xs)e
−λ(s−t̄)ds −

∫ t

0

f(s, xs)e
−λ(s−t)ds

∣

∣

∣

∣

∣

+
e|λ|

|e−λ − 1|

∣

∣

∣

∣

∣

∣

∑

0<tk<t̄

Ik(x(tk))e−λ(tk−t̄) −
∑

0<tk<t

Ik(x(tk))e−λ(tk−t)

∣

∣

∣

∣

∣

∣

+
1

|e−λ − 1|

∫ 1

0

|f(s, xs)||e
−λ(s−t̄) − e−λ(s−t)|ds

+
1

|e−λ − 1|

∣

∣

∣

∣

∣

m
∑

k=1

Ik(x(tk))(e−λ(tk−t̄) − e−λ(tk−t))

∣

∣

∣

∣

∣

.
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Now we have

(3.15)

∣

∣

∣

∣

∣

∫ t̄

0

f(s, xs)e
−λ(s−t̄)ds −

∫ t

0

f(s, xs)e
−λ(s−t)ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ t̄

0

f(s, xs)(e
−λ(s−t̄) − e−λ(s−t))ds +

∫ t

t̄

f(s, xs)e
−λ(s−t)ds

∣

∣

∣

∣

∣

≤ e|λ||eλt̄ − eλt|

∫ 1

0

|f(s, xs)|ds + e2|λ|

∫ t

t̄

|f(s, xs)|ds

and
∫ 1

0

|f(s, xs)||e
−λ(s−t̄) − e−λ(s−t)|ds ≤ e|λ||eλt̄ − eλt|

∫ 1

0

|f(s, xs)|ds.(3.16)

Using inequalities (3.15) and (3.16) in (3.14), we get

|(Γx)(t̄) − (Γx)(t)|

≤
(e2|λ| + e|λ|)|eλt̄ − eλt|

|e−λ − 1|

∫ 1

0

|f(s, xs)|ds +
e3|λ|

|e−λ − 1|

∫ t

t̄

|f(s, xs)|ds

+
e|λ|

|e−λ − 1|

∣

∣

∣

∣

∣

∣

∑

0<tk<t̄

Ik(x(tk))e−λ(tk−t̄) −
∑

0<tk<t

Ik(x(tk))e−λ(tk−t)

∣

∣

∣

∣

∣

∣

+
1

|e−λ − 1|

∣

∣

∣

∣

∣

m
∑

k=1

Ik(x(tk))(e−λ(tk−t̄) − e−λ(tk−t))

∣

∣

∣

∣

∣

which implies

|(Γx)(t̄) − (Γx)(t)|

≤
(e2|λ| + e|λ|)|eλt̄ − eλt|

|e−λ − 1|
ψ(ρ)‖q‖L1 +

e3|λ|

|e−λ − 1|
ψ(ρ)

∫ t

t̄

q(s)ds

+
e|λ|

|e−λ − 1|

∣

∣

∣

∣

∣

∣

∑

0<tk<t̄

Ik(x(tk))e−λ(tk−t̄) −
∑

0<tk<t

Ik(x(tk))e−λ(tk−t)

∣

∣

∣

∣

∣

∣

+
1

|e−λ − 1|

∣

∣

∣

∣

∣

m
∑

k=1

Ik(x(tk))(e−λ(tk−t̄) − e−λ(tk−t))

∣

∣

∣

∣

∣

.

Hence |(Γx)(t̄) − (Γx)(t)| tends to zero as |t̄ − t| → 0, that is Γ is equicontinuous
on J .

The equicontinuity on J0 follows from the uniform continuity of φ on this interval.

As a consequence of Steps 2 and 3, together with the Arzelá-Ascoli theorem, we
conclude that Γ is completely continuous.

Finally, let ρ as given in Lemma 3.2 and set X = K = Ω,

U = {x ∈ Ω : ‖x‖ < ρ + 1}

and apply Theorem 2.3 to deduce that Γ has a fixed point x ∈ U which is a solution
of problem (1.1)-(1.3). This completes the proof of Theorem 3.1.
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