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SUMMARY

A high-order �nite volume scheme is developed to numerically integrate a fully nonlinear and weakly
dispersive set of Boussinesq-type equations (the so-called Serre equations) (J. Fluid Mech. 1987;
176:117–134; Surveys Geophys. 2004; 25(3–4):315–337). The choice of this discretization strategy is
motivated by the fact that this particular set of equations is recasted in a convenient quasi-conservative
form. Cell face values are reconstructed using implicit compact schemes (J. Comput. Phys. 1999;
156:137–180; J. Comput. Phys. 2004; 198:535–566) and time integration is performed with the help
of a four-stage Runge–Kutta method. Numerical properties of the proposed scheme are investigated
both, analytically using linear spectral analysis, and numerically for highly nonlinear cases. The numer-
ical analysis indicates that the newly developed scheme has wider stability regions and better spectral
resolution than most of the previously published numerical methods used to handle equivalent set of
equations. Moreover, it was also noticed that the use of mixed-order strategies to discretize convec-
tive and dispersive terms may result in an important overall reduction of the spectral resolution of the
scheme. Additionally, there is some numerical evidence, which seems to indicate that the incorporation
of a high-order dispersion correction term as given by Madsen et al. (Coastal Eng. 1991; 15:371–388)
may introduce instability in the system. 
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1. INTRODUCTION

In recent years, important research e�orts have provided a solid theoretical background for a
new generation of the so-called Boussinesq-type wave equations. This new class of equations,
which takes advantage of pioneering contributions made by Boussinesq [1], Korteweg and
de Vries [2], Serre [3] and Peregrine [4], have proven to adequately describe most of the
water-wave phenomena taking place in the near-shore zone. Recent developments concern
the extension of these shallow water sets of equations to deeper water propagation problems
[5–10], and to describe surf-zone dynamics by adding extra wave-breaking terms [11–14] and
removing the originally embedded weakly nonlinear hypothesis [15–17]. Even though those
important improvements have provided a powerful set of mathematical tools to describe the
hydrodynamics of coastal zones, the question of constructing e�cient, stable and accurate
numerical schemes to solve them have received considerably less attention.
Numerical solutions of Boussinesq-type equations have been mostly tackled with �nite dif-

ference methods [18–24], and to some extent, using �nite element techniques [25–28]. On the
contrary, the application of the �nite volume method to discretize them has been only reported
very recently [29–32]. Even though �nite volume techniques have been successfully applied
to the strictly hyperbolic dispersionless set of nonlinear shallow water equations (NSWE) us-
ing shock-capturing solvers (see Reference [33] for a comprehensive review), parabolic terms
responsible for the dispersive nature of Boussinesq-type equations make the extrapolation of
such approaches to coastal applications rather di�cult. However, shock-capturing methods
may provide an e�cient and elegant way to numerically integrate Boussinesq equations but
novel strategies are to be developed in order to adequately handle the mixed hyperbolic–
parabolic mathematical nature of the system. Several authors are working in that direction,
developing in particular hybrid or operator splitting techniques where convective hyperbolic-
type terms are treated using shock-capturing approaches while high-order dispersive terms
are handled with help of standard �nite di�erence approximations (e.g. References [31, 34]).
Such strategies have only been reported in applications concerning weakly nonlinear forms of
Boussinesq-type equations. On the other hand, achieving high-order accuracy in the latter is
quite demanding from a computational point of view and there is still no clear knowledge of
what type of ux reconstruction strategy would be the most appropriate in the framework of
dispersive wave propagation problems (see, for instance, Reference [31]).
In the present work, a �nite volume technique is applied to the fully nonlinear and weakly

dispersive set of Serre equations �rst derived by Seabra-Santos et al. [15]. The inclusion of a
dispersion correction term following the lines given by Madsen and Sch�a�er [35] allows for
an extension of the range of application of this set into moderately deep waters. The choice of
integrating equations with a �nite volume technique appeared naturally because it is possible
to recast continuity and momentum equations in an attractive weak conservative form using
an auxiliary variable as given in Reference [36]. Here, weak conservative is used in order to
make a distinction between a formulation written in terms of primitive variables, i.e. the water
depth and the depth-averaged velocity, and a strongly conservative formulation, which would
require to express the momentum conservation equation in terms of the momentum ux. We
recall that recent applications of �nite volume methods to Boussinesq-type equations mostly
concern weakly dispersive and weakly nonlinear versions of these sets (e.g. a KdV-like system
in References [29, 34] and a low-order Boussinesq model in References [31, 32]). Similarly,
most of discretization strategies implemented in previous �nite volume approaches appears
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to be 2nd-order accurate in space. On the contrary, our aim here is to develop an e�cient
high-order �nite volume scheme applicable even for strongly nonlinear situations. However,
no attempt is made to take advantage of shock-capturing methods mainly because: (i) this
convenient conservative set of equations is not really in a strong conservative mathematical
form, (ii) high-order accuracy in space and time was intended at low computational cost, and
(iii) shocks do not naturally emerge in Boussinesq-type equations because there is a balance
between nonlinear and dispersive terms [37]. Nevertheless, our numerical approach borrows
some recently developed ideas from modern computational uid dynamics (CFD) which make
high-order accuracy and high spectral resolution possible at an a�ordable computational cost.
Such techniques are based on a compact reconstruction of cell face values at a high-order
by solving implicit algebraical equations [38, 39]. Indeed, 4th-order accuracy is achieved by
solving an implicit tridiagonal system. Similarly, spatial derivatives are estimated with a 4th-
order truncation error using compact di�erencing [40]. Finally, numerical solution is advanced
in time with help of the four-stage Runge–Kutta method.
This paper is organized as follows: in Section 2 governing equations are derived by ver-

tically integrating Euler equations, while Section 3 deals with the numerical implementation
of the newly developed compact �nite volume scheme. A comprehensive linear numerical
analysis of the method is given in Section 4 and additional information on the performance
of the �nite volume scheme is obtained with help of numerical experiments in Section 5.
In particular, the inuence that strong nonlinearities may have on stability and accuracy is
investigated.

2. GOVERNING EQUATIONS

Serre equations describe the 2D, irrotational and shallow water ow of an incompressible and
inviscid uid over uneven bottom bathymetries. This set of equations rules the total water
depth and the depth-averaged horizontal velocity. In the following we expand on the derivation
of Serre equations for horizontal bathymetries as given by Barth�elemy in Reference [41].
Generally speaking, Boussinesq-like equations are valid only for long waves. Long wave

dynamics are characterized by a small parameter �= h0=L ≪ 1 where h0 and L are, respec-
tively, a vertical length scale (say a typical water depth) and a horizontal length scale of the
ow. The continuity equation implies the following order of magnitude relationship:

w

u
∼� (1)

where u and w are, respectively, the horizontal and vertical uid velocities (∼ stands for
order of magnitude). The bottom boundary condition suggests that bottom slopes �x should
be of order �, since w=u= �x at the bottom. Obviously, bottom horizontal scales are not
disconnected from the scales of the waves. In other words, the ow length scales adapt to
the bottom ones. Hence, bottom slopes for long wave propagation should be mild, which
is what is assumed here. Even though this assumption is implicitly adopted in most of the
available long wave propagation models, thus introducing practical limitations in the latter,
Serre equations have been successfully used to describe solitary wave propagation over a
submerged step in Reference [15]. This settled, the scaling detailed in Reference [41] leads
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to the following dimensionless forms of continuity, irrotationality, momentum equations and
boundary conditions:

@u∗

@x∗
+
@w∗

@z∗
= 0 (2)

@u∗

@z∗
− �2 @w

∗

@x∗
= 0 (3)

�
@u∗

@t∗
+ �2

@

@x∗
(u∗2) + �2

@

@z∗
(u∗w∗) = −@p

∗

@x∗
(4)

��2
@w∗

@t∗
+ �2�2u∗

@w∗

@x∗
+ �2�2w∗

@w∗

@z∗
= −@p

∗

@z∗
− 1 (5)

w∗= u∗
@�∗

@x∗
at the bottom z∗ = �∗ (6)

w∗=
@�∗

@t∗
+ �u∗

@�∗

@x∗
at the free surface z∗= ��∗ (7)

p∗=0 at the free surface z∗ = ��∗ (8)

where ∗ indicates dimensionless variables. Here, p∗ represents the pressure, �∗ is the free
surface elevation and �= a=h0 is the nonlinear parameter with a being the local wave amplitude
relative to the chosen reference level (see Figure 1). For simplicity, we introduce the following
function:

�∗(x∗; z∗; t∗)=
@w∗

@t∗
+ �

(

u∗
@w∗

@x∗
+ w∗

@w∗

@z∗

)

(9)

which is related to the vertical acceleration of uid particles.
Recall, we seek a set of equations for the depth-averaged horizontal velocity u∗ and the

water depth h∗= ��∗ −�∗. Depth averaging a function f∗ results from applying the following

a

Bottom profile

Reference level

Free surface

Figure 1. De�nition sketch for wave propagation over uneven bathymetries. z= � is the
free surface elevation, z= � is the bottom location, and h= � − � is the local water

depth (here � has a negative value).
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operator:

f∗=
1

h∗

∫ ��∗

�∗

f∗ dz∗ (10)

Depth-averaging continuity equation yields

@�∗

@t∗
+

@

@x∗
[h∗u∗]= 0 (11)

Depth averaging the x-momentum equation (4) and following the derivation along similar
lines as in Reference [41] gives

h∗
@u∗

@t∗
+ �h∗ u∗

@u∗

@x∗
+ h∗

@�∗

@x∗
+ �2

@

@x∗

∫ ��∗

�∗

z∗ �∗ dz∗ + �2
@�∗

@x∗

∫ ��∗

�∗

�∗ dz∗

=− � @
@x∗

∫ ��∗

�∗

(u∗2 − (u∗)2) dz∗ (12)

So far no approximation has been invoked, but the integrals in (12) cannot be reduced to
partial di�erential expressions without approximating the integrands. We aim at obtaining a
set of equations comprising terms at most of O(�2). To be consistent, the two integrals on
the left-hand side should be expanded to order 0. Further inspection is required for the one
on the right-hand side, which also reads

∫ ��∗

�∗

(u∗2 − (u∗)2) dz∗= h∗(u∗2 − (u∗)2) (13)

This term has given rise in the past to discussions as to whether it is of O(�4) or not for
uneven bathymetries. Dingemans [42, volume II, p. 613] argues it is not. It has been then
taken advantage of this argument to mistrust Serre equations for long wave propagation over
uneven topographies. Nevertheless, it can be readily shown that (13) is of order �4. Using
series expansions for u∗ and w∗ given in Appendix A we have,

u∗(x∗; z∗; t∗) = u∗

0(x
∗; t∗) + �2(z∗ − �∗)u∗

2(x
∗; t∗) +O(�4) (14)

w∗(x∗; z∗; t∗) =

[

@�∗

@x∗
u∗

0(x
∗; t∗)− (z∗ − �∗)

@u∗
0

@x∗

]

+ �2(z∗ − �∗)w∗

2 (x
∗; t∗) +O(�4) (15)

showing in addition that u∗ and w∗ also have even series expansions in � for uneven bathyme-
tries. Using (14), clearly u∗2 − (u∗)2=O(�4) without having to express u∗

0 and u
∗
2 in terms

of u∗ as done by Dingemans [42].
Left-hand side integrals in (12) are evaluated with the above series expansions expressed

in terms of u∗,

u∗(x∗; z∗; t∗) = u∗(x∗; t∗) +O(�2) (16)

w∗(x∗; z∗; t∗) =
@�∗

@x∗
u∗ − (z∗ − �∗)

@u∗

@x∗
+O(�2) (17)
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Retaining all terms up to O(�2) leads to the following set of equations expressed in terms of
dimensional variables and unknowns:

�t + (h �u)x=0 (18)

h �ut + h �u �ux + gh�x + [h
2( 1
3
P+ 1

2
Q)]x + �xh(

1
2
P+ Q)=0 (19)

P=−h[ �uxt + �u �uxx − ( �ux)2] (20)

Q= �x( �ut + �u �ux) + �xx �u
2 (21)

where P+ Q and Q represent, respectively, the vertical uid acceleration at the free surface
and at the bottom (see Appendix A). This fully nonlinear set of equations contains all � order
of magnitude terms because no hypothesis have been introduced concerning nonlinearities (i.e.
�∼O(1)). Some of these � terms are related to the convective vertical acceleration neglected
in low-order Boussinesq equations (e.g. Reference [4]). One of the interesting properties of
Serre equations for horizontal bottom lies in the fact that they have a closed-form solitary
wave solution, which happens to be the Rayleigh solitary wave [43], expressed as

h(x; t)= h0 + a sech
2[K(x − Ct)] (22)

�u = C

(

1− h0
h

)

(23)

K =

√

3a

4h20(h0 + a)
; C=C0

√

1 +
a

h0
and C0=

√

gh0 (24)

where h0 is the water depth at rest, a the amplitude, C the phase speed and K the outskirt
decay parameter. This solution will be used later to numerically test the proposed �nite volume
scheme.
Additionally, the range of validity of this set of equations can be easily extended to wave

propagation problems in deeper waters using the dispersion correction technique discussed in
References [7, 35]. A Pad�e (2, 2) expansion for Stokes linear dispersion is achieved by adding
the following term on the left-hand side of Equation (19):

B(x; t)= − �h�2[ �uxxt + ( �u �ux)xx + g(h+ �)xxx] (25)

where � is an adjustable parameter (∼1=15) that must be tuned in order to match (at best)
the linear Stokes dispersion relation.
Finally, it is possible to show that continuity and momentum equations, including the dis-

persion correction term and assuming that bottom variations are only function of the spatial
coordinate x can be written in a weak quasi-conservative form by introducing a dependent
variable q which aggregates all time derivatives of Equations (19) and (25). This convenient
mathematical form �rst given by Seabra-Santos [36] reads

ht + Fx = 0 (26)
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qt +Gx = S (27)

q = (1 + r) �u− 1

3h
(h3 �ux)x − ��2 �uxx (28)

with ux functions

F = h �u (29)

G = q �u+ g(h+ �)− 1
2
�u2(1 + �2x) + (�x �u− 1

2
h �ux)h �ux − ��2[ �u2x + �u �uxx + g(h+ �)xx] (30)

and the non-conservative right-hand side term S (analogous to a source term) in (27) has the
following expression:

S= − 2���x[ �u �ux + g(h+ �)x]x (31)

The latter contains a small correction for the dispersive properties of the system. Moreover,
r=(hx+ �x)�x+

1
2
h�xx, and thus traduces some bathymetric e�ects. In what follows, overbars

will be dropped for convenience.

3. NUMERICAL METHOD

Because dispersive terms embedded in Boussinesq-type equations may have a similar mathe-
matical form than lower-order terms associated to truncation errors of discretized equations,
high-order schemes, both in time and space, are needed. Furthermore, nonlinear processes
and frequency dispersion are responsible for the broadening=narrowing of initial wavelength
scales in time and numerical methods used to solve Boussinesq equations must be able to
adequately reproduce interactions between di�erent wave modes, without damping physical
ones nor introducing spurious short-wave noise. In this context we will develop a 4th-order
compact �nite volume scheme for spatial integration of equations derived in the previous
section over a uniform 1D staggered grid while time integration will be performed using a
standard 4th-order Runge–Kutta method.

3.1. Finite volume method for spatial discretization

The computational domain is schematically described in Figure 2 where 
i and 
j are con-
trol volumes centred around i-nodes (i=0; 1; : : : ; I − 1) and around j-nodes (j=0; 1; : : : ; I),

Left Boundary Right Boundary

Figure 2. One-dimensional computational domain meshed with staggered control volumes 
i and 
j.
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respectively, i.e.


i = {x∈ [xj ; xj+1]} (32)


j = {x∈ [xi−1; xi]} (33)

where I is the number of 
i control volumes used to discretize the physical domain. Nodal
coordinates are de�ned as xi=�x=2+i�x and xj= j�x, where �x is the constant spatial grid
resolution (length of control volumes). The governing equations will be integrated over this
staggered domain in order to optimize the cell-face interpolation process but also to improve
accuracy and minimize short-wave noise generation [22, 44].
Equations (26) and (27) can be easily integrated over control volumes 
i as follows:

@

@t

∫ xj+1

xj

h dx + F(xj+1; t)− F(xj ; t) = 0 (34)

@

@t

∫ xj+1

xj

q dx +G(xj+1; t)−G(xj ; t) =
∫ xj+1

xj

S dx (35)

where ux functions are evaluated at cell faces of each control volume (j-nodes).
Unlike previous equations, the auxiliary relation (28) which links variable q, to the physical

variables h and u will be integrated over staggered control volumes 
j:
∫ xi

xi−1

[

(1 + r)u− 1

3h
(h3ux)x − ��2uxx

]

dx=

∫ xi

xi−1

q dx (36)

Numerical approximations will be introduced in the following to evaluate ux functions at
cell faces and volume integrals.
In continuity and momentum equations (34) and (35), volume integrals of h and q can be

stored as cell-averaged values and no further approximations need to be done. For example,
the cell-averaged value of a generic function � over control volume 
i is written as

�̂i=
1

�x

∫ xj+1

xj

�dx (37)

Discretized counterparts of Equations (34) and (35) are then obtained by performing the �nite
volume integration over the whole domain:

dĥni
dt

= − 1

�x
(Fnj+1 − Fnj ) for i=0; 1; : : : ; I − 1 and j= i (38)

d q̂ni
dt

= Ŝni − 1

�x
(Gnj+1 −Gnj ) for i=0; 1; : : : ; I − 1 and j= i (39)

where we have introduced for simplicity the notation �nj =�(xj ; tn), with the discrete time
coordinate tn= n�t (n=0; 1; : : : ; N ) and �t is the time step. The non-conservative term will
be approximated using a centred-in-space approach where

Ŝ i=
1

�x

∫ xj+1

xj

S dx≃ − 2�

�x
�i(�x)i(S̃

n
j+1 − S̃nj ) (40)
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and S̃= uux + g(h + �)x. This discretized expression will introduce only slight errors in the
overall numerical approximation since this term represents a small correction of O(�4) for
dispersive properties.
On the other hand, evaluation of ux functions at cell faces requires a reconstruction of

hj and qj values from cell-averaged variables because time integration of Equations (38) and
(39) will produce ĥi and q̂i. Here, cell face values will be estimated at each time step using
the implicit 4th-order interpolation technique developed in References [38, 39]. This approach
results in the following system of I − 1 equations for internal nodal points:

1
4
�j−1 +�j +

1
4
�j+1=

3
4
(�̂i−1 + �̂i) for j=1; 2; : : : ; I − 1 and i= j (41)

At boundary nodes, j=0 and j= I , boundary conditions must provide the correct values for
h and q.
When using Equation (41), 4th-order accuracy is achieved in the evaluation of cell face

values by solving a tridiagonal system. On the contrary, using a pointwise 4th-order method
where volume integrals are estimated using Simpson’s rule and cell face values are inter-
polated with piecewise cubic polynomials, it is necessary to solve a pentadiagonal system
(see, for instance, Reference [30]). Thus, computational cost is signi�cantly reduced when
implementing the present compact scheme.
Evaluation of ux functions requires, in addition, the prescription of depth-averaged velocity

values at cell faces. The latter are obtained at the end of each time step, once hj and qj have
been computed at internal nodes, by solving the auxiliary relation (36). Di�erent integrals
appearing in this equation are approximated as follows:

1

�x

∫ xi

xi−1

(1 + r)u dx≃ (1 + rj)ûj

− 1

�x

∫ xi

xi−1

1

3h
(h3ux)x dx≃ − 1

3�x hj
[h3i (ux)i − h3i−1(ux)i−1]

− 1

�x

∫ xi

xi−1

��2uxx dx≃ − �

�x
�2j [(ux)i − (ux)i−1]

1

�x

∫ xi

xi−1

q dx= q̂j

At this point, some care must be taken for the reconstruction of depth-averaged velocity
values at j-nodes using Equation (36). Since we want to obtain uj directly and still preserve
a tridiagonal structure in the discrete system, it is necessary to link cell-averaged values ûj
and di�usive uxes to pointwise values at j-nodes carefully. The latter can be achieved using
the following strategy.
On the one hand, combining Simpson’s rule to evaluate volume integrals over 
i and 
j,

�̂i =
2
3
�i +

1
6
(�j +�j+1) +O(�x

4) (42)

�̂j =
2
3
�j +

1
6
(�i−1 +�i) +O(�x

4) (43)
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and Equation (41), provides the following relation:

�̂j=
1
24
(�j−1 + 22�j +�j+1) +O(�x

4) (44)

which still has a tridiagonal matrix form. On the other hand, the velocity gradient (ux)i must
be written in terms of pointwise u-values at j-nodes. Therefore, it is preferable to use an
explicit formula to approximate its spatial derivative. However, an explicit 4th-order formula
will break down the tridiagonal nature of the system because 5-point stencils will be necessary
to compute di�usive uxes. One way to preserve a tridiagonal structure is to use a deferred-
correction approach, which is expressed as [45]

(ux)i=
(uj+1 − uj)

�x
+

{

(uj−1 − 27uj + 27uj+1 − uj+2)
24�x

− (uj+1 − uj)
�x

}old

(45)

where superscript ‘old’ is used for depth-averaged velocities evaluated at the previous level
of the iterative process. Thus, the discretized equation associated to (36) must be solved
iteratively because a 2nd-order approximation is used for the implicit part, and a 4th-order
formula appears in the explicit contribution in brackets. When some convergence criteria will
be satis�ed between ‘old’ and ‘new’ uj-values, the overall approximation for ux will be 4th-
order accurate. In practice only few iterations will be needed to obtain su�cient accuracy.
The convergence criteria for �xed-point iterations is based on a L1 norm and reads

‖uj − {uj}old‖1
‖uj‖1

6� (46)

where uj=[uj= 2 uj= 3 · · · uj= I−2 uj= I−1]t is the vector containing cell face values of the
most recently computed depth-averaged velocity and � is the tolerance for the relative error
between successive iterations. Hence, internal nodal values of uj are obtained by solving the
following implicit tridiagonal system:

{

(1 + rj)

24
− 1

�x2

(

h3i−1
3hj

+ ��2j

)}

uj−1 +

{

22(1 + rj)

24
+

1

�x2

[

(h3i−1 + h
3
i )

3hj
+ 2��2j

]}

uj

+

{

(1 + rj)

24
− 1

�x2

(

h3i
3hj

+ ��2j

)}

uj+1

=
1

24
(qj−1 + 22qj + qj+1) +

1

�x2

{

h3i
3hj

+ ��2j

}

U old
i

− 1

�x2

{

h3i−1
3hj

+ ��2j

}

U old
i−1 for j=1; 2; : : : ; I − 1 and i= j (47)

where

U old
i = 1

24
{uj−1 − 3uj + 3uj+1 − uj+2}old (48)

Near boundaries, evaluation of the last relation will require to compute depth-averaged
velocity values outside the physical domain. In the case of non-periodic boundaries, ghost
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nodes values will be extrapolated from interior nodes using suitable piecewise polynomial
functions. Similarly, boundary conditions must be treated with caution because there is a
coupling between the cell face reconstruction of qj values (Equation (41)) and the right-hand
side of Equation (47). However, in the present work only periodic boundary conditions will
be considered. The special treatment of boundary and ghost nodes in the framework of wave
propagation over a beach will be addressed in a companion paper.
Finally, derivatives of water depth, h, and depth-averaged velocity, u, must be computed

at j-nodes in order to complete the evaluation of the ux function Gj, the source term Ŝ i
and the dependent variable rj at each time step. Similarly, water depth values at i-nodes
must be interpolated to compute matrix coe�cients in Equation (47) while bottom function �
and its derivatives must be prescribed at i and j nodes. The latter is not di�cult because
bottom bathymetry constitutes a known input data, which is not time dependent. On the other
hand, i-values of water depth will require an interpolation which can be performed easily

from computed values of ĥi and hj using relation (42). It is relevant to note that the strategy
of overlapping the control volumes, where Equation (36) is integrated, has allowed us to
minimize the number of interpolated nodal values.
Estimates of derivatives are performed using a 4th-order �nite di�erence compact scheme as

described in Reference [40]. These compact formulae have better spectral properties for short-
length waves than their explicit 4th-order �nite di�erence counterparts and matching conditions
at boundary nodes are less tedious. It is important to note that the highest derivative that one
needs to estimate here will be of 2nd-order. In fact, the �nite volume method applied to
the quasi-conservative set of equations derived here has allowed us to lower the highest x-
derivative order by one when compared to other equivalent set of equations (e.g. References
[17, 27]). Derivative estimates at internal j-nodes are obtained from cell face values using the
following implicit formulae [40]:

1

4
(�x)j−1+(�x)j+

1

4
(�x)j+1=

3

4�x
(�j+1 −�j−1) for j=1; 2; : : : ; I−1 and i= j (49)

1

10
(�xx)j−1+(�xx)j+

1

10
(�xx)j+1

=
6

5�x2
(�j+1 − 2�j +�j−1) for j=1; 2; : : : ; I − 1 and i= j (50)

Again, special care must be taken at boundary nodes as discussed in References [40, 46]. It
is worth to point out that these compact forms can be veri�ed manipulating relation (44).
Spatial discretization of Equations (34)–(36) using the present �nite volume technique

allows us to write the original system of partial di�erential equations (PDE) as the following
set of ordinary di�erential equations (ODE),

d x̂ni
dt

= fni (51)

A(hnj ) · unj =B · qnj +C(hnj ) · {unj }old (52)
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where

x̂ni =

⎡

⎣

ĥni

q̂ni

⎤

⎦ and fni =

⎡

⎣

0

Ŝni

⎤

⎦ −
[

�Fni

�Gni

]

Here, bold letters represent vectors containing cell-averaged values of associated variables

over the whole discrete domain. For instance, a generic vector �̂n
i contains cell-averaged

values over control volumes 
i of function � evaluated at time t= tn. Similarly, the notation
��n

i =(1=�x)(�
n
j+1 −�n

j ) indicates a cell face ux di�erence vector, and A, B and C are
matrices obtained from the discretized equation (47). In the next subsection, we will use
an explicit 4th-order Runge–Kutta method to numerically integrate the system of ODE just
derived.

3.2. Numerical time stepping

The implementation of a high-order numerical ODE solver for time integration is justi�ed
since spatial derivatives are discretized using a high-order scheme as well. The �nite volume
discretization technique is theoretically 4th-order accurate in space so we wish to reach a
similar discretization error when integrating the system (51)–(52) in time. The 4th-order
Runge–Kutta method is an attractive alternative for the solution of wave-type equations and
can be quite e�cient when compared to other high-order schemes [44]. In the present context,
the standard four-stage Runge–Kutta method can be stated as follows:
First estimation at t= tn+1=2

p(1) = �t fni ; x̂
n+(1=2)
i = x̂ni +

1
2
p(1) (53a)

u
n+(1=2)
j =A(h

n+(1=2)
j )−1 · [B · qn+(1=2)j +C(h

n+(1=2)
j ) · {un+(1=2)j }old] (53b)

Second estimation at t= tn+1=2

p(2) = �t f
n+(1=2)
i ; x̂

n+(1=2)
i = x̂ni +

1
2
p(2) (53c)

u
n+(1=2)
j =A(h

n+(1=2)
j )−1 · [B · qn+(1=2)j +C(h

n+(1=2)
j ) · {un+(1=2)j }old] (53d)

First estimation at t= tn+1

p(3) = �tf
n+(1=2)
i ; x̂n+1i = x̂ni +

1
2
p(3) (53e)

un+1j =A(hn+1j )−1 · [B · qn+1j +C(hn+1j ) · {un+1j }old] (53f)

Second and �nal estimation at t= tn+1

p(4) = �t fn+1i ; x̂n+1i = x̂ni +
1
6
(p(1) + 2p(2) + 2p(3) + p(4)) (53g)

un+1j =A(hn+1j )−1 · [B · qn+1j +C(hn+1j ) · {un+1j }old] (53h)

At each step, j-values of water depth, h, and auxiliary variable q must be reconstructed from
cell-averaged quantities using the implicit relation (41) before solving the equation for depth-
averaged velocity, u. As explained in the previous subsection, the latter is solved iteratively
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and at each stage the last computed value of uj is used as �rst guess. A relative tolerance for
iteration errors, �, of 10−4 has shown to give good accuracy by requiring only 1–3 iterations.
On the other hand, the numerical scheme requires at each step the inversion of tridiagonal
matrices which can be performed at low computational cost using the Thomas algorithm (see,
for instance, Reference [47]). The number of operations needed to solve each matrix equation
will then be linearly proportional to the number of unknowns in the system.

4. SPECTRAL ANALYSIS AND LINEAR STABILITY

Important information about the general performance of our �nite volume resolution can be
obtained by analysing its linearized version. In this section we will study in particular the
stability, accuracy in spectral space and dispersion relation preserving properties (DRP) of the
scheme using spectral analysis [46]. Our main goal here is to �nd necessary conditions that
will ensure that the numerical scheme will behave properly when describing wave propagation
phenomena. For simplicity, we will restrict ourselves to the analysis of linear wave propagation
over at bottoms.
When using relation (41) in Equations (38)–(39) and assuming that �xed-point iterations

have converged (i.e. {unj}old= unj ) in (47), the linearized version of the discretized system of
equations can be recasted as

1

4

dhnj−1

dt
+
d hnj

dt
+
1

4

d hnj+1

dt
= − 3

4�x
(Fnj+1 − Fnj−1) (54)

1

4

d qnj−1

dt
+
d qnj

dt
+
1

4

d qnj+1

dt
= − 3

4�x
(Gnj+1 −Gnj−1) (55)

�

�2
unj−2 +

(

1− 28�

�2

)

unj−1 +

(

22 +
54�

�2

)

unj

+

(

1− 28�

�2

)

unj+1 +
�

�2
unj+2= q

n
j−1 + 22q

n
j + q

n
j+1 (56)

where

Fnj = h0u
n
j ; Gnj = gh

n
j − �h20 g(hxx)nj ; �=(1=3 + �); �=�x=h0

and h0= |�| is the still water depth of the horizontal bottom ume. This set of equations
will be used in what follows in order to analyse the numerical properties of the scheme. It
is interesting to note the close resemblance between Equations (54)–(55) and the implicit
formula for the �rst spatial derivative estimate (49).

4.1. Semi-discrete system of equations and numerical dispersion

Spectral accuracy of the spatial discretization is studied �rst by decomposing the numerical
solution into �nite Fourier series. It is important to point out that spectral accuracy is related
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to the ability of the scheme to resolve the di�erent length scales present in the problem [46].
Therefore, it is paramount to assess how well the numerical scheme is able to describe the
physical range of wavelengths. In order to perform this analysis we replace the following
individual Fourier components into the discretized system of equations:

⎡

⎢

⎢

⎣

hnj

qnj

unj

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

h�

q�

u�

⎤

⎥

⎥

⎦

e �̂(� j�x−!r t) (57)

where �̂=
√

(−1) is the imaginary constant, h�, q� and u� are Fourier amplitudes, � is the
wave number of the individual component and !r is the associated numerical frequency.
Numerical dispersion can be studied by substituting (57) in Equations (54), (55) and (56)
and solving the resulting system of equations for !r. Before doing so, we need to �nd the
spectral expression for the second spatial derivative that appears in the ux function Gnj . The
numerical estimation of this derivative has the form (hxx)j= − �̃2 h� e�̂(�j�x−!r t), where by
substitution in the implicit di�erence formula (50) the associated numerical wave number is
written as

(�̃�x)2=12
(1− cos ��x)
(5 + cos ��x)

(58)

Similarly, substituting the Fourier components (57) into Equation (56) gives the following
relation between q� and u�:

q�=	u� (59)

where

	=1+
(1=3 + �)

�2
(27 + cos 2��x − 28 cos ��x)

(11 + cos ��x)
(60)

Finally, if we use the Fourier components (57) and relation (59) in continuity and momentum
equations (55)–(56), the compact �nite volume scheme takes the following form in the Fourier
space:

(K+ I �̂!r) ·
[

h�

u�

]

=0 (61)

where

K=
3

�

(

0 K1

K2 0

)

is the spatial discretization operator whose components read,

K1 = − �̂ sin ��x

(2 + cos��x)
(62)
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K2 =
K1
	
[�2 + �(�̃�x)2]

(

C0
�x

)2

(63)

I is the identity matrix and C0=
√

gh0. Non-trivial solution of Equation (61) provides the
discrete dispersion relation associated to our compact �nite volume method which can be
written in an non-dimensional form as

C2fv
C20

=
1

C20

(!r
�

)2

= −
(

3

��x

)2

K21
[�2 + �(�̃�x)2]

�2	

=

(

3 sin ��x

��x(2 + cos ��x)

)2

× (11 + cos ��x)[�2 + �(�̃�x)2]

[�2(11 + cos ��x) + (1=3 + �)(27 + cos 2��x − 28 cos ��x)] (64)

with Cfv being the numerical phase speed associated to the �nite volume scheme. Therefore,
the non-dimensional discrete dispersion relation depends on the wave number, ��x, and on
the parameter �=�x=h0. Although this general expression cannot be reduced to a simple
form, some relevant information may be obtained by exploring its asymptotic behaviour as
�→ 0 (which can be viewed as the deep water limit) and as �→ ∞ (which corresponds to
the shallow water limit).
In order to do some comparisons between the discretized system of equations and the

original set of PDE we recall that the non-dimensional physical dispersion relation that belongs
to the linearized Boussinesq model can be written as [41]

Cth
C0
=

[

1 + �(�h0)
2

1 + (1=3 + �)(�h0)2

]1=2

=

⎡

⎢

⎢

⎢

⎣

1 + �

(

��x

�

)2

1 + (1=3 + �)

(

��x

�

)2

⎤

⎥

⎥

⎥

⎦

1=2

(65)

where Cth stands for the phase speed associated to the theoretical dispersion relation produced
by the extended system of Serre equations.
In the shallow water limit it can be shown that the ratio between the physical and the

discrete dispersion relation is

lim
�→∞

Cfv
Cth

=
3 sin ��x

��x(2 + cos ��x)
=1− 1

180
(��x)4 +O[(��x)6] (66)

proving that the numerical scheme mimics the exact relation with 4th-order accuracy in ��x.
Similarly, in the deep water limit we have

lim
�→0

Cfv
Cth

=
3 sin ��x

��x (2 + cos ��x)

[

6(11 + cos��x)

(13− cos ��x)(5 + cos ��x)

]1=2

= 1− 11

2880
(��x)4 +O[(��x)6] (67)
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Figure 3. Leading-order truncation error term vs �=�h0 for, (—) �=0, (· · ·) �=1=30,
(- -) �=1=20 and (- · -) �=1=10: (a) full 4th-order compact �nite volume scheme; and

(b) mixed 4th- and 2nd-order discretization strategy.

which shows that the phase speed error is also of 4th-order in ��x. In the general case
the leading-order truncation error term of O[(��x)4] will be a function of the dispersive
characteristics of propagating waves, �=�h0. In fact, it can be demonstrated that the maximum
value for the leading-order coe�cient will always occur at the shallow water limit, where
�→ 0, independently of the chosen � value as shown in Figure 3(a). It is also interesting to
note that the asymptotic behaviour in deep water (i.e. �→ ∞) changes when �=0 converging
then to −1=576.
Even though it is generally acknowledged that numerical dispersion constitutes an important

property of any scheme, dispersion relations associated to previously published �nite di�erence
or �nite element high-order Boussinesq-type models have rarely been reported. Moreover, it
is commonly argued that numerical dispersion can be avoided if O(�2) dispersive terms
are discretized with 2nd-order truncation error approximations, while convective or 1st-order
terms are approximated through 4th-order centred �nite di�erence formulae (e.g. References
[18, 24]). Even if from a practical point of view the latter could be su�cient for well-resolved
waves, the numerical scheme will only be 2nd-order accurate in ��x and in the general case
more nodal points per wavelength will be needed to reproduce the associated phase speed
correctly. In order to illustrate this we will discretize high-order dispersive terms appearing in
the ux function Gnj of Equation (55) and in the linearized version of the auxiliary equation
(36) by using explicit 2nd-order �nite di�erence approximations. It is worth emphasizing that
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no direct comparison can be made with the �nite di�erence technique used in References
[17, 24] or with �nite element models based on similar mixed-order approaches [26, 27] since
our numerical resolution is based on a compact �nite volume integration on a staggered grid.
In spite of that, the following analysis can be useful to see what consequences this kind
of strategy may have in our particular numerical method. Thus, 2nd-order derivatives are
approximated now using the following explicit 2nd-order formula:

(�xx)j=
1

�x2
(�j+1 − 2�j +�j−1) (68)

and the corresponding spectral relation is found to be (after substitution of a Fourier compo-
nent),

(�̃′�x)2=2(1− cos ��x) (69)

Similarly, using 2nd-order approximations for high-order derivatives in the linearized version
of auxiliary equation (36) it can be shown that

	
′
=1+

(1=3 + �)

�2
24(1− cos ��x)
(11 + cos ��x)

(70)

Substituting relations (69) and (70) in (64) provides the following form for the discrete
dispersion relation associated to the mixed approach:

C ′

fv

Cth
=1− �2

48

[(�− 1=3) + � (�+ 1=3)�2]
[1 + � �2][1 + (�+ 1=3)�2]

(��x)2 +O[(��x)4] (71)

Therefore, using 2nd-order �nite di�erence formulae to evaluate dispersive terms results in an
overall reduction in the spectral resolution of the method. However, the coe�cient that multi-
plies the O

[

(��x)2
]

term will be relatively small (but positive!) near the shallow water limit
(see Figure 3(b)) in such a way that the accuracy of the scheme would not be dramatically
a�ected. The latter constitutes the main argument behind the mixed approach used in several
�nite di�erence and �nite element Boussinesq-type models. Nevertheless, we will show in the
rest of the section that the full 4th-order scheme has better numerical properties and is more
robust than its mixed counterpart.
Another important and challenging property to test is the ability of a particular numerical

scheme to correctly reproduce group velocities. This property is related to wave energy prop-
agation and usually imposes more severe restrictions on the application of numerical methods
than the dispersion relation preserving condition. The wave group velocity associated to the
numerical scheme and the linearized set of PDE can be estimated from the non-dimensional
dispersion relation as,

1

C0

@!

@�
=
Cg
C0
=

@

@(��x)

[

(��x)
C

C0

]

(72)

Again, the general discrete relation will depend on ��x and � but asymptotic expressions
can be found as before. In the shallow water limit the ratio between the numerical and the
physical group velocity reads as

lim
�→∞

Cgfv
Cgth

=1− 1

36
(��x)4 +O[(��x)6] (73)
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Figure 4. Ratio between computed and physical phase speed vs ��x for �=1=15, when (—) �→ ∞,
(- -) �→ 0 and (- · -) �=0:1: (a) full 4th-order compact �nite volume scheme; and (b) mixed 4th- and

2nd-order discretization strategy.

while in the deep-water case we have

lim
�→0

Cgfv
Cgth

=1− 11

576
(��x)4 +O[(��x)6] (74)

showing that the truncation error is still 4th-order in ��x but with a leading-order term an
order of magnitude larger than in the phase speed case. Similarly, it is possible to demonstrate
that when the mixed-order strategy is used the overall truncation error for the group velocity
estimate is 2nd-order in ��x, except in the shallow water limit (�→ ∞) where it has the
same form as (73).
Phase speed estimates using both approaches, the full 4th-order and the mixed one, are

plotted using �=1=15 in Figure 4. It can be seen that when �→ ∞, both strategies provide
the same results. This means that for a given water depth, h0, phase speed estimates get
better in the mixed model if �x→ ∞ which is of course rather problematic. Conversely, for
a �xed spatial grid resolution, the modi�ed �nite volume method tends to give better phase
speed estimates as the depth becomes shallower. However, larger errors could arise in deepest
regions of the computational domain exactly where dispersive e�ects become predominant
and the model is intended to perform better. On the contrary, the parameter � has only a
marginal inuence on phase speed errors when the full 4th-order model is used. Thus, the
full 4th-order compact �nite volume method is more robust, in the sense that phase speed
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estimates are less sensitive to changes in the � parameter, than the mixed-order version. For
comparison, numerical results obtained with �=0:1, which is a reasonable value for that
parameter, are also plotted in Figure 4. It is seen that the numerical estimate converges to the
physical solution (within a 0.5% error) when ��x≃0:325� (L=�x≃6:1) in the full 4th-order
case, and when ��x≃0:202� (L=�x≃9:9) in the mixed one. Hence, for a reasonable value of
�, the mixed version requires nearly 62% more nodal points per wavelength than the original
one in order to properly describe linear phase speed. As explained before, the phase speed
error in the mixed-order model can be reduced if the parameter value �=�x=h0 is increased,
however, the worst error occurs when �x=h0 → 0. In that limit the 0.5 % error level is reached
for ��x≃0:152� (L=�x≃13:2). Compared to the full 4th-order scheme and for a given water
depth more than twice nodal points per wavelength will be needed to achieve the same phase
speed accuracy in the limit of very good grid resolution. Finally, and in accordance with the
leading-order truncation error analysis made before, close examination of Figure 4 shows that
when �=0:1 phase speed of well-resolved waves (i.e. ��x ≪ �) are slightly overestimated
by the mixed-order scheme.
Similar qualitative conclusions can be drawn when comparing numerical results for group

velocities presented in Figure 5. The main di�erence here is that one obtains negative val-
ues for group velocities in the case of poorly resolved waves (��x¿0:67�). On the other
hand, in order to describe group velocities within a 0.5% error when �=0:1, the full 4th-order
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Figure 5. Ratio between computed and physical group velocity vs ��x for �=1=15, when (—) �→ ∞,
(- -) �→ 0 and (− · −) �=0:1: (a) full 4th-order compact �nite volume scheme; and (b) mixed

4th- and 2nd-order discretization strategy.
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�nite volume method requires ��x≃0:213� (L=�x≃9:4) while the mixed scheme reaches the
same accuracy when ��x≃0:117� (L=�x≃17:2). It is con�rmed then that proper numerical
representation of group velocities is a more challenging task because more nodal points per
wavelength are needed to converge to the physical solution and poorly resolved waves will
transmit their energy in the wrong direction. In this particular test, the full 4th-order numerical
scheme shows an even better performance when compared to the mixed version because
the latter requires roughly 83% more nodal points per wavelength in order to reach the
same level of spectral resolution. In the limit of very good grid resolution for a given water
depth (�x=h0 → 0) the mixed-order model reaches the 0.5% error in group velocities when
��x≃0:088, thus requiring more than 22 nodal points per wavelength.
The analysis that has been presented not only demonstrates the clear superiority of the

full 4th-order version, but also shows that mixed-order approaches must be taken with care
since the associated discrete dispersion relation has a misleading dependence on �=�x=h0.
On the other hand, mixed-order strategies have been introduced in previous numerical models
to avoid pentadiagonal or more complicated patterns in matrices that need to be inversed.
We believe that compact schemes or deferred-correction strategies constitute a more satis-
factory way to overcome this problem in the framework of dispersive wave propagation
phenomena.

4.2. Analysis of the full discrete system

In order to achieve a comprehensive numerical analysis of the scheme we study in this
subsection the full discrete system of equations, which takes into account the Runge–Kutta
time stepping. Individual Fourier components that one needs to substitute in linearized discrete
Equations (54), (55) and (56) have now the following form:

⎡

⎢

⎢

⎣

hnj

qnj

unj

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

h�

q�

u�

⎤

⎥

⎥

⎦

e�̂(�j�x−(!r+�̂!i) n�t)=

⎡

⎢

⎢

⎣

h�

q�

u�

⎤

⎥

⎥

⎦

|�|n e�̂(�j�x−!r n�t) (75)

where !r and !i correspond to real and imaginary parts of the frequency and |�|=e!i�t is
the ampli�cation factor of the numerical scheme. It can be seen that the analysis expounded
in the previous subsection on the semi-discrete system of equations will be equivalent to
the one we are going to present now in the limit of good numerical temporal resolution as
!i�t→ 0. Indeed, the real part of the frequency will give information about phase speed
errors (numerical dispersion), and the associated imaginary part contains information about
the stability of the scheme (numerical ampli�cation=dissipation). Numerical properties of the
discrete scheme are now driven by three free parameters, ��x, �=�x=h0 and the Courant
number, Cr =C0�t=�x.
It is worth to point out that analogous linear stability analysis have been performed recently

on a �nite element resolution of an equivalent Boussinesq set of equations by Woo and
Liu [27], and on several �nite volume resolutions of a KdV-like system of equations by
Bradford and Sanders [29]. In what follows we will compare the numerical performance of
our scheme with those previously published. Similarly, some comparisons between the full
4th-order method and the mixed-order version will be given for completion.
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As before, we substitute Fourier components in the discrete system of equations (75). After
using relation (59) in order to eliminate the auxiliary variable q in the 4th-order Runge–Kutta
time stepping process (53), it can be shown that the full discrete scheme takes the following
form in the Fourier space,

(G(K)− I|�|e−�̂!r �t) ·
[

h�

u�

]

=0 (76)

where G(s)=
∑4

p= 0
1
p!
(�t · s)p is the Runge–Kutta time stepping operator and K is the

spatial discretization operator introduced in the previous subsection. Non-trivial solution of
Equation (76) yields

[
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�t

�

)2
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)4

(K1K2)
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=
9

4

(

�t
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)2

K1K2

[
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(

�t

�

)2

K1K2

]2

(77)

Invoking de�nitions (62) and (63) we write

K =

(

�t

�

)2

K1K2= − sin2 ��x

(2 + cos��x)2
[�2 + �(�̃�x)2]

�2	
C2r (78)

Thus, equating real and imaginary parts in Equation (77) results in the following:

|�| cos !r�t = R=1− 9
2
|K |+ 27

8
|K |2 (79a)

|�| sin !r�t = ±I= ± 3
2
(2− 3|K |)|K |1=2 (79b)

Squaring and adding previous relations gives the ampli�cation factor, while dividing (79b)
by (79a) provides the discrete dispersion relation of the numerical scheme, i.e.

|�| =
√

R2 +I2 (80a)

tan!±

r �t = ±I

R
(80b)

Although the dispersion relation (80b) has two roots, in the frequency range of resolvable
waves (!r�t ∈ [0; �]) only the root with a positive imaginary part is meaningful. Because of
the change in sign of the function I when |K |=2=3, the mode associated with the �rst root,
!+r �t, remains in the plane of resolvable waves as far as |K |62=3. On the other hand, the
second mode associated with !−

r �t, will be valid when |K |¿2=3. It is then concluded that,
even though the numerical scheme does not have any spurious computational mode in the
frequency range of resolvable waves, it is preferable to remain in the region de�ned by the
inequality |K |62=3.
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Numerical stability is studied now by looking at the ampli�cation factor de�ned in (80a).
The scheme produces non-amplifying solutions as far as |�|61, so it is straightforward to
show that if

|K |6 8
9

(81)

the RK4 compact �nite volume scheme is stable. In the general case, the stability condition
on the Courant number will be a function of �, � and ��x, but it can be shown that the most
stringent situation occurs when �→ ∞. Replacing relations (58) and (60) in (78) provides
the following stability condition in that limit:

Cr6
2
√
2

3

(2 + cos ��x)

sin ��x
62

√

2

3
(82)

The numerical scheme is thus stable if the Courant number is chosen to be less than 1.633 no
matter what values of � and � are used and for all resolvable wave numbers. Nevertheless, the
stability limit can be moved further on by decreasing the parameter value �, i.e. by improving
the spatial grid resolution for a �xed h0. In the limit of very good grid resolution (�→ 0),
the stability condition (81) takes the following form:

Cr6
2
√
3

9

(2 + cos��x)

sin ��x

√

(1=3 + �)

�

(5 + cos��x)(13− cos ��x)
(11 + cos ��x)

61:603

√

(1=3 + �)

�
(83)

Therefore, when taking �=1=15 the method remains stable for all resolvable wave num-
bers, ��x, if the Courant number is less than 3.926 in the limit of very good spatial res-
olution. It is interesting to note that the high-order dispersion correction term introduces
some kind of instability in the system because the stability limit is increased by reducing
the weight of this term (i.e. �→ 0). On the other hand, for �nite values of �, it can be
shown that the stability limit will be bounded by the two asymptotic values given in (82)
and (83).
Even though stability is a necessary condition in order to ensure that the numerical scheme

will not produce unbounded solutions in time, it does not say anything about the accuracy
of the method in terms of dissipative and dispersive errors. For instance, Figure 6 shows
numerical dissipation and phase speed errors for di�erent Courant numbers and for a �xed
value of �=0:2 (keeping �=1=15). This particular �-value has been chosen in order to
perform a comparison with the numerical analysis presented in papers by Woo and Liu [27]
and Bradford and Sanders [29]. It is seen in Figure 6(a) that when Cr =1:0 the present
compact �nite volume scheme is stable and nearly neutral (i.e. |�|≃1:0), thus introducing a
clear improvement over the Petrov–Galerkin �nite element model described in Reference [27]
because with the same numerical parameters, amplifying modes were already present in the
latter. In fact, those authors were only able to ensure stability when the Courant number was
less than 0.5, which is a value more than three times smaller than the most stringent stability
limit expressed in Equation (82). Similarly, stability of several linear �nite volume schemes
(Lax–Wendro�, Fromm and Warming–Beam) and a centred 2nd-order �nite di�erence scheme
used to solve a KdV-like system of equations was compared in Reference [29]. For an almost
equivalent set of numerical parameters (Cr =1:0 and �=�x=h0≃0:18), Bradford and Sanders
showed that only the Fromm and the Warming–Beam methods were stable but they appear
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Figure 6. Numerical dissipation and phase speed error of the 4th-order compact �nite volume scheme
for �=1=15, �=0:2 at di�erent Courant numbers: (—) Cr =1:0, (- -) Cr =2:0, (- · -) Cr =3:0 and
(-×-) Cr =4:0: (a) ampli�cation factor; and (b) ratio between computed and physical phase speed.

to be dissipative for mid to high-range spatial frequencies. Thus, it can be concluded from
this particular comparison that the present numerical scheme has a wider stability region and
is less damping than those studied in References [27, 29]. Moreover, using Maclaurin series
to expand (80a) it can be shown that for small values of ��x,

lim
�→∞

|�| = 1− C6r
144

(��x)6 +O[(��x)8] (84a)

lim
�→0

|�| = 1− C6r
144

[

�

(1=3 + �)

]3

(��x)6 +O[(��x)8] (84b)

Therefore, the dissipative error for the present �nite volume scheme is O[(��x)6], while linear
�nite volume schemes studied by Bradford and Sanders [29] only shown to be O[(��x)4]
accurate.
Further information on the damping modes associated to our numerical model can be ob-

tained from Figure 6(a) when looking at ampli�cation factors associated to increasingly high
Courant numbers. It is seen that for Cr =2:0 and 3.0 some mid-range frequency dissipation
is present with a maximum located at ��x≃0:662�. Additional computations show that the
numerical scheme is non-amplifying (stable) for �=0:2 as far as Cr¡3:71. However, mid-
range frequencies begin to be heavily damped before reaching that limit (see Figure 6(a)).
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As discussed in Reference [48], this dissipative behaviour is mostly due to the Runge–Kutta
time stepping.
Phase speed errors obtained for �=0:2 and for di�erent Courant numbers are presented

in Figure 6(b). It is seen that phase speed estimates get worse when increasing the Courant
number. Again, an unstable rapidly growing mode can be identi�ed and coincides with the one
observed for the ampli�cation factor. It is also evident from this �gure the passage from one
root to the other in the numerical dispersion relation (80b) that takes place between Courant
numbers Cr =3:0 and 4.0. As before and in the limit of small ��x, it can be shown that a
Maclaurin expansion of the dispersion relation yields

lim
�→∞

Cfv
Cth

= 1− 1

180

(

1 +
3

2
C4r

)

(��x)4 +O[(��x)6] (85a)

lim
�→0

Cfv
Cth

= 1− 1

2880

(

11 + 24

[

�

(1=3 + �)

]2

C4r

)

(��x)4 +O[(��x)6] (85b)

Therefore, phase errors dominate over dissipative errors in the present compact �nite volume
scheme. Linear �nite volume schemes studied by Bradford and Sanders [29] showed similar
characteristics but with larger truncation errors. Figure 6 also indicates that in the present
example, stable neutral solutions are obtained if Cr61:5. It is important to note that phase
speed will not be overpredicted in this range of Courant numbers.
In the general case, it is possible to construct stability and phase error contour plots in the

(Cr ; ��x) plane for di�erent values of the �-parameter. Before doing so we recall that, to
the authors’ knowledge, detailed analysis of the spectral resolution of previously published
numerical methods used to solve equivalent sets of Boussinesq-type equations have not been
reported. However, this property is paramount when dealing with physical problems where
di�erent wavelength scales are naturally present or can emerge as a consequence of nonlinear
interaction. For example, recent extended versions of Boussinesq-type equations can theoreti-
cally match the Stokes linear dispersion relation up to �≃6 when formulated in surface and
horizontal velocity variables (e.g. References [21, 35]), and up to even higher values (�≃25)
if the vertical velocity is in addition retained as unknown (see Reference [6]). Nevertheless,
if numerical schemes used to solve the associated systems of PDE are not carefully con-
ceived to correctly reproduce phase speed and group velocity for all physical wavelengths,
theoretical improvements concerning the extension of the � range may be unpractical. For
instance, if the mixed-order strategy is used to discretize convective and dispersive terms, the
asymptotic error analysis given in the previous section showed that the 0.5% phase speed
error limit remains between 0:15�¡(��x)0:5%¡0:3� when !i�t→ 0. Therefore, the lower
limit of this inequality, which occurs asymptotically in deep waters, is an indication of the
numerical resolution of the scheme when dealing with extremely dispersive waves. This means
that the discretized model will correctly describe linear phase speed for wave numbers ��x
being less than 0:15� and this value �xes the �-parameter that will ensure that all physical
wavelengths will be well represented (because ��x=��). If the physical � range of the
discretized Boussinesq-type equations is 6, then a value of �=�x=h060:08 must be used in
the mixed-order �nite volume scheme. Similarly, if the physical range is moved further on
to reach � ∼ 25 as it is the case in Reference [6], then the spectral resolution of the numer-
ical scheme imposes the discretization parameter � to be less than 0:02. It is evident from
results presented in the previous subsection that, for group velocities, the ratio �x=h0 must
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Figure 7. Contours of 0.5 and 5% dissipative errors for �=1=15 and �=0:1 in the (Cr ; ��x) plane.
|�|60:95 in region I (damping), and |�|¿1:05 in region II (amplifying): (a) full 4th-order compact

�nite volume scheme; and (b) mixed 4th- and 2nd-order discretization strategy.

be further reduced to achieve an accurate representation of this property. Moreover, for �nite
Courant number values spectral resolution will drop even more. This simple but important
discussion allows us to illustrate the relevancy of the spectral resolution in terms of phase
speed and group velocity of numerical schemes. In the framework of numerical resolution of
Boussinesq-type equations, this important DRP property must be studied. More speci�cally, if
extended versions of those equations, which may allow for the description of highly dispersive
waves are to be discretized, the use of low-resolution explicit �nite di�erence formulae can
lead to overwhelming computational e�orts if an accurate representation of group velocities is
intended (even if high-order schemes are used). Indeed, it is widely acknowledged that such
approximations have signi�cantly worse spectral properties than equivalent compact formulae
[38–40].
Contour plots for the dissipative errors in the (Cr ; ��x) plane are presented in

Figure 7 for the full 4th-order scheme and the mixed-order approach. The �-parameter is
�xed at 0.1, a value that allows both numerical approaches to describe all physical wave-
lengths because the linear dispersion relation associated to the PDE system match the the-
oretical Stokes relation up to � ∼ 3 when �=1=15 [41]. This �gure shows that there is
a wide region where both schemes remain stable and nearly neutral (white region). In re-
gion I, the numerical scheme starts to damp mid-range frequencies but it remains stable.
Amplifying unstable modes begin to disturb the numerical solution when the thin region
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Figure 8. Contours of 0.5 and 5% phase speed errors for �=1=15 and �=0:1 in the (Cr ; ��x) plane: (a)
full 4th-order compact �nite volume scheme; and (b) mixed 4th- and 2nd-order discretization strategy.

located between zones I and II is reached. Therefore, the upper edge of region I roughly
represents the stability limit of the scheme. It is seen that the full 4th-order version will
be stable for all frequencies if Cr is taken to be less than 3:8, and that the mixed-order
one will remain non-amplifying if Cr is less than 4:1. Hence, the use of low-order explicit
�nite di�erence formulae to discretize dispersive terms results in a slight improvement in
stability and similar conclusions were given in Reference [49]. However, for practical compu-
tations, spectral resolution in terms of phase speed, group velocity and numerical dissipation
will impose more stringent conditions than stability and the Courant number will be in gen-
eral chosen to be less than 1.5 in order to ensure a proper representation of all physical
wavelengths.
As discussed before, spectral resolution and DRP properties of numerical schemes used

to solve wave-type equations must be studied as emphasized in Reference [46]. A wide
range of stability region is for sure a desired quality for any numerical solver because small
unphysical perturbations will not grow unboundedly. However, the use of too high Courant
numbers (even if they are below the stability limit) to integrate the equations in time can
produce poor results in terms of phase and group velocities and this was already illustrated in
Figure 6. Now we generalize this result plotting contours of phase speed and group velocity
errors in the (Cr ; ��x) plane in Figures 8 and 9. It is seen that numerical errors in phase
speeds and group velocities are rather insensitive to changes in the Courant number as long
as the latter remains below a value of 1.5. For Courant numbers laying above that limit, the
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Figure 9. Contours of 0.5 and 5% group velocity errors for �=1=15 and �=0:1 in the
(Cr ; ��x) plane: (a) full 4th-order compact �nite volume scheme; and (b) mixed 4th- and

2nd-order discretization strategy.

extent of the DRP region in terms of wave numbers ��x is reduced as the Courant number
increased and this is more evident for the full 4th-order scheme. On the other hand, the DRP
region for a given Courant number is bigger when using the full 4th-order approach than
when discretizing dispersive terms with 2nd-order explicit �nite di�erence formulae. Indeed,
if the Courant number is kept below a value of 1.5, the extent of the region where numerical
errors in group velocities are less than 0.5% is almost two times bigger in the full 4th-order
version than in the mixed one. A similar trend is observed in Figure 8 for the comparative
analysis of numerical representation of phase speeds. This clearly shows the inconvenience of
using mixed-order strategies to simplify the numerical treatment of high-order terms because
it results in an important overall reduction of the spectral resolution in this particular �nite
volume scheme. Therefore, signi�cantly more nodal points per wavelength will be needed to
properly describe wave kinematics; moreover, if the numerical scheme must also be able to
deal with extremely dispersive=short waves, this critical limitation may also obscure theoretical
improvements in the �-range of application of Boussinesq-type equations.
Finally, it can be concluded from the linear analysis that keeping the Courant number below

1.5 and using �=0:1 for numerical computations will ensure that the compact �nite volume
scheme used to discretize the set of PDE derived here is stable, non-damping and with a
maximized DRP region.
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5. NUMERICAL EXPERIMENTS AND DISCRETIZATION ERRORS

In this last section we study the stability of the proposed numerical scheme using an heuristical
approach that allows us to explore how this property is a�ected by nonlinearity. Besides, the
discretization error is estimated numerically by comparing analytical and computed results
using the solitary wave solution presented in Section 2. Discretization error is related to the
order of approximation of the scheme and is di�erent (although somehow related) from the
spectral properties investigated in the previous section. Here, we will instead determine how
truncation errors, which belong to numerical approximation of partial derivatives, are reduced
when the spatial and temporal grid is re�ned.

5.1. Discretization errors

Without dispersion correction terms (i.e. �=0) and for a at bottom, Equations (18)–(19)
have the solitary wave solution expressed by relations (22)–(24). This interesting property is
used here to estimate discretization errors by comparing the numerical and the exact solution
for this particular PDE system. In order to do that, a solitary wave of relative amplitude
a=h0=0:2 is propagated during two characteristic wave periods over a still water depth of
h0=1 m. The characteristic period is estimated from the characteristic length of the solitary
wave, L, following the de�nition used in Reference [27]. Hence, L is the distance over which
�=h0¿0:001, where � is the location of the free surface. The equivalent solitary wave period
is then de�ned as T =L=C and can be computed invoking the de�nition for the phase speed
of the soliton given in Equation (24). The average numerical error is estimated using the L1
norm and reads

L�=

∑j= I
j= 0 ‖hnj − hej‖1
∑j= I

j= 0 ‖hej‖1
(86)

where he and hn are, respectively, the exact and the numerically computed solution, I is the
total number of �nite volumes used to discretize the spatial domain, and water depth values are
evaluated at cell faces of each control volume (j-nodal points). Equations are integrated using
the solitary wave solution centred at x=X0 as initial condition. Computations are carried
out during two wave periods and results compared with the analytical soliton centred at
position x=X0+2L. All numerical tests are performed using a �xed-point-iteration tolerance
of �=10−4 to solve (47). Spatial discretization error is studied using a small time step of
�t=0:002s in order to ensure that most of the errors belong to the spatial grid resolution used
to perform computations. Estimated convergence errors obtained by increasing the number of
�nite volumes per wavelength (i.e. decreasing �) are presented in Figure 10(a) where it can
be seen that, except for the last two computed errors using the smallest �, the ideal slope for
a 4th-order spatial discretization is fairly well recovered. It is believed that for the two last
computed values, round-o� errors or some inuence of the time step (because it is not small
enough for the prescribed � value) are responsible for the slight divergence from the ideal
slope. Nevertheless, it is widely con�rmed that the �nite volume discretization of the system
of PDE is O[(�x)4] accurate.
An equivalent numerical test is performed on discretization errors due to time integration for

a �xed �=0:1 and monotonically decreasing the Courant number. Associated numerical errors
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Figure 10. Discretization errors for a propagating solitary wave. (−−) Ideal 4th-order slope; (◦) com-
puted errors when a=h0=0:2; (M) computed errors when a=h0=0:6: (a) convergence error in �x using

a �xed �t=0:002 s; and (b) convergence error in �t using a �xed �=0:1.

are presented in Figure 10(b) and compared against the theoretical 4th-order slope. Again, it is
fairly well con�rmed that the convergence error is O[(�t)4], except for the last point where,
probably for the same reasons stated before, the computed slope slightly diverges from the
theoretical one. Therefore, the proposed RK4 compact �nite volume scheme is O[(�x)4; (�t)4]
accurate.
In addition, convergence errors obtained for a highly nonlinear propagating solitary wave

(a=h0=0:6) are also plotted in Figure 10. It is seen that the rate of convergence for the
discretization error in �x is slightly worse than the one observed in the moderately nonlinear
case investigated before. The latter is not surprising since strong nonlinearities may a�ect the
model performance. Nevertheless, the convergence rate is still well above O[(�x)3] for this
challenging test and the computed slope only starts to diverge from the theoretical one when
�x=h060:4. This trend, which has been also noticed in the previous example, is probably
associated to the �xed time step value used to estimate errors since in this highly nonlinear
case the equivalent wavelength (and the associated wave period) is much smaller than the
previous one. On the contrary, the convergence rate for temporal discretization appears to
be rather insensitive to changes in nonlinearity since the ideal slope is well recovered. Thus,
the four-stage Runge–Kutta scheme used to integrate the system in time has an excellent
performance even for highly nonlinear cases.
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Figure 11. Strongly nonlinear solitary wave propagating over 50 equivalent wavelengths where
a=h0=0:6, L=14:7 m, T =3:7 s. Exact solution (−) and numerical computations performed with
Cr =1:0, �=0:1 (−−), �=0:2 (··), and �=0:5 (− · −): (a) overview of the whole domain and

initial and �nal locations of the solitary wave; and (b) close inspection of numerical results.

This numerical test also validates the chosen deferred-correction approach used to preserve
the tridiagonal structure of the matrix that links the auxiliary variable q with the depth-
averaged velocity u in matrix equation (47). Moreover, the convergence rate was rather in-
sensitive to changes in the �xed-point-iteration tolerance as long as �610−4. Indeed, �=10−4

proved to be a su�cient choice in all computations.
Another important property that any numerical scheme used to solve Boussinesq-type equa-

tions must ful�l concerns its ability to preserve wave form and phase speed in time. These
qualities have been already investigated from an analytical point of view through the linear
spectral analysis given in Section 4. However, it is important to test these properties in the
case of highly nonlinear waves propagating over long distances. This can be achieved using
again the closed-form solitary wave solution of the original Serre equations. Similar tests
have been reported in References [24, 26, 27] for moderately nonlinear solitary waves. For
instance, Figure 11 shows computed results for the propagation of a solitary wave of rela-
tive amplitude a=h0=0:6 over 50 equivalent wavelengths using Cr =1 and �=0:1. A perfect
agreement between the analytical and numerical solution is noticed. It is remarkable how this
result con�rms the analysis given in previous section where it was shown that these set of
numerical parameters may produce stable non-damping solutions for all physical wavelengths.
In addition, when decreasing the number of nodal points per wavelength some phase speed and

30



amplitude errors can be noticed. Nevertheless, even for �=0:2 the agreement with the ana-
lytical solution is almost perfect. Although an objective comparison with previously published
models used to solve equivalent set of equations cannot be performed, we recall that a similar
grid resolution (∼ 75 elements per wavelength but with Cr ∼ 0:5) was used in Reference [27]
on the basis of a Taylor–Galerkin �nite element model and some phase speed errors were
already noticed when propagating a moderately nonlinear (a=h0=0:3) solitary wave over a
shorter distance (∼ 25 wavelengths). A similar trend was also reported in References [24, 26].
Finally, when increasing the �-value further to reach 0.5 (∼ 29 nodal points per wave-

length), bigger discrepancies show up. Nevertheless, the relative error in phase speed over
this long distance appears to be less than 2%.

5.2. Nonlinear stability

The way by which nonlinearity a�ects the stability of the proposed scheme is investigated
now performing numerical experiments where we estimate the maximum Courant number
for which a propagating solitary wave remains stable. Computations are carried out over six
equivalent wave periods for di�erent relative amplitudes a=h0 and for monotonically increasing
Courant numbers until numerical instability shows up. The inuence of the correction disper-
sion term is also investigated because it was analytically demonstrated in Section 4 that this
term may produce some destabilizing e�ects in the system (see inequality (83)). Therefore,
three di�erent �-values are investigated, namely, �=1=15, �=1=30 and �=0. It is important
to recall that it is expected that when �=0 important numerical (and mathematical) prop-
erties of the system may change as it was illustrated in Figure 3 where a totally di�erent
behaviour was noticed for this �-value. Numerical estimation of the stability limit in terms
of the Courant number is given in Figure 12. Theoretical values obtained from linear anal-
ysis is also included in the �gure (when a=h0 → 0) for �=1=15 and �=1=30. The limiting
Courant number predicted by linear theory when �=0 and �=0:1 is roughly Cr =16. Such a
high value was not recovered numerically probably because the stability analysis performed in
Section 4 may only be valid for �nite values of � as discussed before. Nonetheless, for the
two �nite values of � investigated here, numerical experiments con�rm in a satisfactory way
the linear stability analysis as depicted in Figure 12. Moreover, when the dispersion correc-
tion term is switched o� the stability region is considerably increased as it was expected from
the numerical analysis of the scheme. It is also noticed that for �nite �-values, nonlinearity
does a�ect the stability of the scheme because the maximum stable Courant number is re-
duced. Nevertheless, numerical experiments show that the RK4 compact �nite volume scheme
remains stable, even for extremely nonlinear waves, as long as the Courant number is kept be-
low a value of 1.8 when �61=15. Undoubtedly, this result constitutes a major improvement
in stability when compared to previously published numerical solvers for Boussinesq-type
equations.
It was noticed that for the �nite �-values investigated, numerical instability was mainly

triggered because the resulting matrix of Equation (47) appeared to be ill conditioned in
the presence of high nonlinearity. On the contrary, when dispersion correction terms were
set to zero, numerical instability appeared to be mainly due to intrinsic properties associated
to the 4th-order Runge–Kutta time stepping, and this may partially explain why the region
of stability was only slightly a�ected by changes in a=h0 when �=0. We believe that this
misleading dependence on the chosen � value must be further investigated on a mathematical
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Figure 12. Stability limits estimated numerically using �=0:1 for increasing non-
linear solitary waves and di�erent values for the dispersion correction parameter:

(−) �=1=15, (− −) �=1=30, and (− · −) �=0.

basis because it was demonstrated that the dispersion correction strategy used here may lead
to an important reduction of the stability region. Moreover, it was rather surprising to con�rm
numerically that the stability limit may reach such high Courant numbers when the dispersion
correction term was switched o�.

6. CONCLUSIONS

A novel approach to numerically handle a set of fully nonlinear and weakly dispersive
Boussinesq-type equation was presented and deeply investigated using numerical analysis.
The chosen set of extended Serre equations could be written in a weak quasi-conservative
form, which makes the use of �nite volume methods very attractive. Indeed, recently devel-
oped compact strategies for cell-face reconstruction in the framework of �nite volume methods
were borrowed from CFD and adapted to this particular set of PDE. High-order accuracy was
achieved in spectral space and numerically estimated discretization errors con�rmed that the
newly developed scheme is fully 4th-order in space and time while computational e�orts
were kept at a very reasonable level. The latter constitutes an important feature of the present
scheme because extensions in two horizontal dimensions (2D-H), where relatively large scale
problems (∼ km) are to be discretized, may be achieved at a�ordable computational costs.
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In fact, the use of the present compact approach allowed us to reduce CPU time by more
than three times when compared to our previous explicit 4th-order �nite volume model [30].
Moreover, we believe that the particular choice of this compact �nite volume method will
allow us to extend the model in 2D-H straightforwardly taking advantage of developments
already available in several space dimensions and structured grids (e.g. References [39, 50]).
On the other hand, the use of linear spectral analysis provides important information con-

cerning the performance of the newly developed scheme. For instance, we have good reasons
to believe that the widely used strategy of discretizing convective and dispersive terms using
mixed-order �nite di�erence formulae may lead to phase and group velocity errors which
are di�cult to control. This drawback can be specially critical for computations dealing with
extremely dispersive waves since a good description of the whole range of characteristic wave-
lengths will certainly impose the use of a very �ne grid resolution. Therefore, some recent
theoretical improvements for Boussinesq-type equations may be unpractical for real world
applications. The latter has a strong analogy with some di�culties encountered in the �eld
of CFD where, for direct numerical simulations (DNS) of Navier–Stokes equations, the range
of spatial lengths that a particular numerical scheme should be able to correctly represent is
broadened towards smaller scales for increasingly high Reynolds number (thus requiring fur-
ther re�ning of the grid size). This question has not really been tackled yet in the framework
of coastal engineering. However, if numerical modelling of near-shore hydrodynamics is to
be handled with help of Boussinesq-type equations, e�cient, accurate and stable larger scale
models are to be developed.
Additionally, qualitative comparisons with previously published numerical schemes used

to solve equivalent set of equations were performed in Sections 4 and 5. Linear spectral
analysis and some numerical experiments showed that the present RK4 compact �nite volume
model possesses a wide stability region, good spectral resolution and an excellent numerical
behaviour even when dealing with high nonlinearities. For instance, stability is only ensured
in some of the previously published numerical strategies used to solve equivalent set of
equations for Courant numbers which should remain below 0.5 (e.g. References [22, 27, 51]).
On the contrary, the present �nite volume scheme has shown to be stable (i.e. for all wave
numbers and spatial grid resolutions) if Courant number is �xed to a value below 1.6, thus
introducing fundamental improvements over previous ones. Moreover, this limit could be
moved further on if grid resolution was improved and it was found in Section 5 that, even
in the case of the propagation of an extremely nonlinear solitary wave, solution remained
stable as far as Cr61:8 for a grid resolution of �=0:1. Indeed, it was found analytically in
Section 4 that the dispersion correction term as given in References [7, 35] introduces some
kind of numerical instability in the system. This undesirable situation was also con�rmed by
numerical experiments.
Ongoing developments of the present model concern its extension into the surf zone by

including extra breaking terms. For instance, wave breaking was recently incorporated using
the parametrization given in Reference [52]. Similarly, the numerical treatment of appropri-
ate boundary conditions and the validation of the model for wave propagation over uneven
bottoms will be addressed in a companion paper.
Finally, it is also worth to point out that in more complex wave propagation problems (i.e.

over uneven bottoms, periodic waves and added breaking e�ects), high-frequency waves can
arise as a consequence of nonlinear interaction. In this context, the use of high-order �lters
to damp out spurious wave components is of common usage. The spectral analysis performed
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here gives insight of how this can be achieved without a�ecting the range of resolved physical
wavelengths.

APPENDIX A

Series expansion of u∗ and w∗ are found using Equations (2), (3) and boundary condition (6).
As a �rst step assume the following expansion for both unknowns:

u∗(x∗; z∗; t∗) =
∞
∑

n= 0

(z∗ − �∗(x∗))n

n!
fn(x

∗; t∗) (A1)

w∗(x∗; z∗; t∗) =
∞
∑

n= 0

(z∗ − �∗(x∗))n

n!
gn(x

∗; t∗) (A2)

where f0 and g0 are, respectively, the bottom horizontal and vertical velocities. Boundary
condition (6) imposes that,

g0= �
∗

xf0 (A3)

Informations on fn and gn are obtained by invoking continuity and irrotationality at each
order. At order n, Equations (2) and (3) give

�∗

xfn+1 − gn+1=(fn)x

fn+1 + �
2�∗

xgn+1=�
2(gn)x

(A4)

which at the lowest order writes,

�∗

x f1 − g1=f0x

f1 + �
2�∗

xg1=�
2g0x

(A5)

This linear set of equations has the solution

f1 =
�2�∗

xf0x + �
2(f0�

∗
x )x

1 + �2(�∗
x )
2

(A6)

g1 =
�2�∗

x (f0�
∗
x )x − f0x

1 + �2(�∗
x )
2

(A7)

Thus, if �2(�∗
x )
2 ≪ 1, the following expansions in terms of �2 hold

f1 = �
2[�∗

xf0x + (f0�
∗

x )x] +O(�
4) (A8)

g1= − f0x + �2[�∗

x (f0�
∗

x )x + f0x(�
∗

x )
2] +O(�4) (A9)

and a justi�cation to (14) and (15) is provided.
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Similarly, this functional form for horizontal and vertical velocities allows us to express
the vertical ow acceleration function given by Equation (9) as

�∗(x∗; z∗; t∗)=

[

(z∗ − �∗)

(��∗ − �∗)
P

∗(x∗; t∗) + Q
∗(x∗; t∗)

]

+O(�2) (A10)

with,

��2P∗(x∗; t∗)=
P

g
; ��2Q∗(x∗; t∗)=

Q

g

using dimensional functions, P and Q, which were introduced in relations (20) and (21).
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