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Accuracy of solitary wave generation by a piston wave maker. 
Precision de la generation d'une onde solitaire par un batteur piston. 
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76 82 51 17 I Fax: +33 4 76 82 50 OJ I E-mail: guizien@hmg.inpg.fr
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ABSTRACT 
A new experimental procedure to generate solitary waves in a flume using a piston type wave maker is derived from Rayleigh's ( 1 876 , [ 1 8]) solitary 
wave solution. Resulting solitary waves for dimensionless amplitudes£ ranging from 0.05 to 0.5 are as pure as the ones generated using Goring's ( 1978. 
[7]) procedure which is based on Boussinesq ( 1 871 a, [ 1 ]) solitary wave , with trailing waves of amplitude lower than 3 % of the main pulse amplitude.
Ln contrast with Goring's procedure. the new procedure results in very little loss of amplitude in the initial stage of the propagation of the solitary waves. 
We show that solitary waves generated using this new procedure are more rapidly established. This is attributed to the better description of the outskirts 
decay coefficient in a solitary wave given by Rayleigh's solution rather than by a Boussinesq expression. Two other generation procedures based on 
first-order (KdV) and second order shallow water theories are also tested. Solitary waves generated by the latter are of much lower quality than those 
generated with Rayleigh or Boussinesq-based procedures. 

RESUME 
Une nouvelle procedure experimentale pour generer des ondes solitaires dans un canal a !'aide d'un batteur p iston est proposee a partir de Ia solution
on de solitaire de Rayleigh ( 1 876. [ 1 8]). Les on des solitaires produites pour des amplitudes reduites £all ant de 0.05 a 0.5 sont aussi pures que celles 
obtenues par Goring ( 1 978. [7]) a !'aide d'une procedure basee sur !'expression on de solitaire de Boussinesq ( 1 871 a .  [I]). L'amplitude des ondes suivant 
le pic principal ne depasse pas 3% de !'amplitude de celui-ci. Le pic principal des ondes generees avec cette nouvelle procedure diminue tres peu en
amplitude. contrairement a celles de Goring. On montre que les ondes generees a !'aide de cette procedure sont done plus rapidement etablies. Ceci
est attribue a une meilleure description du para metre de ten dance dans Ia solution onde solitaire de Rayleigh que dans I' expression de Boussinesq. Deux
autres procedures basee sur les theories au premier et second ordre de l'eau peu profonde sont aussi testees. Les ondes solitaires generees par ces deux 
demieres procedures sont de bien moindre qualite que celles obtenues avec les procedures basees sur Rayleigh ou Boussinesq. 

Keywords : solitary wave, generation , piston wave maker. experiments. 

1. Introduction 

The aim of this study is to assess solitary wave generation proce­
dures. Hammack and Segur ( 1 974, [ 1 0]) showed experimentally 
and theoretically that from any net positive volume of water 
above the sti l l  water level, at least one solitary wave wil l emerge 
followed by a train of (dispersive) waves. Thus, different proce­
dures have been used to generate solitary waves. Scott Russel 
( 1 845, [20]) generated solitary waves by allowing a solid weight 
to fall from near the surface to the bottom of a tank. Similarly, 
Daily and Stephan ( 1952, [6]) displaced a given mass of water by 
the vet1ical motion of a piston rising from the bottom of a tank. 
They also tested a method consisting in releasing a mass of water 
behind a moveable barrier at one end of a flume. Goring ( 1 978, 
[7]) studied in detail the generation of solitary waves using a pis­
ton-type wave maker. 
Our concern in this study is to generate solitary wave as 'pure' as 
possible. This means we have focussed our efforts in generating 
waves with minimised trailing waves but also of stable amplitude 
during propagation. These concerns have scientific practical im­
portance. For instance. the study of solitary wave reflection 
(Renouard et al . ,  1 985 [ 1 9]) or of interaction of either solitary 
waves with solitary waves or monochromatic waves with solitary 
waves (Guizien and Barthelemy, 2000 [9]) require waves as pure 

as possible, especially if phase shifts are to be measured. 
S ince long waves are associated to quasi vertically  uniform hori­
zontal velocity, the piston-type wave maker seems a natural gen­
eration device. However it is technically more difficult to set up 
than the other generation means cited above. Without paying 
much attention to the way in which the generator is displaced 
(mass fal l ing or rising, barrier, wave maker), the success of al l  
these methods is based on the fact that the largest solitary wave 
outruns any transient dispersive disturbance and also any other 
solitary wave of lower amplitude for sufficient propagation dis­
tances. Indeed, as the dimensionless amplitude of a solitary wave 
increases up to£= 0.796 (E = A!h0 where A is the solitary wave 
amplitude and h0 is the mean water depth), its phase speed in­
creases. However, above this value, the phase speed tends to de­
crease (Longuet-Higgins and Fenton, 1 974 [ 1 5], Byatt-Smith and 
Longuet-Higgins, 1 976 [ 4]). Regarding generation, this feature 
raises a major problem, as highlighted by Longuet-Higgins ( 198 1 ,  
[ 14])  because, together with the phase speed, the total displaced 
mass decreases over the upper range of solitary wave amplitude. 
Hence, there are actually two waves of different amplitude with 
the same displaced mass. Thus, using the aforementioned proce­
dures, two distinct solitary waves may emerge. However, in most 
applications, generating the largest solitary wave is not so impor­
tant. 
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The usual procedure for long-wave and more specifically solitary­
wave generation consists in matching the paddle velocity at each 
position in time with the vertical ly averaged horizontal velocity 
of the wave. Mathematically this is expressed in the following 
way: 

dX -
-=u(X,t) 
dt 

(1) 

-
where x =X is the paddle position along the x-axis and u(x,t) is 
the long wave depth-averaged horizontal velocity in the labora­
tory frame of reference. The x-axis is the centreline of the flume. 
taking the origin x = 0 at the back position of the piston stroke as 
defined on figure l .  This contrasts with the approach taken by 
Synolakis ( 1 990, [23]) who solved an inverse evolution problem 
of the Korteweg-De Vries (KdV) equation in order to generate 
arbitrary long waves at any location in a horizontal flume. 
In the present paper, we discuss Goring's procedure which is 
based on Boussinesq ( 187 l a, [I J) sol itary wave solution in com­
parison with four generation laws derived from other existing 
solitary wave solutions. Two generation laws are obtained using 
Rayleigh's ( 1 876. [ 18]) solitary wave solution. Indeed, by assum­
ing a small displacement, an analytical law of motion can be de­
rived from the integration of equation ( J) in which the Rayleigh 
sol itary wave solution is used. This analytical law of motion is 
compared with a law of motion obtained after fitting the numeri­
cal integration of equation ( 1), also using Rayleigh's solution. by 
a hyperbolic tangent. The other two laws of motion tested in this 
study are derived from linearization of the Lagrangian formula­
tion in the first-order (or Korteweg and De Vries) and second­
order shallow water theories (Temperville. 1 985 [241). In our ex­
periments, we use a very similar device to the one used by Gor­
ing. that is described in section 3. In section 4, performances of 
the tested laws of motion are compared. In order to understand 
the good performance of both Goring procedure and the law of 
motion based on Rayleigh's sol itary wave solution, paddle laws 
of motion are discussed in section 5 in comparison with the one 
deduced from Byatt-Smith's (1970, [3J) numerical solution. 

2. Wave maker laws of motion 

ln this section. we present the different laws of motion to be pre­
scribed to the paddle in order to generate a solitary wave. A soli­
tary wave is a steady solution in the wave co-moving frame trav­
elling at the wave phase speed c. Hence, equation (I), that gives 
the paddle position X in the laboratory frame of reference, can be 
written after a change of variables from (x,/) to (8 = ct -X,t) in the 
general form: 

-
dX u(8(X)) 

de c-u(8(X)) 
(2) 

In equation (2), the solitary wave depth-averaged horizontal ve­
locity can be given by various theories. Amongst them, the 
Boussinesq ( 1 871 a, [I]) and Rayleigh (I 876, [I 81) solitary waves 
have the following same functional form: 

�(S) = c1")(8) 

hil + 11(8) 

(3) 

(4)

where A is the solitary wave amplitude, h11 the mean water depth, 
c the phase speed, � the outskirts decay coefficient, 11(8) the free 
surface elevation from rest and u(8) the depth-averaged horizon­
tal velocity. The two solitary wave expressions differ in terms of 
the values of c and � - Then, integrating (2) with (3) and (4)

yields: 

2A 
X(t) =- tanh[�(ct-X(t))/2] (5) 

hil� 
From (5), the total stroke of the paddleS can be deduced: 

(6) 

The duration'! of the paddle motion can be determined after trun­
cation of the infinite theoretical Jaw of motion: 

rrsist i w� prol1es posit ions 

second srt .r1 = 5m .r'l. =10m .r:1 =15m .. r..t =20m .T.'i =25m 

.t: = 0 :r = S first set. .1" = .\" .c1 = Gm 

piston type· 
wan• maker 

a' 

:t:1 = 19.5m · · · Xu= 21.0m 

L±±±J 
-'"' = 0.511l 

II= ct- .r 

.4 

:r = 36111 

I • 

"" 

Fig. I Sketch and dimensions of the experimental equipment. The .<s are the resistive probes 

positions. (0.2 <:: h0 <:: 0.3 m. 0.015 <;A <; 0.15 m. a'<; 0.1 A. S <; 0.55 m). 
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1 = � [ tanh-1(0.999)+ � J 
�c h0 

2.1 Goring/ Boussinesq 

(7) 

In his study, Goring ( 1 978, [7]) first tackled the question of 
minimising trailing waves in solitary waves generation. He chose 
a procedure based on the Boussinesq ( 1 871a, [I] )  solitary wave 
expression. Following Dai ly and Stephan' s ( 1 952, [6] ) conclu­
sions regarding the best agreement of this expression with experi­
ments, he chose the following values for c and � in (5) : 

f1_ = � 3A 
2 4h,; 

(8) 

(9) 

In his study, Goring used both a paddle law of motion derived 
from th� full equation (5) and� simplified paddle law of motion 
taking u(X,t) to be equal to u(O,t) in equation (1 ) .  This yields
the fol lowing expression: 

X (I)= Sc; tanh[7.6(t h- 0.5)]

where s. = 4) Aho is the total stroke of the paddle.(, 3 

These two laws of motion were prescribed for the paddle by 
means of a hydraulic servo-system. The solitary waves generated 
experimentally using the simplified procedure were fol lowed by 
a dispersive tail of I 0% of the amplitude of the main pulse. Us­
ing the paddle law of motion derived from the full equation, trail­
ing wave amplitude is drastically reduced. Yet, it was noted that 
by taking a duration of motion I 0 % longer than that given by (7) 
with (8 ) and (9), the ampli tude of the trailing dispersive waves 
was even more reduced. The two experimental records plotted by 
Goring ([7], pp 123 and 1 30) show nearly pure solitary waves 
generated using this longer duration. Yet, the resulting sol itary 
waves show a rapid decrease in amplitude, larger than what can 
be attributed to friction. 

2.2 Shallow water first order/KdV 
Clamond and Germain (1 999, [5]) used a paddle law of motion 
XKdv(t) derived from the KdV (or first-order shallow water) solu­
tion and written: 

( 1 0) 

where �Kdv = � and cKrtv =.Jiih:[t+__i_l· The paddle �--;;;: 2h[J 
stroke is thus s = 4) Aho , the same as that derived fromKdf! 3 

Boussinesq's sol itary wave form in Goring's procedure. This is 
obtained from calculations in Lagrangian form after linearization 
around X = 0. 

2.3 Shallow water second order 
In the same way and following calculations from Temperville 
( 1 985, [24]), a second-order shallow-water paddle law of motion 
can be derived. For a soli tary wave of amplitude A, the paddle
law of motion x,.2(t) is: 

�[ 
A'

l 
x�\V1 (t) = 2�3 I+ h; tanh(�S\V2Csw/ I 2 )  

+ � �3A ' tanh(�swF,w/ / 2 )

3 4h0 cosh2(�m·F1w/ / 2 ) 

(I I) 

[ '] 

3A' A' 1 9  A' -
where � .1w2 = 

� , , c1w2 = .jih;; I+-+-[-) and 
h0 2h0 40 h0 

A A '
[ 

SA' ] 
ho = h; I+ 

4ho 
.

�[ 
A'

l The paddle stroke is thus s\IV1 = 4�3 I+ h; . In practice

this law is truncated with respect to the precision of experimental 
device and the last term can be neglected. 

2.4 Rayleigh 
Shallow water approximation relies on both long waves and small 
amplitude assumptions. Avoiding the latter restriction of small 
amplitude, it is possible to derive a set of equations for non linear 
waves (Mei, 1 992 [ 1 6] ) .  Indeed, assuming the Ursel l  number 
U,=£k:} to be of order 1 (£""cr2 with cr=h1/ 1\ where 1\=21� is a hori­
zontal length scale of the solitary wave), Whitham ( 1 974, [25]) 
derived the Boussinesq equations (see eq. ( 13 .10 I) in Whitham,
1 974 [25]). Without making this assumption, namely allowing £ 
to be of order 1 ,  the following set of equations is derived after 
truncating at the order cr4 ( Serre, 1 953 [21 ], Su and Gardner,
1 969 [22]): 

1l,+[(h0+1l)�l=O (12) 

- -- 2 h +11 u,+uu , +gll . +-)'11 . +-'-'-y =0 
' 3 ' 3 ' 

(1 3) 

( 1 4) 

SetTe (1 953, [21 ] )  found a sol itary wave solution for this set of 
equations which is actually the solitary wave solution that Ray­
leigh (1876, [1 8] ,  see also Lamb, 1 932 [13 ] )  found for the steady 
progressive solution described by Russel and has the form (3) 
taking: 

f1_ 3A 
2 4h,�(A+h0) 

CR =�g(A+h0) 

( 15) 

( 1 6) 

It should be noted here that Rayleigh's soli tary wave solution dif­
fers from the conjectured Boussinesq solitary wave form by the 
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outskirts decay coefficient p (Miles, 1980 [ 1 7] ). The paddle posi­
tion X is thus given by equation (5) incorporating (15) and ( 1 6) .  

k 
. . 

b A(A + h0) Hence the paddle stro e IS given y S = 4 . ' R 3 

Equation (5) together with ( 1 5) and ( 16 )  can be solved either nu­
merically or, if small displacements are assumed, explicitly after 
linearization: 

( 1 7 )  

A hyperbolic tangent function of  the form X(t) = a tanh(8t) can 
be fitted in the least square sense on the numerical integration of 
equation (5),  where c and Pare given by ( 1 5) and (16). The coef­
ficients a and p corresponding to the experiments are reported in
table 1 .  

Table I Coefficients for the hyperbolic tangent function a tanh(�t) fitted 

on the numerical integration of (I) for Rayleigh's solitary wave 

solution. 

f. h0 = 0.2 m h0 = 0.3 m 

a p a p 
0.05 - - 0.0795 1.0622 

0.10 0.0768 1.7675 0. 1 152 1.4432 

0. 1 5 - - 0. 1 446 1.7000 

0.20 0.1 1 39 2.3147 0. 1 708 1.8899 

0.25 - - 0.1 952 2.0364 

0.30 0.1457 2.6349 0.2 1 85 2. 1 513

0.35 - - 0.2409 2.2427 

0.40 0.1752 2.8356 0.2628 2.3 1 52 

0.45 - - 0.2843 2.3726 

0.50 0.2036 2.9607 - -

0.60 0.23 14  3 .0337 - -

For practical purposes, the paddle laws of motion are all truncated 
using the following same criterion, namely by imposing 
tanh(8t) = 0.9999. Figure 2 shows these different laws of motion 
for the same expected resulting solitary wave. The two paddle 
laws of motion derived from Rayleigh's solution lead to larger 
paddle displacements than paddle laws of motion derived from 
KdV or second-order shallow-water theory. As paddle displace­
ments are limited by jack length, the maximum dimensionless 
amplitude generated using paddle laws of motion derived from 
Rayleigh' s solution would be smaller than those derived from 
KdV. 

3. Experiments description 

The experiments are conducted in a 36 m long, 0.55 m wide and 
1.2 m high flume as sketched on figure 1. At one end of the flume 
a piston-type wave maker can be displaced horizontally. The pis-

_..-... 
s -........-

C'l 
....___ 
tr.:;_ 

I 
>< 

Fig. 2 

0.3 

0 .2 

0.1 

0 

-0.1 

-0.2 

-1 0 

time (s) 
The four laws of motion tested for a solitary wave of 

dimensionless amplitude£= 0.4 with a water depth h0 = 0.3 m: 

first-order shallow water(- -); second-order shallow water(-.-); 

hyperbolic tangent fitted to Rayleigh numerical integration(-); 

analytical linearization of Rayleigh-based law of motion( . . .  ). 

ton is linked to a hydraulic jack capable of a 550 mm stroke. The 
control system is monitored by a computer. Different motions of 
the paddle can be prescribed by the computer, enabling the gener­
ation of either solitary waves or sinusoidal waves. Nevertheless 
the piston-type wave maker is more appropriate for long wave 
generation since it displaces the entire water column uniformly. 
However, we need to prescribe the appropriate law of motion for 
the paddle in order to produce solitary waves that are as pure as 
possible. The different laws of motion detailed in the previous 
sections are tested. A solitary wave of expected amplitude A is 
generated using each law. The two Rayleigh laws require larger 
paddle displacement than the shallow-water laws. With regard to 
the finite stroke of the jack, the laws deduced from the Rayleigh 
solution lead to smaller solitary wave amplitudes. 
For a water depth h0 = 0.3 m, the upper bound of the solitary 
wave dimensionless amplitude f.= Alh0 is 0.35, while using the 
first-order shallow water law allows a dimensionless amplitude 
up to 0.5. We generate the broader range of dimensionless soli­
tary wave amplitudes possible for depths at rest of h0 = 0.3 m (£ 
varies from 0.05 to 0.35) and h0 = 0.2 m (£varies from 0. 1 to 
0.6) . Surface displacements during the experiments are measured 
i n  fixed locations by resistive probes. Probe precision is estimated 
to be 0.5 mm for free surface elevations lower than 5 em and at 
1 mm beyond this limit. This is due to probe calibration (Guizien, 
1998 [8]). This means that the relative error in the dimensionless 
amplitude is about 3 % for the smallest solitary waves (£= 0.05) 
and is less than 2 % for the others. All experimental recordings 
are measurements of free surface displacement against time (be­
tween 1 5  and 25 seconds duration) .  Two series of experiments 
were performed. In the first set (h0 = 0.2 m and h0 = 0.3 m), the 
probes are located along the centreline of the flume to avoid lat­
eral perturbations, at x1 = 6 m and every 0 .5 m between x2 =
19.5 m and x6 = 2 1 .5 m. In the second set (h0 = 0.3 m), five
probes are located every 5 m up to 25 m. All distances are given 
from the flume end where the paddle is located. 

4



4. Experimental results 

Figures 3 shows the free surface elevation measured at a distance 
x = 67 h0 from the wave maker end of the flume, corresponding 
to solitary waves generated using the four paddle laws of motion 
with £= a!h0 ranging from 0.05 to 0.35 for h0 = 0.3 m. Figures 4
represents the same measured at x = I 00h0 from the paddle with 
£ranging from 0 . 1  to 0.6 for h0 = 0.2 m. These measurements 
correspond to the first set of experiments. 
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Fig. 3 Solitary waves generated using the 4 laws of motion con­
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represents the prescribed main pulse amplitude.)- Record 

of free surface elevation at x = 67 h0 away from the pad­

dle with h11 = 0.3 m. 
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All solitary waves generated using a paddle law of motion de­
rived from KdV or second-order shallow water theory exhibit a 
trough (dispersive wave) after the main pulse whereas using pad­
dle laws of motion derived from Rayleigh, a bump (maybe a 
smaller solitary wave) trails it. It is noticeable that the bumps are 
of smaller amplitude than the troughs, except for the largest 
waves with £ = 0.6 for h0 = 0.2 m. Indeed, this case behaves dif­
ferently. There is sometimes breaking or two solitary waves are 
clearly generated for laws of motion giving good results for lower 
amplitudes and the worst law of motion suddenly gives better 
results. This latter feature was already observed for £  = 0.5 with 
the second-order shallow water procedure. In fact, the limit of the 
dynamic servo-controller is reached for such waves. The discrep­
ancy between the prescribed and actual paddle motion is no lon­
ger negligible, due to the very large acceleration required. On 
figure 5, the paddle laws of motion corresponding to the hyper­
bolic tangent function fitted to a Rayleigh numerical integration 
are plotted for £ ranging from 0. 1 to 0.6. Greatest accelerations 
occur somewhere between the beginning of motion (zero veloc­
ity) and mid-stroke (maximum velocity). Qualitatively, the larger 
the maximum velocity and the shorter the duration of motion, the 
greater the acceleration. From figure 5, it may be expected that 
the maximum acceleration will increase with the amplitude of the 
solitary wave and may reach the l imi t  of the servo-controller. 
From figure 2, it may also be noted that for a prescribed ampli­
tude, the law of motion based on the second-order shallow water 
theory requires greater acceleration than the other procedures. 
This explains why for this law of motion the servo-controller 
limit i s  already reached when£= 0.5. Thus, we will exclude from 
our discussion the £= 0.6 experiment for all laws and the £ = 0.5 
experiment for the second-order shallow water theory based pro­
cedure. Indeed, except for these cases, the actual paddle law of 
motion is sufficiently close to the prescribed one. 

4.1 Trailing waves 

Confident in the assumption that the system is capable of follow-

0.5 
0 

...c: 
---
N' 0 ---Cf) 

I 
>< -0.5 � 

-1 

-3 -2 -1 

t = 0.6
t = 0.5 

t = 0.4 
t = 0.3 

t = 0.2 
t = 0.1 

- maximum acceleration 

0 
time (s) 

2 3 

Fig. 5 Laws of motion for solitary waves of dimensionless amplitude

£ ranging from 0.1 to 0.6 (h0 = 0.2 m) obtained from the 

linearized solution of (5) for a Rayleigh solitary wave. Maxi­

mum velocity is reached when t = 0 and maximum acceleration 

occurs where the curvature is the greatest. 

ing the desired law of motion, our interest is to minimise the trail­
ing waves. On fig. 6 .a and .b, we present the amplitude a' of 
these bumps or troughs with respect to the main pulse amplitude 
measured at x = 67 h0 (resp. x = l 00h0) away from the paddle end 
of the flume for h0 = 0.3 m (resp. h0 = 0.2 m). The trough ampli­
tudes (on average 5 %) are sometimes more than twice those of 
the bumps (on average 3 % ). We also discuss the four procedures 
tested in  our experiments in comparison to Goring's ( 1 978, [7]). 
The only records plotted in Goring's thesis correspond to small 
amplitude solitary waves (£ = 0. 1 ,  [7], p 1 23 and £ = 0.2, [7], p 
1 30). In our experiments' equivalent, solitary waves generated 
using laws of motion derived from Rayleigh' s solution show sim­
i larly small bumpy trailing waves with less than 3 % amplitude. 
Measurements of the free surface elevation at different distances 
from the paddle for a solitary wave of prescribed dimensionless 
amplitude£= 0.2 generated using Rayleigh's  numerical integra­
tion are plotted on figure 7. This graph is comparable to the one 
produced by Goring ([7], p 1 30) regarding the trailing waves. 
Yet, in Goring's experiments, the solitary wave amplitude is se­
verely damped to £= 0. 1 5  atx = 85h0 . 
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tanh fit on the numerical integration of equation (2) for Rayleigh 

solitary wave solution - Record of free surface elevation at dif­

ferent distances from the paddle (f. = 0.2 ,  h11 = 0.3 m). 

4.2 Main pulse stability

By reproducing the same generation sequence several times, it 
becomes clear that the generated wave is highly reproducible, so 
that for a given paddle law, the solitary wave amplitude could be 
determined at any location in the flume together with the relative 
size of the trailing waves given the probe accuracy. During the 
second set of experiments, we studied the changes occurring in 
the first moments of propagation of the solitary wave emerging 
from the KdV and Rayleigh solutions, between x = 1 7  h0 and x = 
83h0 for h0 = 0.3 m (see figure 8) .  In the first and second set of 
experiments, the amplitude of solitary waves generated using 
KdV or the second-order shallow water theory c learly decreases 
more as it propagates than it does when using Rayleigh. This can­
not be attributed only to damping by viscous friction as estimated 
by the Keulegan formula ( 1 948, [ 1 1 ]) although this formula gives 
a very good prediction of this dissipation, as tested by Renouard 
et al . ( 1 985, [ 1 9]). Indeed, from Keulegan' s formula, the ampl i­
tude decrease due to viscous dissipation over fu: = 45h0 would be 
3 .3  % whereas the measured damping over the same distance for 
solitary waves generated using KdY or the second-order shallow 
water theory varies between 5 and 6 %. For a solitary wave gen­
erated using Rayleigh, this damping is no more than 3 %, and on 
average 1 .5 %. 
This loss of amplitude is also observed in the experiments by 
Goring ([7] ,  p 1 30). Indeed, for a solitary wave of initial 
dimensionless amplitude £= 0. 1 75 (h0 = 0.1 m, which is already 

6 
� 

>::-

a-

6 
� 

>::-

b-
Fig. 8 

10 

8 x = 17h0 x = 50ho x = 83ho 

6 

4 

2 

0 J \ 1 \ li ..<"'-v � ....____..-

0 5 10 15 20 

time (s) 

10 

8 
x = 17ho x = 50ho x = 83ho 

6 

4 

2 

0 ) \ )L j_ \ 
0 5 10 15 20 

time (s) 
Solitary waves of dimensionless amplitude f. =0.3 (h0 = 0.3 m) 

generated by KdV (a) and Rayleigh (b) based procedures mea­

sured at different distances from the paddle. The KdV based 

procedure results in a solitary wave pulse that decreases. In con­

trast, the Rayleigh based procedure produces very stable pulses. 
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lower that the prescribed amplitude £ = 0.2), Goring gives a 
damping over Llx = 1 00h0 (between x = 10h0 and x = l l 0h0) of 
1 7  %, whereas the estimation from Keulegan's formula is II %. 
In similar conditions (£ = 0.2, h0 = 0.2 m), our experiments give 
a damping over Llx = 67.5h0 for solitary waves generated using 
Rayleigh-based procedures of 5.5 % (4.6 % for the tanh fit and 
6.2% for the linearization), and 8% for shallow water based pro­
cedures, while Keulegan' s formula predicts a viscous damping of 
4.8 %. Figure 9 shows the loss of amplitude for all the sets of ex­
periments performed. These plots contain values given for all the 
generation laws tested. The trend discussed above appears very 
clearly. Rayleigh based procedures (and especially the numerical 
one) result in solitary wave primary pulses whose amplitude de­
creases less than in the case of those produced by shallow water. 
Goring noticed that the Boussinesq based procedure produced 
severe ly  damped sol itary waves as wel l .  Moreover the 
Boussinesq, KdV and second-order shallow water procedures 
produce trailing waves that need a longer distance to separate 
from the main pulse. This indicates that energy exchanges be­
tween these two parts of the wave train last longer, resulting in 
less stable primary pulses. For all amplitudes, it is shown that a 
solitary wave generated using Rayleigh based procedures is stable 
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from the paddle versus designed dimensionless amplitudes for 
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from KdV (x), second-order shallow-water theory(*), Rayleigh 

analytical (o) and Rayleigh numerical (+)solutions for (a) 1111 = 
0.3 m and (b) h11 = 0.2 m. The Keulegan formula estimates are 
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beyond x = 20h0 while for other procedures the distance can be 
estimated at x = 80h0. The good performance of laws of motion 
derived from Rayleigh's solution are probably due to the accuracy 
with which Rayleigh's solution describes certain characteristics 
of the exact sol itary waves. These aspects are discussed below. 

5. Discussion 

The Byatt-Smith (1970, [3]) numerical solution will be used as a 
reference for the exact solitary wave. It is indeed known to be one 
of the most accurate solitary wave solution within the potential 
flow theory. From this solution, the depth-averaged horizontal 
velocity is easily computed and substituted in (I) to compute a 
law of motion for the paddle. It should be noted that no experi­
ments were performed using this law. However it is felt that a 
Byatt-Smith procedure is not very practical since each wave ve­
locity field needs to be computed numerically which is very time­
consuming. On figure I 0, the dimensionless paddle laws of mo­
tion with time for Byatt-Smith, Rayleigh and Boussinesq (Goring 
procedure) solitary waves and for shallow-water theories are plot­
ted for£= 0.306. For the same wave we also plot on figure II the 
dimensionless paddle velocity corresponding to these laws of mo­
tion. In the example shown on figure I 0 it appears that the total 
paddle stroke is better described by the second-order shallow wa­
ter solution than by any other solution. Figure 12 plots the depth­
averaged net mass displacement L in a sol itary wave computed 
from Byatt-Smith's numerical solution compared to the ones as­
sociated to KdV, shallow water second-order and Rayleigh solu­
tions. This net mass displacement is the total stroke of the paddle 
prescribed in each procedure. Hence. it is confirmed that the total 
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Fig. 10 Paddle law of motion derived from Byatt-Smith's numerical 

solution(-), KdV solution (--),second-order shallow water so­

lution ( -.-), Rayleigh's solution ( ... ) and Goring's procedure 

(xxx) for£= 0.306. 
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stroke in the second-order shallow-water theory procedure is the 
closest to the Byatt-Smith solution mean net mass displacement, 
at least in the solitary wave dimensionless amplitude range con­
sidered in the experiments. Nevertheless, it seems that this good 
agreement is not sufficient to produce 'pure' solitary waves. In­
deed, trail ing waves are smaller when using Goring or Rayleigh 
procedures and yet, total strokes are smaller and larger respec­
tively in Goring and Rayleigh procedures compared to the Byatt­
Smith mean net displacement. Figure II also shows that the 
Boussinesq and Rayleigh paddle velocities closely match the ve­
locity required by Byatt-Smith' s solution. In fact, in both proce-

solitary wave (SW) limiting steepness 
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Fig. 12 Mean horizontal displacement obtained from Byatt-Smith's nu­

merical solution (-), KdV (- -), second-order shallow water so­

lutions(-.-) or Rayleigh's ( ... )analytical solutions versus soli­

tary wave dimensionless amplitude£ ranging from 0 to I. 
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Fig. 13 Dimensionless maximum paddle velocity at mid-stroke for 

Byatt-Smith's numerical solution(-), KdV (- -).second-order 

shallow water solution (-.-), Rayleigh's solution ( ... ) versus 

dimensionless solitary wave amplitude c. The maximum paddle 

velocity in Goring's procedure is the same as in the Rayleigh­

based procedure. 

dures, paddle laws of motion match the Byatt-Smith based paddle 
motion around mid-stroke (fig. 10), where the paddle velocity 
reaches its maximum (fig. I I ). Indeed, the maximum paddle ve­
locity deduced from Byatt-Smith solution (which occurs at mid­
stroke) is very well described by the Rayleigh or Boussinesq solu­
tions (there are equals) over a broad range of dimensionless am­
plitudes as shown on figure 1 3 . As shown by (4) a good estima­
tion of the maximum depth-averaged velocity requires a good 
estimation of the phase speed. The dimensionless phase speed (or
Froude number) F = c I Jih; is plotted on 1 4.a.lt shows that the
Rayleigh phase speed is the closest to both the Byatt-Smith nu­
merical and experimental estimations. The outskirts decay coeffi­
cient versus the dimensionless amplitude is plotted on figure 1 4.b. 
This outskirts decay coefficient describes the way free surface 
elevation tends towards the mean level at infinity. Stokes showed 
that � is a solution of the following equation, also used by Byatt­
Smith: 

Fe= tan(� ) 

� 
( 1 8 )

It should  be underlined here that the Boussinesq solitary wave 
expression is neither a solution of the KdV nor of the Boussinesq 
equations ( 1 872, [2] ) .  It appears to be a mixture of the Rayleigh 
phase speed and of the KdV outskirts decay coefficient and con­
sequently, net mass transport. Concerning the outskirts decay co­
efficient, the same hierarchy as for the phase speed is observed on 
figure 1 4.b. This explains why the paddle velocity in Rayleigh's 
procedure matches the paddle velocity based on Byatt-Smith so­
lution both at the maximum and the outskirts. 
As a matter of fact none of these approximate solutions matches 
the Byatt-Smith reference with regard to al l  the criteria used in 
this study. Second-order shallow water theory correctly predicts 
the mean net displacement. The Rayleigh and Boussinesq solu-
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tions agree with Byatt-Smjth' s numerical solution concerning the 
maximum velocity at mid-stroke. And finally paddle velocity de­
rived from Byatt-Smith's numerical solution is matched by Ray­
leigh-based paddle velocity at the outskirts. 
We can now understand why, by increasing the duration of mo­
tion for a given stroke, Goring reduces the waves trail ing the first 
solitary wave. Indeed, the duration of motion as expressed by (7)  
is a function of both the phase speed c and the outskirts decay 
coefficient � of the solitary wave. To a given stroke corresponds 
a given outskirts decay coefficient. Thus, to prolong the duration 
of motion it would be necessary to take a smaller phase speed 
than the one corresponding to the outskirts decay coefficient in 
Boussinesq form. This is in agreement with the relation in Byatt­
Smith' s numerical solution between outskirts decay coefficient, 
phase speed and solitary wave amplitude. Thus, prolonging the 
duration of motion tends to match both outskirts decay coefficient 
and phase speed to the Byatt-Smith solution but for a smaller am­
plitude than the design one. As a consequence, the relation be­
tween the net displacement (paddle stroke) and solitary wave am­
pl itude wil l  tend to be fulfilled s ince in Boussinesq' s  solitary 
wave the net displacement was underestimated. But how much 
should we prolong motion duration to get the purest solitary 
waves? Goring suggested 1 0  o/o but this value actually depends on 
the solitary wave amplitude and hence is not constant. Therefore, 
we suggest using Rayleigh's procedure rather than Goring's be-

cause it is then unnecessary to modify the duration of paddle mo­
tion arbitrarily  and the resulting solitary waves are as pure and 
more rapidly established. 

6. Conclusion 

It has been shown in this paper that solitary waves generated us­
ing a paddle law of motion derived from Rayleigh' s solution 
( l inearized or fitted)  are purer and more rapidly established than 
with any of the shallow-water theory-based procedures. Trailing 
waves after solitary waves generated using this new procedure are 
indeed as small as in Goring's procedure, being less than 3 o/o of 
the main pulse amplitude. However, none of these generation pro­
cedures is perfect. Indeed, taking Byatt-Smith' s ( 1 970, [3 ] )  nu­
merical solution as a reference for the solitary wave solution, the 
paddle stroke is better described by second-order shallow-water 
theory than in the other procedures, whereas the maximum paddle 
velocity at mid-stroke is better predicted in our procedure or in 
Goring's. With respect to solitary wave generation, we suggest 
that this maximum paddle velocity is a key parameter. For a given 
maximum velocity, a Froude number is selected. The con·espond­
ing paddle stroke for this Froude number should then be pre­
scribed. We found that the Rayleigh solitary wave with an accu­
rate description of the Froude number and outskirts decay coeffi­
cient meet the above requirements. Hence the generation proce­
dures based on Rayleigh's solitary wave solution is a good com­
promise for obtaining quite pure and rapidly established solitary 
waves. 

7. Acknowledgements 

The authors would like to thank Jean-Marc Barnoud for technical 
support and assistance when performing the experiments. This 
work has been financially supported by the MAST-IH EC 
programme, under contract MAS3-CT95-0027. The first author 
is grateful to the French Ministry of Education for attributing her 
a PhD grant. 

8. Notation 

The fol lowing notations are used in the paper: 

A 
a' 

soli tary wave main pulse amplitude 
first trailing wave amplitude 

A' second-order sol itary wave amplitude 
c solitary wave phase speed 
F = c I Jih; Froude number

g gravity 
170 mean water depth 
L solitary wave depth averaged mass displacement 
S paddle stroke 
f.!.r = £/cr2 Urse l l  number
u(x, t )  depth-averaged horizontal velocity of solitary wave 

time 
X Lagrangian space variable giving paddle position 
x space position in flume 
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a tanh fit parameter 

� solitary wave outskirts decay coefficient 
8 tanh fit parameter 
£ = Alh0 dimensionless solitary amplitude 
1\ = 2/� horizontal solitary wave length scale 
y(x, t) vertical acceleration at free surface 
ll(x, t) free surface elevation 
e = ct - X sol itary wave co-moving frame variable 
<J = hof 1\ shallow water parameter 
t duration of paddle motion 

The fol lowing subscripts are used in the paper: 

B 
G 
KdV 
R 
SW2 

X 

Boussinesq solitary wave expression 
Goring generation procedure 
Korteweg and De Vries solitary wave solution 
Rayleigh solitary wave solution 
second-order shallow water theory 
derivation with respect to time 
derivation with respect to space 
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