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Short wave phase shifts by large free surface solitary waves: Experiments
and models

Katell Guiziena) and Eric Barthélemy
Laboratoire des Ecoulements Ge´ophysiques et Industriels, BP 53, 38041 Grenoble Cedex 9, France

~Received 2 May 2000; accepted 17 July 2001!

In this paper, we compare experiments on short gravity wave phase shifting by surface solitary
waves to a Wentzel–Kramers–Brillouin–Jeffreys~WKBJ! refraction theory. Both weak interactions
~head-on interaction! and strong interactions~overtaking interaction! are examined. We derive a
dispersion relation and wave action conservation relation which are similar to the ones obtained for
short waves refraction on slowly varying media. The model requires an exact solitary wave solution.
To this end, a steady wave solution is numerically computed using the algorithm devised by
Byatt-Smith @Proc. R. Soc. London, Ser. A315, 405 ~1970!#. However, two other solitary wave
solutions are incorporated in the model, namely the classical Korteweg and De Vries~KdV! @Phil.
Mag. 39, 422 ~1895!# solution ~weakly nonlinear/small amplitude solitary wave! and the Rayleigh
@Phil. Mag. 1, 257 ~1876!# solution ~strongly nonlinear/large amplitude solitary wave!.
Measurements of the short wave phase shift show better agreement with the theoretical predictions
based on the Byatt-Smith numerical solution and the Rayleigh solution rather than the Korteweg and
De Vries one for large amplitude solitary waves. Theoretical phase shifts predictions based on
Rayleigh and Byatt-Smith numerical solutions agree with the experiments forA/h0<0.5. A new
heuristic formula for the phase shift allowing for large amplitude solitary waves is proposed as a
limiting case when the short wave wave number increases. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1409964#

I. INTRODUCTION

In the present paper we analyze how short surface waves
are modulated by free surface solitary waves. This approach
may be considered as a model of a more complex interaction
problem, namely nonlinear internal wave–surface wave in-
teraction. The latter is of importance for ocean remote sens-
ing applications. Indeed, on synthetic aperture radar~SAR!
images of the ocean surface, signatures of long internal
waves are due to Bragg wave modulations. From a theoreti-
cal point of view free surface solitary wave and short wave
interactions is a challenging problem. Indeed standard theo-
ries for short waves do not encompass long nonlinear waves
and vice versa. As a first cut one may consider two linear
waves one of which is very long compared to the other. This
is the approach initiated by Longuet-Higgins and Stewart.1

They analyzed the change of the form of short surface waves
riding on longer ones within the framework of linearized
theory for finite depths. Interaction terms are derived from
the second order of Stokes’ theory, which requires the as-
sumption of small steepness for both long and short waves.
They show that the short wave has a shorter wave length and
increased amplitude at the long wave’s crest. This Doppler
effect is interpreted as the work done by the long wave
against the radiation stress of the short one. In the same
paper, the authors suggest to generalize the wave action con-

servation and the dispersion relation valid for surface waves
refracted by a steady current to the case of surface waves
riding upon a much longer wave~Sec. IV!. This implies to
introduce an effective gravity resulting from the vertical ac-
celerations of the long wave. Longuet-Higgins and Stewart1

then show that this latter approach yields the same result as
their calculations within the second-order Stokes theory as
long as the vertical accelerations of the longer wave is neg-
ligible, like in shallow water~Sec. V!. In a companion paper,
Longuet-Higgins and Stewart2 made a further step forward.
They analyzed the change in amplitude of a short surface
wave on a steady nonuniform current. Under the slowly spa-
tially varying current assumption they derive the laws ruling
wave amplitude, namely wave action conservation, and wave
length modulations.

The linear behavior of the long wave was relaxed by
Garrett3 and later, Bretherton and Garrett4 who generalized
the results obtained by Longuet-Higgins and Stewart.2 In a
very general setting, using the averaged Lagrangian formu-
lation, they show that the wave action conservation is a very
general result for short linear wave of small steepness as long
as they propagate on a spatially and temporally slowly vary-
ing basic state. As just mentioned, the flow characteristics
of the basic state do not need to be linear and effective
gravity is introduced accounting for vertical accelerations in
the underlying basic state. This is highlighted by
Longuet-Higgins.5 He applied wave action conservation to
show that when the long wave is steep, up to the Stokes
wave maximum steepness of 0.4432, the steepness of the
short wave riding on it undergoes much more enhancement
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than would be predicted by the second-order of Stokes’ lin-
ear theory developed in his 1960 paper. Longuet-Higgins
also underlined the need for a very accurate description of
the long wave, which he did through a particularly efficient
algorithm.

The paper of Bretherton and Garrett4 is an encourage-
ment to make alternative choices on the basic state. Naciri
and Mei6 derived analytically the solution for a short wave
riding on a long wave given by the explicit formula for Ger-
stner’s rotational wave. They qualitatively reproduce
Longuet-Higgins’ numerical results, and show that instabili-
ties can appear for sufficiently large short wave steepness
compared to the long to short wave frequency ratio.

The choice of a solitary wave has been made by a few
authors and is the one made in this study. Using a method-
ology similar to the one proposed by Zhang and Melville7 for
infinite depth, Shenet al.8 derive a nonlinear Schro¨dinger
equation and wave action conservation for short waves
riding on a solitary wave. This confirms the suggestion by
Bretherton and Garrett.4 They explicitly assume the perturb-
ing wave to be a short deep water wave. They also retrieve a
‘‘wave crest’’ conservation equation. Wave number, wave
amplitude, and frequency modulations of the short wave are
thus computed along a solitary wave profile. The latter is
computed by Evans and Ford’s9 procedure. Wave number
modulations along the solitary wave is an important step
towards phase shift computations. Using a WKBJ perturba-
tion method within the shallow water theory, Clamond and
Germain10 allowed for solitary waves of the KdV type to
coexist with short waves. Predicted short wave phase shifts
are shown to agree with those measured during earlier ex-
periments on interactions between a short monochromatic
surface wave and an external solitary wave in shallow water
~mean depthh0 of 25.5 cm! by Clamond and Barthe´lemy.11

Indeed, Clamond and Barthe´lemy11 experimented two
short waves frequencies of 1.5 and 2.3 Hz~k`h0 of 2.35 and
5.42 wherek` is the short wave wave number!. They only
considered the case of waves propagating in opposite direc-
tion ~head-on interaction!, referred to as a weak interaction.
This terminology was first introduced by Miles12 for solitary
wave interactions. In contrast the case of a solitary wave
propagating in the same direction~overtaking interaction! is
called a strong interaction. It was shown that the surface
wave train, after interaction, was phase-shifted compared to
the surface wave train before. Phase shifts in this context had
never been mentioned before in the literature. Previous theo-
ries or experiments on phase shift predictions dealt with
sinusoidal waves.

Longuet-Higgins and Phillips13 showed that when two
sinusoidal waves of very different wave numbers interact,
the phase velocity of the shorter one will be decreased or
increased~depending on the relative direction of propagation
of the waves! by an amount proportional to the mass trans-
port at the surface of the longer wave. Mass transport in
solitary waves produces a small but finite displacementL of
the water particles. Thus, on the same ground as Longuet-
Higgins and Phillips,13 it is expected that short waves inter-
acting with solitary waves will be phase shifted by the dis-
placement. Assuming linear superposition of motion and

instantaneous displacement, the phase shiftDw undergone by
the short wave is expressed by

Dw5
2pL

l
5k`L, ~1!

wherel is the short-wave wave length. This heuristic for-
mula depends on the expression ofL5L(A,h0) whereA is
the solitary wave amplitude andh0 is the depth of water at
rest. In the present paper we discuss the relevancy of the
instantaneous interaction assumption underlying~1!.

Experimentally, the phase shift undergone by the short
wave is measured using an harmonic analysis technique. The
order of magnitude of the phase shift corresponds to a short
wave time shift of 0.1 second. Determination of such a small
phase shift is very sensitive to a variety of perturbing phe-
nomena. In Clamond and Barthe´lemy’s experiments, solitary
waves had strong dispersive tails trailing the main pulse that
authors claim to affect the determination of the phase shift.
We improved the solitary wave generation procedure in order
to minimize the undesired trailing waves. Moreover, other
perturbing causes are examined.

Hereinafter, we present in Sec. II A a derivation of the
wave action conservation and a new dispersion relation for
first-order Stokes waves interacting with a solitary wave us-
ing a WKBJ perturbation method in the rectilinear coordi-
nates. This approach is similar to Shenet al.,8 except that we
allow for intermediate water depth and the wave crest con-
servation equation is simplified in order to obtain an alge-
braic dispersion relation. The solitary wave may be described
either by the analytical solutions of Rayleigh14 or KdV15 or
by Byatt-Smith’s16 numerical solution. Assuming a KdV
solitary wave, Clamond and Germain10 analytical expression
of the phase shift is retrieved. We discuss in Sec. II B the
relevance of these different solitary wave approximations in
the scope of solitary wave interaction with a short wave. The
theoretical results are then compared with experiments pre-
sented in Sec. III which are complementary to Clamond and
Barthélemy.11 Indeed, for the first time, strong interactions
have been produced. Moreover, a broader range of short
wave wave numbers has been examined~k`h0 varies from
2.73 to 7.54!. In Sec. IV, the wave number modulations de-
duced from Sec. II A are tested through comparison with the
measured phase shifts undergone by the short waves. In
some cases, short waves breaking has been observed. Predic-
tions of the maximum short wave steepness when breaking
was observed are reported.

II. THEORETICAL ANALYSIS

The aim is to devise a two-dimensional~2D! model to
study short surface waves modulations when the short waves
ride on a solitary wave. We use a nonviscid, incompressible
and homogeneous fluid with a depth at resth0 . We assume
irrotational motions, therefore, the velocity field can be de-
rived from a velocity potentialF(x,z,t) andhs(x,t) denotes
free surface displacement with respect to the rest level.

The key step is to consider a long wave which is an
exact stationary solution of this flow in a reference frame
moving at the wave phase speedc. To this end, the new
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horizontal variableX5x2ct that describes the co-moving
frame is introduced. It has long been known that this prob-
lem has an exact stationary solitary wave solution
~Lavrentiev17!. At the present level of derivation it is not
necessary to specify its expression and we denote the veloc-
ity potential and the free surface displacement associated
with this exact stationary wave byfe(X,z) andhe(X) ~see
Fig. 1!. Other exact solutions exist, amongst which are peri-
odic solutions.

We now seek for infinitesimal disturbances of this exact
solution. The free surface elevation and velocity potential are
expanded as series of a small parameterd of the following
form:

hs~X,t !5he~X!1dh~X,t !, ~2!

F~X,z,t !5fe~X,z!1df~X,z,t !. ~3!

As in the Stokes theory,d is known to be proportional to
the short wave surface slope. Assuming that the perturbation
is sinusoidal in time of high-frequencyv and that its ampli-
tudea is small compared to both its wavelengthl and depth
h0 , the first-order then reduces to a classical set of linear
partial differential equations. The perturbation potential
f(X,z,t) is a harmonic function and the bottom is imperme-
able. The free surface displacement for the perturbation is
given by

h~X,t !3G~X!5 ivf2~ue2c!
]f

]X
2ve

]f

]z
, ~4!

where ue5feX , ve5fez and G(X)5g1(ue2c)veX

1vevez written on z5he(X). One recognizesG(X) to be
the effective gravity introduced by Longuet-Higgins and
Stewart1 and later Bretherton and Garrett.4 The effective
gravity is the sum of the gravity and vertical acceleration at
the free surface.

The free surface kinematic condition in addition to Ber-
noulli’s relation leads to the following equation for the per-
turbation velocity potential at the free surfacez5he(X):

ae~X!f1be~X!
]f

]X
1ce~X!

]f

]z
1de~X!

]2f

]X]z

1ee~X!
]2f

]X2 1 f e~X!
]2f

]z2 50, ~5!

with

ae~X!52v22 ivS uezheX2vez2
~ue2c!

G~X!
@GX

1heXGz# D ,

be~X!52G~X!heX1~ue2c!~ueX2vez12uezheX

2~ue2c!@GX1heXGz# !22iv~ue2c!,

ce~X!5G~X!2ve~vez2uezheX!2~ue2c!S ve

G~X!
@GX

1heXGz#2veX2heXvezD
2 iv@ve1heX~ue2c!#,

de~X!5~ue2c!@ve1~ue2c!heX#,

ee~X!5~ue2c!2,

f e~X!5ve~ue2c!heX .

A. The WKBJ approximation

Length scales associated with the perturbation are as-
sumed to be very small compared with the length scales of
the long wave. The short wave is continuously adapting its
characteristics to maintain itself as a high-frequency mono-
chromatic wave. This assumption of WKBJ type is equiva-
lent to that of Shyu and Phillips.18 A small parameterm
5l/L ~where l is the short wave wavelength andL is a
characteristic length of the solitary wave! is naturally in-
volved and a new variableX* 5mX is introduced. The
WKBJ approximation postulates slow variations of the am-
plitude A(X,z) and rapid variations in the phaseS(X,z).
This is written in the following form:

~6!
f* ~X* ,z!5A* ~X* ,z!e, iS* ~X* ,z!/m ,

where f* (X* ,z)5f(X,z) and A* (X* ,z)5A(X,z) and
S* (X* ,z)5mS(X,z) are real numbers. The amplitude and
phase are expanded in even series ofm of the form

A* ~X* ,z!5A0* ~X* ,z!1m2A2* ~X* ,z!1¯1O~m2n!,
~7!

S* ~X* ,z!5S0* ~X* ,z!1m2S2* ~X* ,z!1¯1O~m2n!.
~8!

At the lowest orders~m22 and m21!, the only nontrivial
relation is S0* 5S0* (X* ). The modulated wave number
k(X)5S0X*

* is then introduced.
Depending on the relative scale ofm andd, Eq. ~5! will

simplify differently. Indeed, whenm;d orders correspond-
ing to m and d cannot be separated. Dingemans19 reports
studies of the refraction of waves by currents for which ver-
tical dependency predominates over horizontal and temporal
variations by assumingm!d. Regarding the interaction
problems, the correct assumption ism@d as made by Mei20

to study the refraction of waves on slowly varying currents.
The main difference here with the available literature is not
to assume that the long wave is a linear one either in finite

FIG. 1. Definition sketch.
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depth or in infinite depth. Moreover, most authors have fo-
cused on amplitude modification and Doppler shift. In con-
trast, we will analyze the phase shift of the short wave. Our
approach also differs from that of Clamond and Germain10

since they explicitly assumed a solution in the small ampli-
tude approximation. In contrast, the exact solitary wave so-
lution we consider can be of large amplitude. However, the
coefficients of Eq.~5! contain terms of different orders in
s5h0 /L, that can be sorted out. The two leading orders are
given in Table I.

Assuming s;m (l;h0), the perturbation fulfills the
following dispersion relation obtained by considering the or-
der m0:

V25gk~X!tanh@k~X!~he~X!1h0!#. ~9!

It appears that the effective gravity reduces to gravity.
The wave action conservation is retrieved at the orderm1

Fa2~Cg1c2ue~X!!

V G
X

50, ~10!

with V5v2k(X)(ue(X)2c), a5A0V/g the short wave
amplitude at the first order andCg5dV/dk the intrinsic
group velocity. The dispersion relation~9! for given ue(X),
he(X) and c is solved numerically fork(X) using a
Newton–Raphson method.

We briefly discuss qualitative behaviors. Atx56` the
short wave has a constant wave numberk` , the one ob-
served in the laboratory. Note that~9! differs from the dis-
persion relation obtained for refraction on a slowly varying
current. Indeed, changes in depth as the short wave rides on
the long wave are embedded in~9! since (he(X)1h0) ap-
pears instead ofh0 alone. The phase shiftDw is easily com-
puted when the modulated wave numberk(X) is obtained. It
reads

Dw5E
2`

1`

~k~X!2k`!dX, ~11!

wherek(X) is the wave number in the physical space.
Assuming a solitary wave solution of KdV type, the ba-

sic state reads

he~X!5e f ~X!h0 , ~12!

ue~X!5ec f~X!, ~13!

c5c0~11e/2!, ~14!

with e5A/h0 , f (X)5sech2(bX/2), b/25A3e/4h0
2 and c0

2

5gh0 . We also assume that the wave number expands as a
series ofe

k~X!5k`1ek11O~e2!. ~15!

Expansions of the right and left-hand side of Eq.~9! in
series ofe including the first two leading orders yield

V25~v1k`c0!21e@2c0~v1k`c0!~k12k` f !#

1O~e2!, ~16!

gk tanh~k~he1h0!!5gk` tanh~k`h0!

1e@gk1 tanh~k`h0!1gk`h0~k1

1k` f !~12tanh2~k`h0!!#

1O~e2!. ~17!

At the lowest order, formula~9! together with~16! and ~17!
provides the undisturbed dispersion relation forX56`

~v1k`c0!25gk` tanh~k`h0!. ~18!

At the next order~e!, formula ~9! gives

k1

k`
5G f ~X!, ~19!

with G5(c01v lab/2k`2cg)/(c01cg! where cg

5dv lab/dk` and v lab
2 5(v1k`c0)2. The phase shift~11!

then reads

Dw5ek`GE
2`

1`

f ~X!dX. ~20!

We retrieve in a more general framework the phase shift
DwKdV given by Clamond and Germain10

DwKdV

k`h0
5

4

)
GAA

h0
. ~21!

We may note thatG tends to 1 when the short wave
frequency increases.

B. Short wave modulation for different solitary wave
solutions

At this level, the exact solitary wave solution~basic state
around which a perturbation is sought! is not specified to
obtain~9! and ~10!. A different solitary wave approximation
may be used, as long as the terms neglected in Eq.~5! using
this approximation are at least an order of magnitude smaller
than the perturbation contribution. This is required so that the
basic flow and the perturbation can be solved separately. The
numerical solution proposed by Byatt-Smith16 will easily ful-
fill this assumption, as the error allowed when computing it
can be less than 1024 on the free surface elevation whereas
the short wave amplitude is of order 1022. We compute
Byatt-Smith numerical solution up toA/h050.7165 using
the accurate and efficient algorithm devised by Byatt-Smith
and Longuet-Higgins.21 The accuracy of Byatt-Smith nu-
merical solution is checked against measurements of both
free surface elevation and phase speed@see Figs. 2 and 3~a!#

TABLE I. First two orders inm of the coefficients in~5! and of the effective
gravity G(X).

O~1! O~m!

ae(X) 2v2 ivvez

be(X) 22iv(ue2c) 2gheX1(ue2c) (ueX2vez)
ce(X) g iv @ve1(ue2c)heX#
de(X) 0 (ue2c) @ve1(ue2c)heX#
ee(X) (ue2c)2 0
f e(X) 0 0
G(X) g 0
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for A/h0<0.5. Indeed, we were not able to produce larger
solitary wave because of the device capabilities~see Sec.
III !.

We shall also consider analytical solutions~which are
not strictly speaking exact solutions! including the KdV or
shallow water approximation, which rely on both long waves
and small-amplitude assumptions~weakly nonlinear theory!.
Within the shallow water theory, all series expand in either
even or uneven powers ofe5A/h0 . This means that the
order of magnitude that separates two consecutive approxi-
mations is at leaste2. Accordingly if first-order approxima-
tion is of order 1, corrections to obtain a second-order ap-
proximation will be of ordere2. Between 1 ande2, we ought
to be able to solve separately the perturbation first order
(;d5ak) leading to~9! and giving the rapid variation of
the phase, and the second-order~;dm! leading to~10! and
describing the slow variations in the amplitude of the pertur-
bation. This means that it is necessary fore2!md, which
can be met in the KdV domain of validity whene is less than
0.15.

Avoiding the latter restriction of small amplitude,
namely allowing e to be of order 1~strongly nonlinear
theory!, Rayleigh14 derived the following solitary wave so-
lution, reported by Lamb22 ~Sec. 252!:

h~x,t !5A sech2@b~x2ct!/2#, ~22!

b

2
5A 3A

4h0
2~h01A!

, ~23!

c5Ag~h01A!, ~24!

with the depth-averaged velocity given by

ū~x,t !5cS 12
h0

h01h~x,t ! D , ~25!

and the horizontal and vertical velocity given by

u~x,z,t !5ū1
~h1h0!2

6
ūxx2

~z1h0!2

2
ūxx , ~26!

v~x,z,t !52ūx~h01z!. ~27!

This is the steady solution of the set of equations pro-
posed by Serre23 and later by Su and Gardner24 in a strongly
nonlinear framework.

Since we assumes;m and in order to be consistent
with our WKBJ perturbation method, the horizontal velocity
at the free surfaceue(X,he) will be taken equal toū when
truncating terms of orderm2 and higher in~5! for Rayleigh
and KdV approximations. For Byatt-Smith exact numerical
solution, since this order separation is not possible,ue(X,he)
will be taken equal to the full free surface horizontal velocity
contribution. Moreover, separating orders, we require that
s4!md, which meansd@s3. This condition will be ful-
filled in the experiments.

FIG. 2. Dimensionless free surface elevation at one location vs time~a! and
in the steady reference frame~b! obtained for Byatt-Smith’s numerical so-
lution ~—!, KdV ~- -!, or Rayleigh’s~¯! analytical solutions and experi-
ments~s!.

FIG. 3. Froude numberF5c/Agh0 vs solitary wave dimensionless ampli-
tude A/h0 ~a! and outskirts decay coefficientb vs Froude number~b! ob-
tained for Byatt-Smith’s numerical solution~b is then the Stokes outskirts
decay coefficient solution of the relationF25tan(b)/b) ~—!, KdV ~- -!, or
Rayleigh’s~¯! analytical solutions and experiments~s!.
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As mentioned in the Introduction, the short wave phase
shift can be deduced heuristically from the particle displace-
mentL at the free surface of the solitary wave. The particle
displacementL at the free surface is defined in general by

L52E
0

` c2u~x,h!

u~x,h!
dx, ~28!

whereu(x,h) denotes the horizontal velocity at the solitary
wave free surface in the co-moving frame andc is the soli-
tary wave phase speed.

In the Korteweg and De Vries15 approximation, the hori-
zontal velocity at the free surface is the mean horizontal
velocity andL is given explicitly by

L5
4

)
h0AA

h0
. ~29!

Thus, we note that formula~21! tends to the heuristic
formula ~1! where L is given by ~29! for high-frequency
short wave. For large amplitude solitary waves (0.4<A/h0

<0.7), Longuet-Higgins25 showed that formula~29! is rather
inaccurate and underestimates the horizontal displacement
by 25% to 40%. However, it is still possible to derive from
Rayleigh and Byatt-Smith velocities at the free surface other
estimations forL to be included in the heuristic formula~1!.
We shall also consider an approximation forL based on the
depth averaged velocityū of Rayleigh solution, which lead
to the following analytical expression forL:

L5
4

)
h0AA

h0
S 11

A

h0
D . ~30!

On Fig. 4, we plot these estimations ofL, together with
Longuet-Higgins25 experiments. We also report on Fig. 4
Fenton26 ninth-order theory and Longuet-Higgins27 calcula-
tions for large amplitude solitary waves up to the limiting
steepness (0.7<A/h0<0.8332). We also report this limiting
steepness on the plots of the Froude number versus solitary
wave amplitude@Fig. 3~a!# and of the outskirts decay coeffi-
cient versus the Froude number@Fig. 3~b!#.

It is clear that displacements at the free surface derived
from Rayleigh free surface velocity or even Rayleigh depth-
averaged velocity are very accurate for a broader range of
solitary wave amplitude than KdV. Up toA/h050.4, dis-
placements derived from the free surface velocity from
Byatt-Smith’s exact solution, Rayleigh’s analytical solution
and displacements derived from Rayleigh depth-averaged
velocity merge, whereas displacement derived from KdV’s
solution are much smaller sinceA/h050.15. For A/h0

>0.4, some discrepancies appear between the simplified ex-
pression~30! and estimation ofL obtained either from the
free surface velocity of Rayleigh or the numerical solution
from Byatt-Smith. However, up toA/h050.7 the deviation
between formula~30! and Byatt-Smith is less than 10%
whereas it reaches 40% between formula~29! and Byatt-
Smith. Besides, in the same range, the deviation between
~30! and Longuet-Higgins’ experiments is at most of 20%.
Part of this deviation might be due to a suspected bias in
Longuet-Higgins measurements owing to the added displace-
ment caused by a secondary hump following the solitary
wave. Using formula~30! in the heuristic approach we over-
come the small amplitude KdV limit and short wave phase
shift is given analytically by

DwH

k`h0
5

4

)
AA

h0
S 11

A

h0
D . ~31!

Indeed, we show by comparing the free surface displace-
ment derived from the numerical solution of Byatt-Smith and
the displacement obtained from Rayleigh depth-averaged ve-

FIG. 4. Solitary wave dimensionless amplitude vs horizontal displacement
at the free surface obtained from Byatt-Smith’s~—! numerical solution
complemented by~3! ninth-order theory of Fenton~Ref. 26! ~^! calculation
by Longuet-Higgins~Ref. 27!, Rayleigh free surface velocity~—!, formula
~30!, i.e., Rayleigh~¯! and KdV~- -! depth-averaged velocities and experi-
ments from Longuet-Higgins~Ref. 25! ~s!.

FIG. 5. Wave number modulations along the solitary wave~X50 at the
solitary wave crest! predicted by WKBJ theory for the strong interaction of
a 2 Hz shortwave~k`516.09,h050.3 m! and a solitary wave of amplitude
A/h050.2025~a! andA/h050.4129~b! given by Byatt-Smith’s numerical
solution ~—!, KdV ~- -!, and Rayleigh~¯!.
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locity that this simple formula accurately reproduce the heu-
ristic approach for solitary waves up toA/h050.4 and with
less than 10% error up toA/h050.7.

Finally, we have to compare the amplitude and wave
number modulation obtained using each analytical approxi-
mation of the solitary wave and the numerical solution. Wave
number modulations~Fig. 5! associated with KdV show bet-
ter agreement than Rayleigh with the modulations obtained
using Byatt-Smith’s numerical solution. In all cases, the
highest maximum wave number modulations are given using
Byatt-Smith, with Rayleigh giving the lowest. The deviation
between Rayleigh and Byatt-Smith at the maximum of wave
number modulations reaches 40% forA/h050.5 in strong
interaction. With respect to amplitude modulations~Fig. 6!,
the deviation between Byatt-Smith and Rayleigh ranges from
the double to four times the deviation between Byatt-Smith
and KdV when solitary wave amplitude increases. Yet,
Byatt-Smith predicts amplitude modulation at the solitary
wave peak that are less than 6% greater than KdV~for
A/h050.5 in strong interaction!. As a consequence of both
wave number and amplitude modulations, when comparing
steepness maxima at the crest of the solitary wave@Figs. 7~a!
and 7~b!#, KdV and Byatt-Smith give close results up to
A/h050.3. ForA/h0>0.3, predicted steepness maxima are
smaller for KdV than for Byatt-Smith. In all cases, using
Rayleigh’s solution, predicted steepness maxima are smaller.
Yet, the phase shifts deduced from wave number modula-
tions given by Rayleigh are in better agreement with Byatt-
Smith than KdV, as shown in Figs. 7~c! and 7~d!. This is in
line with our conclusion on particles displacements at the
free surface. We suggest this is due to the better description
of both the outskirts decay coefficient and the phase speed in
Rayleigh solution@see Figs. 3~a! and 3~b!#.

As a conclusion, granted that Byatt-Smith’s numerical
solution is the exact solitary wave solution required in the
theory, Rayleigh’s approximation appears to be better than
KdV’s to test the short wave phase shift in the interaction
with a solitary wave. But regarding Doppler effects and par-
ticularly steepness prediction at the solitary wave crest, KdV
would give a better approximation than Rayleigh.

III. EXPERIMENTAL PROCEDURE

The experiments are conducted in a 36 m long, 0.55 m
wide, and 1.2 m high flume as sketched out on Fig. 8. It is
equipped with two wave makers.

At one end of the flume a piston wave paddle can be
displaced horizontally. The piston is linked to a hydraulic
jack capable of a 600 mm stroke. The control system is
monitored by a computer. Different motions of the paddle
can be prescribed by the computer, enabling the generation
of either solitary waves or sinusoidal waves. This ability was
used for strong interactions when solitary waves and short
waves need to be generated at the same end of the flume.
Nevertheless the piston type wave maker, although not per-
fect, is more appropriate for long wave generation rather than
for short wave generation since it displaces the whole water
column uniformly. Ideally, the piston would need to flex in
such a manner as to reproduce the solitary wave vertical
distribution of the velocity. This is not possible with our
wave maker. However, we need to prescribe an appropriate
law of motion for the paddle in order to produce solitary
waves that are as pure as possible. Clamond and Germain10

used a law deduced from the first-order shallow water theory.
All solitary waves generated with this motion exhibit a main
pulse followed by a dispersive tail with no more than 10% of
the amplitude of the leading pulse. In order to decrease the
amplitude of the dispersive tail, different laws of motion for
the piston wave maker were tested. It appears that solitary
waves generated using a paddle motion law conforming to
~25! are purer~smaller dispersive tail than with the original
law! and more rapidly established. Moreover, by reproducing
different experiments concerning solitary wave generation
with any generation law, we assess that it is highly reproduc-
ible. So that for a given paddle law, we could know the
solitary wave amplitude at any location in the flume given
the probe accuracy. The law deduced from the Rayleigh so-
lution implies larger paddle displacement than other laws.
With regard to the finite stroke of the jack, this latter law lead
to smaller solitary wave amplitudes. For a water depth of
h050.3 m the upper bound of the solitary wave dimension-
less amplitude is 0.35 while the first-order shallow water law
allows a dimensionless amplitude up to 0.5.

For weak interactions, a plunging wedge wave maker
was used to generate high-frequency monochromatic sinu-
soidal waves. It is driven through a scotch-yoke~Welt28! by
an electric motor rotating at constant speed. The frequency of
the wedge motion ranges from 1 to 10 Hz. The amplitude of
the motion is adjusted by prescribing a fixed eccentricity.
This wave maker can be located at will anywhere along the
flume. For the set of weak interactions, it was located at 28
m from the piston wave maker.

FIG. 6. Amplitude modulations~same legend as Fig. 5!.
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The depth at rest was fixed throughout the experiments
at h050.3 m. It is a compromise between the capabilities of
the solitary wave wave maker and the high frequency wedge
wave maker. In addition for this depth the short wave has a
dimensionless wave numberk`h0 ranging from 2.73 to 7.54
for frequencies varying from 1.5 to 2.5 Hz. It indicates that
experiments were performed for intermediate to deep water
depths conditions. The short wave is in fact a wave group as
shown on Fig. 9~a!. The front part is highly unstable. Enve-
lope solitons can be generated in this front part and at least
strong modulations of the amplitude are systematically ob-
served. The central part of the record@Fig. 9~b!# shows a
slight modulation in amplitude along with an asymmetry be-
tween crests and troughs due to second-order nonlinearities.
Harmonic analysis of this central zone shows that the first
harmonic component is a very small fraction of the funda-
mental component. Thus it is considered to be a nearly pure
monochromatic wave. Care is taken so that the measurement
of the interaction is made in the central part. Over 2.5 Hz the
wave is severely damped and propagates no further than 3 m
away from the plunging wave maker. It was noticed during

the experiments that damping was less pronounced after the
tank had just been refilled, in other words when the free
surface was clean. We thus attributed this damping to the free
surface contamination, as Van Dorn29 already suggested.
Thus, as it is not possible, given the size of the tank, to
maintain the free surface clean enough, we did not proceed
over 2.5 Hz.

Surface displacements during the experiments on the in-
teraction between short surface waves and surface solitary
waves are measured in fixed locations by resistive probes.
Probe precision was estimated at 0.5 mm for free surface
elevations lower than 5 cm and at 1 mm beyond this limit.
This is due to probe calibration. These probes are combined
in arrays and the distance between probes is fixed. The array
can be moved along the flume, between 11 and 22 m from
the piston wave maker depending on the experimental con-
ditions. An extra probe can be dedicated to the measurement
of the solitary wave before it has interacted. All experimental
recordings of interactions are measurements of free surface
displacement against time~between 15 and 25 seconds dura-
tion!. The probes are located along the center line of the

FIG. 7. ~a! and ~b! Steepness maxima at the crest of the solitary wave and~c! and ~d! phase shifts deduced from wave number modulations predicted by
WKBJ theory for weak and strong interaction of a 2 Hz short wave~k`516.09,h050.3 m! of amplitude 1 cm and a solitary wave given by Byatt-Smith’s
numerical solution~—!, KdV ~- -!, and Rayleigh~¯!.

FIG. 8. Sketch and dimensions of the
experimental equipment.
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flume to avoid lateral perturbations. We generate a solitary
wave of amplitudeA, a short wave of frequencyf ~wave
numberk`!, and of amplitudea` . A typical example of an
interaction is presented on Fig. 10, on which four zones can
be differentiated. Zone A is the recording of the short wave
before interaction, zone B is the recording of the interaction
between the solitary wave and the short wave when the soli-
tary wave contribution is predominant, and zone C is the
recording of the short wave after it has interacted. The slight
modulation is due to the dispersive tail trailing the soliton.
Zone D is a useless part of the recording. Indeed the reflected
solitary wave interacts with the dispersive tail and the short
wave.

From the theoretical point of view, we know that the
short wave undergoes wave number modulations during the
interaction. The modulations are difficult to obtain directly
from the measurements. However, phase shift of the wave
train A with respect to the wave train B is a consequence of

wave number modulations. The data processing to obtain this
phase shift is based on a harmonic analysis technique de-
tailed in Clamond and Barthe´lemy.11 This was found to be
the most precise method. The methodology was tested on
pure synthetic sinusoidal signals with no other contribution.
In this case the phase shift between two arbitrary zones with
such signals is 0 since no other wave is present. This method
applied to such signals yields a phase shift as low as the
machine roundoff error in double precision, namely
10216rad. Concerning our experiments, we also tested the
error induced by the dispersive tail that follows the solitary
wave main pulse in zone C. To this end, two tests have been
considered. First, we apply harmonic analysis to the super-
imposition of a pure synthetic sinusoidal signal and a mea-
sured free surface elevation for a single solitary wave. We
considered solitary waves generated by the different paddle
motion laws we tested. But in the whole range of solitary
wave amplitude, the improvements in reducing the disper-
sive tail did not show a significant reduction in phase shift
error due to inaccuracy in the method because of the disper-
sive tail. This error is at most 0.1 rad. Second, all interaction
experiments were repeated with solitary waves generated ei-
ther with Rayleigh or KdV paddle motion law. Phase shifts
obtained from one or the other experiment series do not
separate more than the error than can be estimated for a
single experiment. Indeed a large contribution to the error
comes from irregularities in the measured short wave signals.
This was assessed by the following test. A record of a freely
propagating short wave is split in two. Phase shift between
both parts is computed. This was repeatedly done and it was
found that phase shifts could reach 1.5 rad without any ap-
parent disturbances. This error in phase computation is
mainly attributed to uncertainties in the frequency determi-
nation of short signals~records less than 10 s!. The reliability
of the frequency of the wave maker was checked. It was felt
that the best way to estimate and reduce errors in phase shift
determination was to repeat the measurements. All the phase
shifts presented in this section are, therefore, an average on 5
or 6 values obtained at locations spanning 2 m~probe array!.
All the values presented fulfilled the criteria of an error lower
than 1 rad, estimated from two times the standard deviation
of the 5 or 6 values. Experiments for which this criteria was
not fulfilled have been excluded. More details regarding ex-
perimental errors can be found in Guizien.30 As mentioned
above, given a short wave frequency and a solitary wave

FIG. 9. Recording of a high-frequency wave group at 10 m from the wedge
wave maker;f 52 Hz, h050.3 m. ~b! is a close-up of the recording plotted
in ~a! showing evidence of second-order contribution.

FIG. 10. Free surface elevation against time at 19.423
m from the piston wave maker; for the solitary wave
A/h050.3 and the frequency of the short wave isf
52.5 Hz ~k`525.15! for an amplitude of a`

55.7 mm (h050.3 m).
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amplitude, we carried out experiments for the different soli-
tary wave laws of generation, considered as repetition of the
same experiments. Besides, the short wave amplitude was
also allowed to vary, from 4 to 12 mm, as long as the short
wave out of the interaction was stable.

IV. RESULTS AND DISCUSSION

The interaction between a surface solitary wave and a
short wave can be analyzed using very simple arguments, as
recalled in the introduction. The short wave phase shift is
then given by formula~31!. We emphasize that this formula
is obtained by considering only displacement due to solitary
waves, linearly and instantaneously. As a consequence, the
short wave direction of propagation is not taken into account.
It should be noted that~31! is independent of the short wave
amplitudea`. Figure 11 shows the experimental results of
nondimensional phase shiftsDw/(k`h0) againstAA/h0 for
strong and weak interactions and various short wave frequen-
cies. We do not identify on the plots of Fig. 11 the short
wave amplitude. Indeed, it was not possible to show experi-
mentally any dependency of the short wave phase shift on
the short wave amplitude.

Heuristic phase shiftDwH given by formula~31! is plot-
ted as a dotted curve. In this representation, it is the same
curve in all cases. Experimentally, weak interactions give
smaller phase shifts thanDwH while strong interactions give
larger ones. Moreover it appears that for strong interactions
the higher the frequency of the short wave, the closer the
nondimensional experimental phase shifts are to

DwH /(k`h0). This is not surprising since formula~31! as-
sumes that the short wave does not propagate during the
interaction. Indeed, this assumption is met with decreasing
error as the frequency increases since then the short wave
phase velocity also decreases. For weak interactions, since
the induced phase shifts are smaller, it remains difficult to
observe this effect as clearly. In order to clearly show this
argument, we plot on Fig. 12 the relative deviation between
phase shifts given by formula~31! and experimental values
or formula~9! for a Rayleigh solitary wave as the short wave
wave number increases. In fact, this graph shows that the
relative error one would do when using formula~31! to es-
timate the short wave phase shift, decreases when the short
wave frequency increases. This error is less than 10% when

FIG. 11. ~1! Experimental phase shifts versus the
square root of solitary wave dimensionless amplitudes;
~¯!: DwH ; ~—!: DwR ; ~- -!: DwKdV ; ~—!: DwBS ; ~* !:
short wave was observed breaking;~s!: short wave
suspected to be breaking from pictures;~a! strong and
~d! weak: f 51.5 Hz; ~b! strong and ~e! weak: f
52.0 Hz; ~c! strong and~f! weak: f 52.5 Hz with h0

50.3 m.

FIG. 12. Relative deviation between phase shifts given by formula~31! and
experimental values for~s!: strong interaction;~1!: weak interaction and
given by formulas~31! and~9! for a Rayleigh solitary wave for~—!: strong
interaction;~––!: weak interaction.
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k`h0>30. However, the departure ofDwH from the dimen-
sional phase shift increases when the short wave frequency
increases as shown by Clamond and Germain.10 This is be-
cause the wave number increases more rapidly than the
phase velocity decreases with increasing frequency.

On Fig. 11 we also plot the phase shiftsDwKdV given by
formula ~21!, DwR given by formula~9! for a Rayleigh~R!
solitary wave andDwBS given by formula~9! for a Byatt-
Smith ~BS! solitary wave. Up toA/h050.15, formulas~21!
and ~9! give very close results, which is in agreement with
the KdV theory limit. Indeed, we already showed in Sec. II A
how ~9! reduces to~21! under the small amplitude assump-
tion. Formula~9! for a Rayleigh or a Byatt-Smith soliton
allows to predict phase shifts for a wider range of solitary
waves, theoretically up to the limiting dimensionless ampli-
tude of 0.8332~Longuet-Higgins25!. In our experiments, we
were limited toA/h0<0.5. In weak interactions, taking into
account the experimental error~represented by the error bars
on Fig. 11!, it is not possible to conclude on a better agree-
ment with one or the other formula. However, the advantages
of this formulas appear for strong interactions when phase
shifts are the largest. Indeed, the experimental results for
large solitary waves in strong interaction are closer to pre-
dictions of formulas~9! ~either based on the Rayleigh soli-
tary wave approximation or Byatt-Smith numerical solution!
for frequencies of 2 and 1.5 Hz. Repeated experiments~es-
pecially at 2 Hz! confirm this trend. For 2.5 Hz, this ten-
dency is not as clear, partly due to the early breaking ob-
served.

As a matter of fact, a 2.5 Hz short wave was observed
‘‘breaking’’ for a solitary wave of dimensionless amplitude
A/h050.25 whereas for 2 and 1.5 Hz frequencies, breaking
only occurred for the largest solitary waves, respectively, for
A/h050.4 andA/h050.45. We use here the term breaking to
refer to foam patches that one can see on the free surface.
This breaking is due to the steepening of the short wave
when both amplitude and wave number increase. Thus, short
waves of different amplitudes but with the same frequency
and interacting with the same solitary wave may be differen-
tiated by breaking, whereas if only the phase shift is consid-
ered they cannot. The maximum short wave steepness at the
crest of the solitary wave when the short wave was observed
breaking is computed from~9! and ~10! using Byatt-Smith
numerical solitary wave solution. These values bound to ex-
perimentally observed breaking are given in Table II. We
also report in Table II the maximum steepness values pre-
dicted for the weak interaction with the largest solitary wave
experimented (A/h050.5). Breaking was never clearly ob-
served in our weak interactions~no foam patches!. Because
of the uncertainty concerning the breaking limit, we may just
stress that for the same predicted steepness forf 52.5 Hz
(k`h057.54), short waves are observed breaking in the
strong interaction but not in the weak interaction case. More-
over, the predicted steepness when breaking is observed is
always smaller than the Stokes limit of 0.4461 for waves
propagating at rest. This all suggests that breaking is not
determined only by the steepness but also by the underlying
velocities.

V. CONCLUSION

Theoretically we found a dispersion relation~9! to de-
scribe the wave number modulations of a short wave riding
on a solitary wave that is similar to the one obtained for the
refraction of waves in slowly varying media, except that it
includes free surface elevation. Wave action conservation
~10! is also obtained. Any solitary wave solution may be
used and, if assuming a small amplitude one, Clamond and
Germain’s10 analytical expression for the phase shift under-
gone by the short wave is confirmed.

We compare short wave wave number and amplitude
modulations obtained from~9! and ~10! when using Byatt-
Smith’s numerical solution and KdV or Rayleigh’s analytical
solutions. The shape of the wave number modulation curve
associated with KdV appears to be closer than Rayleigh to
the one obtained with Byatt-Smith, but it misses the maxi-
mum that occurs at the crest of the solitary wave for large
solitary waves. Besides, phase shifts deduced from integra-
tion under the curve for Rayleigh’s solitary waves are in
better agreement with Byatt-Smith’s predictions than for
KdV’s solitary waves. We suggest this is due to the better
description in Rayleigh’s solution of the phase speed and
outskirts decay coefficient. Another feature is that particles
displacements at the free surface deduced from Rayleigh so-
lution are very accurate. We thus derived a new analytical
formula ~31! for the limiting case of high-frequency short
waves riding on large amplitude solitary waves. Experimen-
tally, strong interactions have been carried out for the first
time. They clearly show the influence on the phase shift de-
termination of the direction of propagation of the waves in-
teracting as far as small wave number are concerned. Be-
sides, the only case, when taking into account experimental
error, measurements enable to show a better agreement with
one of the theoretical formulas, occurs in strong interaction.
Thus, we show in that case thatDwR and DwBS were in
better agreement thanDwKdV with measurements. In addi-
tion, we show that when the short wave wave number in-
creases, phase shifts tends to the heuristic formulaDwH .
Indeed, in our experimental set, we covered a broader range
of short wave wave number then Clamond and Barthe´lemy.11

During the experiments, some cases of breaking were
observed that may be attributed to significant steepening of
the short wave induced by both wave number and amplitude
modulations. Indeed, breaking enables a difference to be
made between two short wave trains with the same fre-
quency but different amplitudes, whereas phase shift depends
only on the frequency of the short wave. This latter appears

TABLE II. Maximum short-wave steepness at the crest of the solitary wave
computed from~9! and~10! when the short wave was observed breaking in
strong interaction and for the largest solitary waves experimented (A/h0

50.5) in weak interaction~the short wave was NOT observed breaking in
these latter cases!.

k`h0 Strong Weak

2.73 0.267 0.189
4.83 0.320 0.296
7.54 0.150 0.535
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in the theory and is confirmed by the experiments. Relying
on theoretical predictions, the maximum steepness reached at
the crest of the solitary wave can be estimated using Byatt-
Smith’s numerical solution. It then appears that for similar
maximum steepness predictions, short waves might be
breaking in the strong interaction case whereas they do not in
the weak interaction case, showing the influence of the un-
derlying velocity.
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