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Abstract

In this article, we prove new stability results for almost-Einstein

hypersurfaces of the Euclidean space, based on previous eigenvalue

pinching results. Then, we deduce some comparable results for almost-

umbilic hypersurfaces and new characterizations of geodesic spheres.
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1 Introduction

The well-konwn Alexandrov theorem [1] says that embedded hypersurfaces
in R

n+1 with constant mean curvature are geodesic spheres. This result is
not true for only immersed hypersurfaces. For instance, the so-called Wente’s
tori (see [14]) are examples of compact surfaces with constant mean curvature
in R

3, which are not geodesic spheres. Other examples of higher genus are
known (see [8] for instance).

For immersed hypersurfaces of constant mean curvature, an additional
assumption is needed. One condition is given by the Hopf theorem [7], which
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says that constant mean curvature spheres immersed in R
n+1 are geodesic

spheres.
In this paper, we give a new rigidity theorem for spheres, where we replace

the topological assumption by a metric assumption. Precisely, it is easy to
see that hypersurfaces of R

n+1 with constant mean curvature and constant
scalar curvature are geodesic spheres. This result comes from the fact that
a hypersurface of constant mean curvature and constant scalar curvature is
totally umbilic. Here, we give a new rigidity result with a weaker assumption
on the scalar curvature. Namely, we show

Theorem 1. Let (Mn, g) be a compact, connected and oriented Riemannian
manifold without boundary isometrically immersed into R

n+1. Let h be a
positive constant. Then, there exists ε > 0 such that if

(1) H = h and

(2) |Scal − s| 6 ε,

for some constant s, then M is the sphere S
n
(

1
h

)

with its standard metric.

We derive this theorem from results about almost umbilic hypersurfaces
that we prove in Sect. 4, and based on a previous eignevalue pinching result
given in [12].

2 Preliminaries

Let (Mn, g) be a n-dimensional compact, connected, oriented Riemannian
manifold without boundary, isometrically immersed into the (n+1)-dimensional
Euclidean space (Rn+1, can). The second fundamental form B of the immer-
sion is the bilinear symmetric form defined by

B(Y, Z) = −g
(

∇Y ν, Z
)

,

where ∇ is the Riemannian connection on R
n+1 and ν the outward normal

unit vector field on M .
From B, we can define the mean curvature,

H =
1

n
tr (B),

and, more generally, the higher order mean curvatures,

Hr =
1

(

n

r

)σr(κ1, · · · , κn),
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where σr is the r-th symmetric polynomial and κ1, · · · , κn are the principal
curvatures of the immersion. By convention, we set H0 = 1.

Note that H1 = H and from the Gauss equation, H2 is, up to a mutli-
plicative constant, the scalar curvature. Namely, we have H2 = 1

n(n−1)
Scal .

These extrinsic curvatures satisfy the well-known Hsiung-Minkowski for-
mula, for 1 6 r 6 n,

(1)

∫

M

(

Hr−1 − Hr 〈X, ν〉
)

dvg = 0,

where X is the position vector of the immersion. They also satisfy the
following inequalities if Hr is a positive function:

(2) H
1

r
r ≤ H

1

r−1

r−1 ≤ · · · ≤ H
1

2

2 ≤ H.

Moreover, Reilly [10] proved some upper bounds for the first eigenvalue
of the Laplacian for hypersurfaces of R

n+1 in terms of higher order mean
curvatures. Precisely, he shows

(3) λ1(M)

(
∫

M

Hr−1dvg

)2

6
n

Vol(M)

∫

M

H2
r dvg,

with equality only for the geodesic hyperspheres of R
n+1.

By the Hölder inequality, we obtain for p > 2,

λ1(M) 6 n
||Hr||22pVol(M)2− 1

p

(∫

M
Hr−1dvg

)2 .

Now, for p > 2 and 1 6 r 6 n, we define kp,r =
||Hr||22pVol(M)2− 1

p

(∫

M
Hr−1dvg

)2 , which

are the constants involved in Theorem 2.
The main tool in the proof of Theorem 1 is the following pinching result,

associated with these inequalities, that we proved in [12].

Theorem A (Roth [12]). Let (Mn, g) be a compact, connected, oriented
Riemannian manifold without boundary isometrically immersed in R

n+1. As-
sume that Vol(M) = 1 and let r ∈ {1, · · · , n} such that Hr > 0. Then for
any p > 2 and any θ ∈]0, 1[, there exists a constant Kθ depending only on n,
||H||∞, ||Hr||2p and θ such that if the pinching condition

(PKθ
) 0 > λ1(M)

(
∫

M

Hr−1dvg

)2

− nVol(M)2−1/p||Hr||22p > −Kθ

is satisfied, then M is diffeomorphic and θ-quasi-isometric to S
n
(
√

n
λ1

)

.

Remark 1. Note that if p > n
2r

; then Kθ does not depend on ||Hr||2p.
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3 Almost Einstein hypersurfaces

It is a well-known fact that an Einstein (Scal > 0) hypersurface of the
Euclidean space R

n+1 is a round sphere. This was proved by Thomas [13]
and independently by Fialkow [4] in the 30’s. Recently, Grosjean [6] gave a
new proof based on an upper bound of the first eigenvalue of the Laplacian
involving the scalar curvature.

From this approach, we showed in [12] that almost-Einstein hypersurfaces
of R

n+1 are close to round spheres. Namely,

Theorem B (Roth [12]). Let (Mn, g) be a compact, connected, oriented
Riemannian manifold without boundary isometrically immersed in R

n+1, n >

3. Let θ ∈]0, 1[. If (Mn, g) is almost-Einstein, that is, ||Ric−(n−1)kg||∞ 6 ε

for a positive constant k, with ε small enough depending on n, k, ||H||∞ and

θ, then M is diffeomorphic and θ-quasi-isometric to S
n
(√

1
k

)

By θ-quasi-isometric, we understand that there exists a diffeomorphism

F from M into S
n
(√

1
k

)

such that, for any x ∈ M and for any unitary vector

u ∈ TxM , we have
∣

∣

∣
|dxF (u)|2 − 1

∣

∣

∣
6 θ.

This theorem is a corollary of our pinching result for the first eigenvalue of
the Laplacian (Theorem A).

In this article, we consider almost-Einstein hypersurfaces of R
n+1 in a

weaker sense, namely for the Lq-norm, that is, ||Ric − (n − 1)kg||q 6 ε for
some positive constant k and a sufficiently small ε. We prove that for some
suitable constants k, such manifolds are close to round spheres. Precisely,
we prove the following

Theorem 2. Let (Mn, g) be a compact, connected, oriented Riemannian
manifold without boundary isometrically immersed in R

n+1. Let θ ∈]0, 1[,
if (Mn, g) satisfies ||Ric − (n − 1)kp,rg||q 6 ε for some sufficiently small
ε depending on n, q, ||H||∞ and θ, then M is diffeomorphic and θ-quasi-

isometric to S
n
(
√

1
kp,r

)

.

The constants kp,r in the theorem are defined from the higher order mean
curvature (see Sect. 2).

After giving the proof of this theorem, we will give some applications to
almost-umbilic hypersurfaces. Finally, we derive some applications to almost
constant mean curvature and almost constant scalar curvature, and then
conclude with the proof of theorem 1
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The proof of Theorem 2 is based on the above pinching result combined
with a lower bound for the first eigenvalue of the Laplacian due to Aubry
[2]. Assume that ||Ric − (n − 1)kg||q 6 ε(n, q, k) for a positive constant k,
q > n

2
and ε small enough, then from Theorem 1.1 of [2], we deduce that

λ1(∆) satisfies

(4) λ1(∆) > nk(1 − Cε),

where Cε is an explicit constant such that Cε −→ 0 when ε −→ 0.
Now, with the particular choice of k = kp,r, we get:

λ1(M)

(
∫

M

Hr−1dvg

)2

− nVol(M)2−1/p||Hr||22p > −Kε

for some constant Kε such that Kε −→ 0 when ε −→ 0.
Let θ ∈]0, 1[, we choose ε(n, q, k, θ) small enough such that Kε is small

enough in Theorem A to obtain a diffeomorphism and θ-quasi-isometry be-

tween M and S
n
(
√

1
kp,r

)

. �

Now, we will deduce from Theorem 2 some Corollaries for almost-umbilic
hypersurfaces of R

n+1.

4 Almost umbilic hypersurfaces

First, we give the following theorem, which a direct application of Theorem
B.

Theorem 3. Let (Mn, g) be a compact, connected, oriented Riemannian
manifold without boundary isometrically immersed in R

n+1. Let θ ∈]0, 1[. If
(Mn, g) is almost-umbilic, that is, ||B − kg||∞ 6 ε for a positive constant k,
with ε small enough depending on n, k and θ then M is diffeomorphic and
θ-quasi-isometric to S

n
(

1
k

)

.

Proof : We recall the once traced Gauss formula

(5) Ric(Y, Y ) = nH 〈B(Y ), Y 〉 − 〈B(Y ), B(Y )〉 ,

for a tangent vector field Y . From (5) and ||B − kg||∞ 6 ε, we deduce

Ric(Y, Y ) > nk2||Y ||2(1 − ε)2 − k2||Y ||2(1 + ε)2

> (n − 1)k2||Y ||2 − αn(ε)||Y ||2,

5
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where αn is a positive function such that αn(ε) −→ 0 when ε −→ 0.
Similarly, we get

Ric(Y, Y ) 6 (n − 1)k2||Y ||2 + αn(ε)||Y ||2.

Finally, we have
||Ric − (n − 1)k2g||∞ 6 αn(ε),

which implies, by Theorem B, that for ε small enough, M is diffeomorphic
and θ-quasi-isometric to S

n
(

1
k

)

. �

Now, from Theorem 2, it is possible to obtain, in some particular cases,
comparable results for almost-umbilic hypersurfaces in an Lq-sense. We recall
that the umbilicity tensor is defined by

τ = B − HId .

It is a well-known fact that if M is umbilic, i.e.,τ = 0, and if M is compact,
then M is a geodesic sphere. Here, we prove the following stability result for
almost umbilic hypersurfaces.

Theorem 4. Let (Mn, g) be a compact, connected, oriented Riemannian
manifold without boundary isometrically immersed in R

n+1. Let q > n
2
. For

any θ ∈]0, 1[, there exists two constants εi(θ, n, ||H||∞), i = 1, 2, such that if

1. ||τ ||2q 6 ε1,

2. ||H2 − kp,r||q 6 ε2, for p > 4 and 1 6 r 6 n,

then M is diffeomorphic and θ-quasi-isometric to S
n

(

1√
kp,r

)

Remark 2. Note that for r = 1, the result is due to Grosjean (see [5]), using
a pinching result which involves only H1 (see [3]).

Proof. We recall the Gauss formula for hypersurfaces of R
n+1:

Ric = nHB − B2.

From this, we deduce that

Ric − (n − 1)H2g = nHB − B2 − (n − 1)H2g

= (n − 2)Hτ − τ 2,
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which implies

||Ric − (n − 1)kg||q 6 ||Ric − (n − 1)H2g||q + (n − 1)
√

n||(H2 − k)||q

6 (n − 2)||H||∞||τ ||2q + ||τ ||22q + (n − 1)
√

n||(H2 − k)||q

6 (n − 2)||H||∞ε1 + ε2
1 + (n − 1)

√
nε2

Now, we conclude by taking ε1 and ε2 small enough depending on n, ||H||∞
and θ in order to apply Theorem 2 and obtain the θ-quasi-isometry. �

Then, we deduce the following corollary which is to compare with Theorem
3 .

Corollary 1. Let (Mn, g) be a compact, connected, oriented Riemannian
manifold without boundary isometrically immersed in R

n+1. Let θ ∈]0, 1[.
If (Mn, g) is almost-umbilic, that is, ||B −

√

kp,rg||2q 6 ε, for q > n
2
, with

ε small enough depending on n, ||H||∞ and θ then M is diffeomorphic and

θ-quasi-isometric to S
n

(

1√
kp,r

)

.

Proof : A simple computation shows that

||H2 − kp,r||2q 6 α1||B −
√

kp,rg||2q, and

||τ ||2q 6 α2||B −
√

kp,rg||2q,

for two constants α1 and α2 depending on n and ||H||∞. Since we assume
that ||B −

√

kp,rg||2q 6 ε, we get

1. ||H2 − kp,r||2q 6 α1ε,

2. ||τ ||2q 6 α2ε.

For ε small enough, the assumptions of Theorem 4 are satisfied and we can

conclude that M is diffeomorphic and quasi-isometric to S
n

(

1√
kp,r

)

. �

Remark 3. We want to point out that this corollary is an improvement of
Theorem 3 only in some sense. Indeed, we improve the L∞-proximity to an
L2q-proximity, but this corollary is valid only for some special constants kp,r

and not for any positive constant as in Theorem 3. Nevertheless, this result
is sufficient to deduce an interesting application for r = 2.
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5 Proof of Theorem 1

In this section, we will give the proof of Theorem 1. First, using Corollary 1,
we will show that hypersurfaces of R

n+1 with almost constant mean and scalar
curvatures are close to a geodesic sphere. Precisely, we show the following

Theorem 5. Let (Mn, g) be a compact, connected and oriented Riemannian
manifold without boundary isometrically immersed into R

n+1. Let h > 0 and
θ ∈]0, 1[. Then, there exists ε(n, h, θ) > 0 so that if

(1) |H − h| 6 ε, and

(2) |Scal − s| 6 ε,

for some constant s, then |s−n(n−1)h2| 6 A(n, h)ε and M is diffeomorphic
and θ-quasi-isometric to S

n
(

1
h

)

.

Proof : First, we show that h and s are related.

Lemma 1. The two constants h and s satisfy

h =
1

n(n − 1)
s + Aε,

where A is constant depending only on n and h.

Proof : We recall the so-called Hsiung-Minkowski formula:

(6)

∫

M

(

H − 1

n(n − 1)
Scal 〈X, ν〉

)

dvg = 0.

By assumption, we have H(x) = h + f1(x)ε and Scal (x) = h + f2(x)ε, with
f1 and f2 two functions satisfying |f1(x)| 6 1 and |f2(x)| 6 1. Now, by (6),
we have

0 =

∫

M

(

h + εf1(x) −
(

1

n(n − 1)
s + εf2(x)

)

〈X, ν〉
)

dvg

= hVol(M) + ε

∫

M

f1(x)dvg −
1

n(n − 1)

∫

M

s 〈X, ν〉 dvg

− ε

n(n − 1)

∫

M

f2(x) 〈X, ν〉 dvg

= A1ε + hVol(M) − s

n(n − 1)h

∫

M

h 〈X, ν〉 dvg

= A1ε + hVol(M) − s

n(n − 1)h

∫

M

(H(x) − εf1(x)) 〈X, ν〉 dvg

= A2ε + hVol(M) − s

n(n − 1)h

∫

M

H 〈X, ν〉 dvg

8
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But, we know that
∫

M
H 〈X, ν〉 dvg = Vol(M), which yields

A2ε + h − s

n(n − 1)h
= 0.

So, we deduce that s = n(n − 1)h2 + Aε, where A is a constant depending
only on n and h. �

Now, we use Corollary 1 to conclude. For this, we need to estimate the
umbilicity tensor. By the Gauss formula, we have

|τ |2 6 n(n − 1)H2 − Scal

6 n(n − 1) (h + εf1(x))2 − (s + εf2(x))

6 n(n − 1)h2 − s + εh(x)

6 A′ε.

Then, from the definition of kp,r and the assumptions, we can see easily that
|H2−kp,2| 6 A′′ε. So the assumptions of Corollary 1 are satisfied and we can
conclude that M is diffeomorphic and quasi-isometric to S

n
(

1
k

)

if we choose
ε small enough depending only on n, θ and h. �

Now, we can deduce Theorem 1 from this result.

Proof of Theorem 1. For ε(n, h) small enough, we know, from Theorem
5, that M is diffeomorphic to S

n (we take θ = 1
2

in Theorem 5). So we
deduce that the immersion of M into R

n+1 is in fact an embedding. Since
M has constant positive mean curvature, by the Alexandrov theorem, M is
the sphere of corresponding radius, that is, S

n
(

1
h

)

. �

From Theorem 5, and using the Alexandrov theorem for constant scalar
curvature due to Ros [11, 9], we get the following corollary.

Corollary 2. Let (Mn, g) be a compact, connected and oriented Riemannian
manifold without boundary isometrically immersed into R

n+1. Let s be a
positive constant. Then, there exists ε > 0 such that if

(1) Scal = s

(2) |H − h| 6 ε,

for some constant h, then M is the sphere S
n

(

√

n(n−1)
s

)

.

9
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