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ABSTRACT See the special issue of Signal Processing [7] for othersfield
This paper presents a state of the art of actual achievementsapplication.

in time-domain system identification using fractional migdédt

starts with some general aspects on time and frequencyidoma ,

representations, time-domain simulation, and stabilftyrac- 1.1 Mathematical background _ , ,

tional models. Then, an overview on system identificatiothme A fractional mathematical model is based on fractional dif-

ods using fractional models is presented. Both equaticorer ferential equation:

and output-error-based models are detailed. In the fornogl-m

els, prior knowledge is generally used to fix differentiatior- y(t) + b1 DPry(t) + - + b, DPrey (1) =
ders; model coefficients are estimated using least squaites. aD%u(t) +aD*tu(t) + - +am,Dau(t) (1)
latter models allow simultaneous estimation of model'sfitoe
cients and differentiation orders, using non linear prograng. where differentiation order; < f2 < ... < Bmg, Oo < 01 <
A real thermal example is identified using a fractional mahe ... < 0Op,, are allowed to be non-integer positive numbers. The
compared to a rational one. concept of differentiation to an arbitrary order (non-gee),
, s/ d\Y .
1 Introduction DY= (ﬁ) VeRY,

Although fractional (non integer) operators remained for a
long time purely a mathematical concept, the rise of digiteth-
puters offered an easy way for simulating numerically nde-in was defined in the #century by Riemann and Liouville. The

ger integro-differentiation of mathematical functions. fractional derivative ok(t) is defined as being an integer deriva-
The last two decades have witnessed considerable devel-tive of order|y| +1 (|.] stands for the floor operator) of a non-
opment in the use of fractional differentiation in variousds. integer integral of ordey— |y| [8]:

Fractional differentiation is now an important tool for timeer-
national scientific and industrial communities. The usera€f

tional differentiation models in system identification wagi- DYx(t)=DW/*! (| Lleva(t)) EY
ated in the late nineties and the beginning of this centurg]1
Fractional models are now enough mature and are widely g\ v+t 1 ! x(1)dt
used in representing thermal diffusive phenomena [5],telec (a) r(ly] +1—y)/ (t_T)HyJ (2)
chemical diffusion [6], and in modeling viscoelastic métks. 0
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wheret > 0, Yy € R% , and the Euler'$ function is defined as:

[ee]

/ e 't 1dt

0

I (x) vxeR*\ {N"} (3)

A discrete-time definition of fractional derivative was pro
posed by Grunwald [9y € R* :

where Newton’s binomia(}:) is generalized to non-integer or-
ders by the use of Eulerlsfunction:

(

Equation (4) is generally used in time-domain simulations
of fractional differentiation. As Newton’s binomiél) does not
converge rapidly to zero witk wheny is non integer, the com-
putation ofDYx(t) depends on all values oft) between 0 and
t (supposing thax(t) is relaxed at = 0, i.e. x(t) =0Vt < 0).
Since fractional derivatives of a function depend on its l&ho
past, fractional operators are known to have long memory be-
havior.

D¥x(t) f K@

v> _ ry+1)
k) T(k+Dr(y—k+1)

(5)

A more concise algebraic tool can be used to represent frac-

tional systems: the Laplace transform [10]

Z{D¥x(t)} =9'X(s) if x(t)=0vt <O

This property allows to write the fractional differentiajuea-
tion (1), providedu(t) andy(t) are relaxed at= 0, in a transfer
function form:

ma
2 as'
F(s) = —% (6)
1+ > bjsp
=1
where (a,bj) € R2, (aj,Bj) € R2, Vi =0,1,...,ma, Vj =

1,2,....mg

A transfer functionF(s) is commensurable of orderiff it
can be written af (s) = ('), whereS= % is a rational function
with T andR two co-prime polynomials. Moreover, the com-
mensurable ordey is the biggest number satisfying the afore-
mentioned condition. O

In other words, the commensurable ordeis defined as
the biggest real number such that all differentiation csdene
integer multiples ofy. Taking as an examplE(s) defined in
(6), assuming thaf (s) is commensurable of ordgr and using

F(s) = §(s'), one can write:
T(s) m=0
S(9) = o = . )
R(s) 1+ WZB bmsBT
m=1

where all powers oin (7) are integers.

A modal form transfer function can then be obtained, pro-
vided (6) is strictly proper:
8

N Vv

A,
PP RcE

k=1g=1

,N are known as the'-poles of integer multi-

wheres, k=1,
Al
plicity vk. The elementary transfer functlw is known as

a mode of ordey and of multiplicityq.

1.2 State space representation

If the system defined by the fractional differential equatio
(1) is commensurable of ordgr then (1) can be rewritten in a
“fractional” (also called “generalized” or “macro”) stagpace
representation [11-13]:

{

This representation suggests the possibility of devetpginb-
space identification methods.

DYx(t)
y(t)=

= Ax(t) +Bu(t)

Cx(t) +Eu(t) )

1.3 Stability theorem
Here is a modified version of Matignon’s [14] theorem.
A commensurablg-order transfer functiofr (s) = §(s¥) =

;Es ; , whereT andR are two coprime polynomials, is BIBO sta-
ble iff
O<y<2 (10)
and for everys € C such thaR(s) =0
jarg(9) < v (11)

Copyright (© 2007 by ASME
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Figure 2. Approximation of a fractional integrator using a rational model
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Figure 1. Stability region. A system is stable iff all its S'-poles are inside Lo

the greyed region

Magnitude (dB)

in figure (1) tends to the whokeplane whery tends to 0, corre-
sponds to the Rooth-Hurwitz stability whgnr= 1, and tends to
the negative real axis whartends to 2. An additional condition
is however required for a system to belong4g(C™").
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The stability region suggested by this theorem and plotted ‘ !
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1.4 H, norm of fractional transfer functions B
Contrary to rational systems, the stability condition does o o @, o o, o, o

guarantee that a fractional transfer function belongdA(C™"). Feeney

TheH; norm of fractional systems is extensively studied by Malti  Figure 3. Bode diagrams of a fractional integrator and the asymptotic

et al. in [15], Whel’e the authors ShoWed that a Stable fl‘a&tio behavior of its rational approximation

transfer function as defined in (6), where conditions (1@)@m)

are satisfied, belongs td,(C™) iff its relative degree is greater

K

than3:
[wa, wg] instead of a gain:
B Om, > ! (12)
mg — Omy > 5
2 s \ 1I-v 1435
1+ & N1
svosy =2 m) LS % (13)
: i . wa,0g] s |14+ stli14s
This condition suggests that some stable fractional system 0B k=1 0
not satisfying (12) have infinite impulse response energyse
systems cannot be represented using fractional orthogaisal h _ _ d
which sparH,(C™), as described in [16-18]. wherew = ac, (=N an
. . . loga
1.5 Equivalence with rational models =1— (14)
Due to the consideration that real physical systems gdperal logan
have bandlimited fractional behavior and due to the pratiim-
itations of input and output signals (Shannon’s cut-ofgfrency o andn are real parameters which depend on the differentiation
for the upper band and the spectrum of the input signal for the ordery. The bigger the better the approximation of the inte-
lower band), fractional operators are usually approxichdty grators V.
high order rational models. As a result, a fractional mocel a The obtained integrator has the following state space repre
its rational approximation have the same dynamics withima | sentation:
ited frequency band. The most commonly used approximation
of ¢¥ in the frequency banfloa, wg] is the recursive distribution _
of zeros and poles proposed by Oustaloup [19]. Trigeassou et X=Ax+Bu (15)
al. [13] suggested to use an integrator outside the frequange yiv = Cx

3 Copyright (© 2007 by ASME



wherey,y is the derivative of the input (see figure (2)),

(1 0 - --- 0 ro 0 - --- 0
—a 1 W~y
A=10 —a 1 0 w —wp
. . .0 . . _. O
| O O—-all] [0 -+ 0O wn—N|
T 1 0 «vr -e 0'*1-CO_
—a 1 0
B=|0 -a1
0
0 0—a1| LOJ
and
C=[0---01]

2 System identification

Frequency-domain system identification using fractional
models was initiated by the Ph.D thesis of Le Lay [1]. Time-
domain system identification using fractional differetitia
models was initiated by the Ph.D theses of Le Lay [1], Lin [2],

and Cois [3]. Mainly two classes of models were developed:

Equation-error-based models and Output-Error-based Isiode
both of which are presented in this section. Recently Mdlti e
al. [16] synthesized fractional orthogonal bases gerengliLa-
guerre, Kautz and BOG bases to fractional differentiatiatecs.

2.1 Equation-error models

Equation-error-based models are linear in coefficiente Th
identified system is assumed to be initially at rest, modéled
(1), and characterized by input/output coefficient’s vecto

0=[a...amb1...bmg]" (16)

Prior knowledge is generally used to fix the differentiatoders
00, ...,0m,,PB1,...,Pmg. Usually, a commensurable ordeiis

chosen and then all its multiples fixed up to a given order, say

Bmg. The ordemy, is generally set t@m; — v for strictly proper

systems.

17)

Consider observed datgt) andy*(t) = y(t) + p(t), wherep(t)

is a perturbation signal, collected at regular samptg;, (ko +
DTs,...,(ko+K—1)Ts. The most basic estimation method con-
sists of computing fractional derivatives of input/outgignals
from sampled data by applying (4). The output can be written i
a regression form:

(18)

where parameters and regression vectors are respectively g
by (16) and:

@'(1) = [Du(t)--Domu(t) —DPry’ (1)~ DProy’ (1)
(19)
Estimated parameters vectbof 0 is obtained by minimizing the
guadratic norm of the error:

J (é) —E'E (20)
where:

E=[e(koTs) e((o+1)Ts) ---e((ko+K-1)Ts)]"

and

The minimum of] is given by the classical least squares:
A T 4yt -1 * T/
Bopt = (qa ) ) > Ty

where:

o = [¢" (oTs) ¢ ((ko+1)Ts)

¢ T (ko+K-1T9]" (22)

Copyright (© 2007 by ASME



As in the integer case, fractional differentiation of nos#y-
nals amplifies the noise. Hence, a linear transformation-(lo
pass filter) can be applied to (18) so as to obtain a lineaimont
ous regression of filtered inputs (t), and outputyj; (t), signals:

yr(t) =@t (1)0 (22)

where

o (t)= [D“"uf (t)---Dmaug (t)  —DPry; (t)-.- — DPrey; (t>]

(23)
The filter is generally chosen to be causal, stationary, and |
pass. Among the possible filters the linear integral filter ba
used:

(24)

where the ordet is generally chosen as the highest differenti-
ation order in (1), i.e.L = Bmg. In this case, the differential
equation (1) is rewritten as an integral equation:

D Pray () + by DP Prey (1) + - + brgy (1) =
aODOIo*BmB u (t) 4.4 amADamA’BmB u (t) (25)

where all superscripts & are negative which stands for integra-
tion operator.

Although this method avoids differentiation of noisy sitma
it however integrates noise, producing wrong steady-state
low dynamics estimations. Among the possible filters, Cois e
al. [20] extend the concept of State Variable Filters (SVA)][
to fractional differentiation systems. They propose to tise
following fractional filter:

A

H(s) =
Op+ 018+ ...+ C(Nf,lsy(fol) 4 o

YN is filter's order. The design must respect the following spec
ifications:

Nt > max(Bmg, 0m,)
Coefficients 0p,a,...,0n;—1 Must be chosen such that
H(s) is stable.

A particular choice of SVF, proposed by Cois et al. [20], is

5

the fractional Poisson’s filter:

H(S) = —— =
(&) +1)
m\;Nf

Nr—1
SR (Tf) w/s(N-1) 4 (Z;fl) oo\f/( f )sV+m¥Nf
(26)

which is simply an extension of the rational Poisson'’s fit@r
fractional differentiation orders. Frequenay is fixed by the
user according to the frequency characteristics of thessy$d
be identified (close to the highest corner frequency). Theest
vector, composed of fractional derivatives of filtered ihpuout-
put signals, is defined by:

DDz, (1), DDz 1), |

Xf =
f -, DYzs (1), 21 (1)

(27)

wherez; denotes eitheus or ys. The fractional state space rep-
resentation of the filter is given by:

DYx¢ (t) = Arxs (t) + Bgzs () (28)

whereAs = —

(’I‘f> ol ('2\“> (,o?y (Eifl) (,)?Nf*l) w\;Nf

-1 0 0
0 0
0 0 -1 0
and
T
Br=|wf" 0...0]

Each state represents the derivative of a given order otinpu
or output signals (see figure (4)). Fractional Poissonisrlare
simulated using (4)

The estimated parameters vecoof 6 is now obtained by
minimizing the quadratic norm of the filtered equation error

J (é) —EKTE (29)

Copyright © 2007 by ASME



p(t)
u(t) y(t) . y(t)
»| Real system —
! :
H(s) H(s)
Fractional SVF Fractional SVF
N :
[D§ur ) . . 7\ by [yt oy
D, Ut ()] N : . oBeyi 0]
8, BmB mg Y
e (t)
Figure 4. Fractional state variable filters
where:

Ef: [Sf (kOTS) Ef ((k0+1)TS) < Ef ((kO+K—1)TS)]T

and

er (t) =y (t) — ¢; ()6,
@; being defined by (23).
The solution is given by the classical least squares:

6= (@Tor) 7Y (30)

where:

o7 = [0 (koTs) ¢7 ' (ko +D)To) ... ;" (ko +K—1)Tg)]

(31)

As in the classical case, Cois et al. [20] showed that the
least squares estimator (30) is biased in presence of noipy
To eliminate the bias, they propose to use instrumentahbbei
method. Parameters are estimated according to:

A T -1 T s
eg{)t:(q’lfv ‘Df) oVY5

where®Y is the regression matrix constituted of derivatives of
filtered inputs and derivatives of instrumental variablBise au-
thors also suggest to optimize instruments by an iteratenod.

2.2 Output-error models

Output-error-based models allow simultaneous estimation
of differentiation orders and model parameters. Mainlye¢h
identification methods were proposed in the literature. fliisé
one is based on discrete-time simulation of fractional nede
The second one, based on continuous-time simulation of frac
tional models, assumes that the fractional behavior isepitea
a limited frequency band. The third one uses fractionalayth
nal functions.

2.2.1 Method based on discrete-time simulation
of fractional models Here, the system to be identified is as-
sumed to be initially at rest, modeled by (6). It is now chéeac
ized by input/output vector formed of coefficients and dfati-
ation orderd) = [ag, ... am,,b1,...bmg, 0o, ... Omy, B, - . - Prmg)-

When the number of parameters in (6) is high, optimization
algorithms are ill-conditioned due to the absence of cairds
on differentiation orders. One way for introducing a coaisted
optimization on differentiation orders and, at the samefihm-
iting the number of parameters consists of optimizing the-co
mensurable ordey instead of all differentiation orders. In this
case, the fractional transfer function (6) is rewritten isamn-
mensurable form as in (17).

Numerator and denominator orders, respectivefy and
Bmg (both multiples o), are fixed as in classical rational models.
Henceforth, the system is entirely characterized by caeffts’
vector: 0 = [ag,...,am,,b1,...,bmg,Y]. As far as identification
of stable systems is concerned, the commensurable ordéecan
constrained td0, 2 (see conditions (10) and (11) of the stability
theorem).

Considering observed datiét) andy* (t) = y(t) + p(t), p(t)
being an output white noise, the quadratic norm:

J (é) - ko:i "2 (kTs, é) (32)
of output error:
£ (kT.8) =y (kTs) — 9 (kTs.) (33)

is now minimized. Model's output(kTs, 8) being non linear ir,
gradient-based algorithms, such as the Marquardt algof2R],
are used to estimatgiteratively:

i1 =6~ { Do +81] "), (34)

Copyright © 2007 by ASME
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Figure 5. Modal Decomposition

ko+K—-1 " .

Jp=-2 % s(kTS)S(kT&O): gradient
k=ko

ko+K—-1 " A
g~ 2 k:zko S<kTS,9> s <kTS,9>: pseudo- hessian  (35)

A 0y(KTe.,0
5<k-|'57 e) — %
& . Marquardt parameter

: output sensitivity function

Output sensitivity functions can be computed by differenti
ating (17) with respect te;, b;, v.

The idea of optimizing the commensurable order instead of
all differentiation orders was first introduced by Cois et[2B]
who chose to write the transfer function (17) in a modal fosn a
in (8). They however constrained all-poles to be real-valued
and of multiplicity one ¢k = 1, VK). In general s'-poles can
be real or complex conjugate, and of multiplicity greateegual
to one. As a result, the following more restrictive class ofiels
was proposed in [23] (see also figure (5)):

(36)

The corresponding parameters’ vector was then optimized:

0" = [As, 51, -+ An, S\, Y] (37)

In such a case, parameters are estimated recursively @ogood
(34), the gradient and the hessian are computed using (38), a
the sensitivity functions are obtained in a simpler form as:

aya(:ke) =gt (ﬁ) @ul(t) (38)
ay(g;e) =gt <(Syf\k7&)2> Qul(t) (39)
7

ay(t,é) (N ASIN(s)
Ty =9 (kzl—w> ®U(t) (40)

Where® stands for convolution operator.

Note the presence of (g) in the last sensitivity function
which makes analytical computation of the derivative campl
cated.

2.2.2 Method based on continuous-time simula-
tion of fractional models Trigeassou et al. [13] take as
a building block of fractional models a non integer integrat
bounded in the frequency band as shown in (13) and descnbed i
section 1.5. The differentiation order is estimated by fparand
computingn of (13). Oncea andn known, the differentiation
orderyis deduced according to (14).

For the sake of simplicity, consider the following fractan
differential system:

DYy(t) + aoy(t) = boul(t) (41)
DefineX(s) as:
X(9)= g% (42)

Thus, the generalized state-space representation ofytens is
obtained:

(43)

{ DYX(t) = —aox(t) + u(t)
y(t) = box(t)

Equivalently, (43) can be written using continuous-timeieg-
lent state space model (see section 1.5):

(44)

{ X1(t) = —agxn+1(t) + u(t)
y(t) = boxng(t)

Taking into account the state space representation of the
continuous-time approximation, the following global catal
state space representation can be written:

{XG—AGXG+BGU (45)

y = CeXe

Copyright © 2007 by ASME



where:

0--- 0 —ag
0

A=A+ _ (46)
0.0 0

Bc=B, CL=1[0...0bo] (47)

A andB being defined in (15).

Identification algorithm  In the case, the fractional behavior is
limited in a frequency band, sdga, ws], then authors fixx and
estimate the parameter vector:

8" = [a0, bo,n] (48)

In all cases the optimized criterion is defined as in (32) and
(33). The coefficients are computed recursively accordir{§4)
and (35). Sensitivity functions are now obtained by compti
partial derivatives of (13) with respect to each of the pastan
of (48).

2.2.3 Method based on orthogonal functions Re-
cently, Malti et al. [16—18] have synthesized complete agth
nal basis in_,[0, «[ (Lebesgue space of squared integrable func-
tions). Laguerre, Kautz, and GOB functions are hence exignd
to fractional differentiation orders. Thus, any finite emestable
transfer functiorf (s) which belongs to the Hardy spakle(C™)
can be written as a linear combination of fractional orthwajo
functionsGpy(s):

F(s) = il amGm(9) (49)

Usually, (49) is truncated to a given ordémvhich is justified by
the convergence of Fourier coefficierds, asmtends to infinity.
F (s) is hence approximated by the finite sum:

M
F(s)~Fu(s) = Z amGm (s) (50)
m=1

Fractional basis are used in output error identificatiomwit

as commensurable order, Laguerre, kautz or all prescribled p
Then, orthogonalization procedure is run according to tge-a
rithms described in [16-18]. Finally, Fourier coefficiends,,
which entirely define the system as in (50), are computedjusin
least squares. The truncation ordikis fixed to obtain a satisfac-
tory approximation. Akaike and Young information critecan
be used.

Assumeu(t),y(t),t € [0, T] input and output data generated
using a finite energy linear fractional model. The identifima
procedure consists of computing optimal coefficient vegter
[a1,82,.. .,aN]T which minimizes the least square error:

.
I= %/ (e(t))2dt (51)
0

where

M

£ =Y(0) - 3 ante,(0) (52)

y(t) andug,,t) are respectively the system and orthogonal net-
work outputs:

Ug,,(t) = Gm(t) @ u(t)
Setting:
UG (t) = [Ug, (1) U, (t) --- Uoy (1)),

the optimum estimation of Fourier coefficierifss given by the
least squares formula:

T -1 1
[ / quTuG(t)dt} [ustTymdt 3
0 0

All properties of least squares estimates (persistentatian,
variance on estimates) as stated in [25] apply in this cantex

3 Example

To illustrate the use of fractional models in system identifi
cation, a semi-infinite dimensional thermal system is atersd.
Itis constituted of a long aluminium rod heated by a resistor
ensure unidirectional heat transfer, the entire surfatieeofod is

fixed denominator models as described in [24]. Some key para- insulated. The temperature of the rod is measured at a destan

meters need first of all to be fixed using prior knowledge such

8

x = bmmfrom the heated end (figure (6)).
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Insulated long aluminium rod heated by a resistor

Figure 6.

The thermal system is considered as a semi-infinite plane
homogenous medium initially at ambient temperature. Losse
the surface where the thermal flux is applied are neglecteis. C
et al. [23] have shown that the analytical model linking thexfl
density applied on the outgoing normal surface of the medaim
the temperature measured at an abscissside the medium has
a commensurable order of 0.5.

The thermal system is considered as a semi-infinite plane
homogenous medium initially at ambient temperature. Losse
the surface where the thermal flux is applied are neglected. T
model linking the flux density applied on the outgoing normal
surface of the medium to the temperature measured at arsahsci
x inside the medium [3] is analytically given by:

® k
Y s
A0S = e = e e o (69
,S) VAPGCp kZo’aHST
with
/ (x/2)
- (_1)k ak/2k!

A and a denote the conductivity and the diffusivity of the
medium. Relation (54) highlights that the thermal impedanc

of a semi-infinite medium is based on a commensurable order of

0.5.
First of all, the system was identified by applying equation-
error model and more precisely the SVF method. Identificatio

data are plot on figure (7). The commensurable order was set to

0.5 and the following three parameters model was obtained:

~ 0.25685 - 0.002

Hi(S) = — sgmsis s s (55)

Then, equation error model was applied on the modal rep-
resentation (36) and the commensurable order optimize& Th

9

System output
IS
8
T
I

I I I I I
500 600 700 800 900
Time (s)

I I I
0 100 200 300 400

System input
=
S
I

I I I I I
500 600 700 800 900
Time (s)

I I I
0 100 200 300 400 1000

Figure 7. Estimation data

80

60 &

40r

201

I
600

I I I I
500 700 800 900
Time (s)

0 I I I I
0 100 200 300 400 1000

Figure 8. Validation data

following five parameters model was obtained:

0.319 0.530

Hy(s) = .
2(9) = @83, 0,016 D41 0.608

(56)

The optimal commensurable order is close 16 &8s in the ana-
lytic model [23].

Next, for comparison purposes, a twelve parameters rdtiona
model was identified:

Hs(s) =

—0.01s° + 0.456* — 0.07s® + 1.55¢2 + 0.03s+ 10~°
6 +0.165° + 13.04s% + 1.09s3 + 31.232 + 1.70s+ 0.01

The normalized mean squared errors computed on valida-
tion data for both fractional models are close to each other:
NMSE(H;) ~ NMSE(H,) ~ 2 x 10~ whereas the normalized
mean squared error of the rational model is: NMBE ~
6x 104

As shown on validation data of figure (8), the identified
models give satisfactory results.
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4 Conclusion and outlooks

This paper presents a state of the art of actual achievements
in time-domain system identification using fractional misde
Mainly equation-error and output-error models are dedaile
the former, differentiation orders are fixed and only malpB-
rameters are estimated. In the latter differentiation wrdad
model’s coefficients can be estimated. One way for limitimg t
number of parameters consists of estimating the commeisura
order and fixing all its multiples. For the time being, onlyiteh
additive noise was considered. All model classes includilg
ored noise should be extended to fractional differentidecs.
Moreover, system identification using stochastic sigregarth
consideration.

Multiple other questions regarding fractional system iden
tification remain unanswered. One of the most challenging is [15]
how to take into account initial conditions? This questiam-<
not be answered as easily as in the rational case because a non
integer derivative of a signal depends on its whole pastehpo [16]
et al. [26] showed that the effect of the past can be congideye
taking into account an initialization function instead dimaited
number of points. Can such a function be estimated?

[10]

[11]

[12]
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