
HAL Id: hal-00182374
https://hal.science/hal-00182374

Submitted on 25 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

System identification using fractional models: State of
the art

Rachid R. Malti, Stéphane Victor, Olivier Nicolas, Alain Oustaloup

To cite this version:
Rachid R. Malti, Stéphane Victor, Olivier Nicolas, Alain Oustaloup. System identification using frac-
tional models: State of the art. ASME 2007 International Design Engineering Technical Conferences
& Computers and Information in Engineering Conference (IDETC/CIE 2007), Sep 2007, Las Vegas,
Nevada, United States. pp.DETC2007-35332. �hal-00182374�

https://hal.science/hal-00182374
https://hal.archives-ouvertes.fr


SYSTEM IDENTIFICATION USING FRACTIONAL MODELS: STATE OF TH E ART
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ABSTRACT
This paper presents a state of the art of actual achievements

in time-domain system identification using fractional models. It
starts with some general aspects on time and frequency-domain
representations, time-domain simulation, and stability of frac-
tional models. Then, an overview on system identification meth-
ods using fractional models is presented. Both equation-error
and output-error-based models are detailed. In the former mod-
els, prior knowledge is generally used to fix differentiation or-
ders; model coefficients are estimated using least squares.The
latter models allow simultaneous estimation of model’s coeffi-
cients and differentiation orders, using non linear programming.
A real thermal example is identified using a fractional modeland
compared to a rational one.

1 Introduction
Although fractional (non integer) operators remained for a

long time purely a mathematical concept, the rise of digitalcom-
puters offered an easy way for simulating numerically non inte-
ger integro-differentiation of mathematical functions.

The last two decades have witnessed considerable devel-
opment in the use of fractional differentiation in various fields.
Fractional differentiation is now an important tool for theinter-
national scientific and industrial communities. The use of frac-
tional differentiation models in system identification wasiniti-
ated in the late nineties and the beginning of this century [1–4].

Fractional models are now enough mature and are widely
used in representing thermal diffusive phenomena [5], electro-
chemical diffusion [6], and in modeling viscoelastic materials.
See the special issue of Signal Processing [7] for other fields of
application.

1.1 Mathematical background
A fractional mathematical model is based on fractional dif-

ferential equation:

y(t)+b1Dβ1y(t)+ · · ·+bmB DβmB y(t) =

a0Dα0u(t)+a1Dα1u(t)+ · · ·+amA DαmA u(t) (1)

where differentiation orders,β1 < β2 < .. . < βmB, α0 < α1 <
.. . < αmA, are allowed to be non-integer positive numbers. The
concept of differentiation to an arbitrary order (non-integer),

Dγ ∆
=

(

d
dt

)γ
∀γ ∈ R

∗
+,

was defined in the 19th century by Riemann and Liouville. Theγ
fractional derivative ofx(t) is defined as being an integer deriva-
tive of order⌊γ⌋+ 1 (⌊.⌋ stands for the floor operator) of a non-
integer integral of orderγ−⌊γ⌋ [8]:

Dγx(t)=D⌊γ⌋+1
(

I ⌊γ⌋+1−γx(t)
) ∆

=

(

d
dt

)⌊γ⌋+1




1
Γ(⌊γ⌋+1− γ)

tZ
0

x(τ)dτ
(t − τ)γ−⌊γ⌋



 (2)
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wheret > 0,∀γ ∈ R∗
+, and the Euler’sΓ function is defined as:

Γ(x) =

∞Z
0

e−ttx−1dt ∀x∈ R
∗ \
{

N
−
}

(3)

A discrete-time definition of fractional derivative was pro-
posed by Grünwald [9],∀γ ∈ R∗

+:

Dγx(t) = lim
h→0

1
hγ

∞

∑
k=0

(−1)k
(

γ
k

)

x(t −kh) (4)

where Newton’s binomial
(γ

k

)

is generalized to non-integer or-
ders by the use of Euler’sΓ function:

(

γ
k

)

=
Γ(γ+1)

Γ(k+1)Γ(γ−k+1)
(5)

Equation (4) is generally used in time-domain simulations
of fractional differentiation. As Newton’s binomial

(γ
k

)

does not
converge rapidly to zero withk whenγ is non integer, the com-
putation ofDγx(t) depends on all values ofx(t) between 0 and
t (supposing thatx(t) is relaxed att = 0, i.e. x(t) = 0 ∀t < 0).
Since fractional derivatives of a function depend on its whole
past, fractional operators are known to have long memory be-
havior.

A more concise algebraic tool can be used to represent frac-
tional systems: the Laplace transform [10]

L {Dγx(t)} = sγX (s) if x(t) = 0 ∀t < 0

This property allows to write the fractional differential equa-
tion (1), providedu(t) andy(t) are relaxed att = 0, in a transfer
function form:

F (s) =

mA

∑
i=0

aisαi

1+
mB

∑
j=1

b jsβ j

(6)

where (ai ,b j) ∈ R2, (αi ,β j) ∈ R2
+, ∀i = 0,1, . . . ,mA, ∀ j =

1,2, . . . ,mB.
A transfer functionF(s) is commensurable of orderγ iff it

can be written asF(s) = S(sγ), whereS= T
R is a rational function

with T andR two co-prime polynomials. Moreover, the com-
mensurable orderγ is the biggest number satisfying the afore-
mentioned condition. �
2

In other words, the commensurable orderγ is defined as
the biggest real number such that all differentiation orders are
integer multiples ofγ. Taking as an exampleF(s) defined in
(6), assuming thatF(s) is commensurable of orderγ, and using
F(s) = S(sγ), one can write:

S(s) =
T (s)
R(s)

=

mA

∑
m=0

ams
αm

γ

1+
mB

∑
m=1

bms
βm
γ

(7)

where all powers ofs in (7) are integers.
A modal form transfer function can then be obtained, pro-

vided (6) is strictly proper:

F(s) =
N

∑
k=1

vk

∑
q=1

Ak,q

(sγ −sk)
q , (8)

wheresk,k = 1, · · · ,N are known as thesγ-poles of integer multi-

plicity νk. The elementary transfer function
Ak,l

(sγ−sk)
q is known as

a mode of orderγ and of multiplicityq.

1.2 State space representation
If the system defined by the fractional differential equation

(1) is commensurable of orderγ, then (1) can be rewritten in a
“fractional” (also called “generalized” or “macro”) state-space
representation [11–13]:

{

Dγx(t) = Ax(t)+Bu(t)
y(t) = Cx(t)+Eu(t)

(9)

This representation suggests the possibility of developing sub-
space identification methods.

1.3 Stability theorem
Here is a modified version of Matignon’s [14] theorem.
A commensurableγ-order transfer functionF(s) = S(sγ) =

T(sγ)
R(sγ) , whereT andR are two coprime polynomials, is BIBO sta-
ble iff

0 < γ < 2 (10)

and for everys∈ C such thatR(s) = 0

|arg(s)| < γ
π
2

(11)
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Figure 1. Stability region. A system is stable iff all its sγ-poles are inside

the greyed region

The stability region suggested by this theorem and plotted
in figure (1) tends to the wholes-plane whenγ tends to 0, corre-
sponds to the Rooth-Hurwitz stability whenγ = 1, and tends to
the negative real axis whenγ tends to 2. An additional condition
is however required for a system to belong toH2(C

+).

1.4 H2 norm of fractional transfer functions
Contrary to rational systems, the stability condition doesnot

guarantee that a fractional transfer function belongs toH2(C
+).

TheH2 norm of fractional systems is extensively studied by Malti
et al. in [15], where the authors showed that a stable fractional
transfer function as defined in (6), where conditions (10) and (11)
are satisfied, belongs toH2(C

+) iff its relative degree is greater
than 1

2:

βmB −αmA >
1
2

(12)

This condition suggests that some stable fractional systems
not satisfying (12) have infinite impulse response energy. Those
systems cannot be represented using fractional orthogonalbases
which spanH2(C

+), as described in [16–18].

1.5 Equivalence with rational models
Due to the consideration that real physical systems generally

have bandlimited fractional behavior and due to the practical lim-
itations of input and output signals (Shannon’s cut-off frequency
for the upper band and the spectrum of the input signal for the
lower band), fractional operators are usually approximated by
high order rational models. As a result, a fractional model and
its rational approximation have the same dynamics within a lim-
ited frequency band. The most commonly used approximation
of sγ in the frequency band[ωA,ωB] is the recursive distribution
of zeros and poles proposed by Oustaloup [19]. Trigeassou et
al. [13] suggested to use an integrator outside the frequency range
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,ωB] instead of a gain:

−γ → s−γ
[ωA,ωB] =

C0

s

(

1+ s
ωA

1+ s
ωB

)1−γ

≈
C0

s

N

∏
k=1

1+ s
ω′

k

1+ s
ωk

(13)

ereωk = αω′
k, ω′

k+1 = ηω′
k and

γ = 1−
logα

logαη
(14)

ndη are real parameters which depend on the differentiation
erγ. The biggerN the better the approximation of the inte-
tors−γ.
The obtained integrator has the following state space repre-
tation:

ẋ = Ax +Bu

yIγ = Cx
(15)
3 Copyright c© 2007 by ASME



whereyIγ is the derivative of the inputu (see figure (2)),
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
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




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

1 0 · · · · · · 0

−α 1
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0 −α 1
...

...
.. .

. . . 0
0 · · · 0 −α 1
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
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



−1
















C0

0
...
...
0

















and

C =
[

0 · · · 0 1
]

2 System identification
Frequency-domain system identification using fractional

models was initiated by the Ph.D thesis of Le Lay [1]. Time-
domain system identification using fractional differentiation
models was initiated by the Ph.D theses of Le Lay [1], Lin [2],
and Cois [3]. Mainly two classes of models were developed:
Equation-error-based models and Output-Error-based models,
both of which are presented in this section. Recently Malti et
al. [16] synthesized fractional orthogonal bases generalizing La-
guerre, Kautz and BOG bases to fractional differentiation orders.

2.1 Equation-error models
Equation-error-based models are linear in coefficients. The

identified system is assumed to be initially at rest, modeledby
(1), and characterized by input/output coefficient’s vector:

θ = [a0 . . .amAb1 . . .bmB]T (16)

Prior knowledge is generally used to fix the differentiationorders
α0, . . . ,αmA,β1, . . . ,βmB. Usually, a commensurable orderγ is
chosen and then all its multiples fixed up to a given order, say
βmB. The orderαmA is generally set toβmB − γ for strictly proper
4

systems.

F (s) =

αmA
γ

∑
k=0

akskγ

1+

βmB
γ

∑
j=1

b jsjγ

(17)

Consider observed datau(t) andy∗(t) = y(t)+ p(t), wherep(t)
is a perturbation signal, collected at regular samples:k0Ts,(k0 +
1)Ts, . . . ,(k0 +K−1)Ts. The most basic estimation method con-
sists of computing fractional derivatives of input/outputsignals
from sampled data by applying (4). The output can be written in
a regression form:

y(t) = φ∗(t)θ (18)

where parameters and regression vectors are respectively given
by (16) and:

φ∗(t) =
[

Dα0u(t) · · ·DαmAu(t) −Dβ1y∗ (t) · · ·−DβmBy∗ (t)
]

(19)
Estimated parameters vectorθ̂ of θ is obtained by minimizing the
quadratic norm of the error:

J
(

θ̂
)

= ETE (20)

where:

E =
[

ε(k0Ts) ε((k0 +1)Ts) · · ·ε((k0 +K−1)Ts)
]T

and

ε(t) = y∗ (t)−φ∗(t)θ̂

The minimum ofJ is given by the classical least squares:

θ̂opt =
(

Φ∗TΦ∗
)−1

Φ∗TY∗

where:

Φ∗ =
[

φ∗T(k0Ts) φ∗T ((k0 +1)Ts) . . .

φ∗T ((k0 +K−1)Ts)
]T

(21)
Copyright c© 2007 by ASME



As in the integer case, fractional differentiation of noisysig-
nals amplifies the noise. Hence, a linear transformation (low-
pass filter) can be applied to (18) so as to obtain a linear continu-
ous regression of filtered input,uf (t), and output,y∗f (t), signals:

yf (t) = φ∗f (t)θ (22)

where

φ∗f (t)=
[

Dα0uf (t) · · ·DαmA uf (t) −Dβ1y∗f (t) · · ·−DβmBy∗f (t)
]

(23)
The filter is generally chosen to be causal, stationary, and low-
pass. Among the possible filters the linear integral filter can be
used:

H(s) =

(

1
s

)L

(24)

where the orderL is generally chosen as the highest differenti-
ation order in (1), i.e.L = βmB. In this case, the differential
equation (1) is rewritten as an integral equation:

D−βmB y(t)+b1Dβ1−βmBy(t)+ · · ·+bmBy(t) =

a0Dα0−βmBu(t)+ · · ·+amADαmA−βmB u(t) (25)

where all superscripts ofD are negative which stands for integra-
tion operator.

Although this method avoids differentiation of noisy signals,
it however integrates noise, producing wrong steady-stateand
low dynamics estimations. Among the possible filters, Cois et
al. [20] extend the concept of State Variable Filters (SVF) [21]
to fractional differentiation systems. They propose to usethe
following fractional filter:

H (s) =
A

α0 + α1sγ + ...+ αNf−1sγ(Nf −1) +sγNf

γNf is filter’s order. The design must respect the following spec-
ifications:

Nf > max(βmB,αmA)
Coefficients α0,α1, . . . ,αNf −1 must be chosen such that
H(s) is stable.

th

w
fr
u
b
v
p

w
re

w

a

o
s

m

A particular choice of SVF, proposed by Cois et al. [20
], is

e fractional Poisson’s filter:

H (s) =
1

((

s
ω f

)γ
+1
)Nf

=

ωγNf
f

sγNf +
(

Nf
1

)

ωγ
f s

γ(Nf −1) + . . .+
(

Nf
Nf −1

)

ω
γ(Nf −1)
f sγ + ωγNf

f

(26)

hich is simply an extension of the rational Poisson’s filterto
actional differentiation orders. Frequencyω f is fixed by the
ser according to the frequency characteristics of the system to
e identified (close to the highest corner frequency). The state
ector, composed of fractional derivatives of filtered input or out-
ut signals, is defined by:

xf =

[

D(Nf −1)γzf (t) ,D(Nf −2)γzf (t) ,
. . . ,Dγzf (t) ,zf (t)

]T

(27)

herezf denotes eitheruf or yf . The fractional state space rep-
sentation of the filter is given by:

Dγxf (t) = Af xf (t)+Bf zf (t) (28)

hereAf = −



















(

Nf

1

)

ωγ
f

(

Nf

2

)

ω2γ
f · · ·

(

Nf

Nf−1

)

ωγ(Nf −1)
f ωγNf

f

−1 0 · · · · · · 0

0
... 0

...
...

.. .
. . .

. . .
...

0 · · · 0 −1 0



















nd

Bf =
[

ωγNf
f 0 . . . 0

]T

Each state represents the derivative of a given order of input
r output signals (see figure (4)). Fractional Poisson’s filters are
imulated using (4)

The estimated parameters vectorθ̂ of θ is now obtained by
inimizing the quadratic norm of the filtered equation error:

J
(

θ̂
)

= Ef
TEf (29)
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Figure 4. Fractional state variable filters

where:

Ef =
[

ε f (k0Ts) ε f ((k0 +1)Ts) · · ·ε f ((k0 +K−1)Ts)
]T

and

ε f (t) = y∗f (t)−φ∗f (t)θ̂,

φ∗f being defined by (23).
The solution is given by the classical least squares:

θ̂ =
(

Φf
TΦ f

)−1Φ f
TY∗

f (30)

where:

Φ∗
f =
[

φ∗f
T(k0Ts) φ∗f

T ((k0 +1)Ts) . . .φ∗f
T ((k0 +K−1)Ts)

]

(31)

As in the classical case, Cois et al. [20] showed that the
least squares estimator (30) is biased in presence of noisy output.
To eliminate the bias, they propose to use instrumental variable
method. Parameters are estimated according to:

θ̂IV
opt =

(

ΦIV
f

TΦ∗
f

)−1
Φ f

IV T
Y∗

f

whereΦIV
f is the regression matrix constituted of derivatives of

filtered inputs and derivatives of instrumental variables.The au-
thors also suggest to optimize instruments by an iterative method.
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.2 Output-error models
Output-error-based models allow simultaneous estimation

f differentiation orders and model parameters. Mainly, three
entification methods were proposed in the literature. Thefirst
ne is based on discrete-time simulation of fractional models.
he second one, based on continuous-time simulation of frac-
onal models, assumes that the fractional behavior is present in
limited frequency band. The third one uses fractional orthogo-
al functions.

2.2.1 Method based on discrete-time simulation
f fractional models Here, the system to be identified is as-
umed to be initially at rest, modeled by (6). It is now character-
ed by input/output vector formed of coefficients and differenti-
tion ordersθ = [a0, . . .amA,b1, . . .bmB,α0, . . .αmA,β1, . . .βmB].

When the number of parameters in (6) is high, optimization
lgorithms are ill-conditioned due to the absence of constraints
n differentiation orders. One way for introducing a constrained
ptimization on differentiation orders and, at the same time, lim-
ing the number of parameters consists of optimizing the com-
ensurable orderγ instead of all differentiation orders. In this

ase, the fractional transfer function (6) is rewritten in acom-
ensurable form as in (17).

Numerator and denominator orders, respectivelyαmA and
mB (both multiples ofγ), are fixed as in classical rational models.
enceforth, the system is entirely characterized by coefficients’
ector: θ = [a0, . . . ,amA,b1, . . . ,bmB,γ]. As far as identification
f stable systems is concerned, the commensurable order canbe
onstrained to]0,2[ (see conditions (10) and (11) of the stability
eorem).

Considering observed datau(t) andy∗(t) = y(t)+ p(t), p(t)
eing an output white noise, the quadratic norm:

J
(

θ̂
)

=
k0+K−1

∑
k=k0

ε2
(

kTs, θ̂
)

(32)

f output error:

ε
(

kTs, θ̂
)

= y∗ (kTs)− ŷ
(

kTs, θ̂
)

(33)

now minimized. Model’s output ˆy(kTs, θ̂) being non linear in̂θ,
radient-based algorithms, such as the Marquardt algorithm [22],
re used to estimatêθ iteratively:

θ̂i+1 = θ̂i −
{

[

J′′θθ + ξI
]−1J′θ

}

θ=θ̂i
(34)
6 Copyright c© 2007 by ASME
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J′θ = −2
k0+K−1

∑
k=k0

ε(kTs)S
(

kTs, θ̂
)

: gradient

J′′θθ ≈ 2
k0+K−1

∑
k=k0

S
(

kTs, θ̂
)

ST
(

kTs, θ̂
)

: pseudo−hessian

S
(

kTs, θ̂
)

=
∂ŷ(kTs,θ̂)

∂θ : output sensitivity function

ξ : Marquardt parameter

(35)

Output sensitivity functions can be computed by differenti-
ating (17) with respect toai, bi , γ.

The idea of optimizing the commensurable order instead of
all differentiation orders was first introduced by Cois et al. [23]
who chose to write the transfer function (17) in a modal form as
in (8). They however constrained allsγ-poles to be real-valued
and of multiplicity one (vk = 1, ∀k). In general,sγ-poles can
be real or complex conjugate, and of multiplicity greater orequal
to one. As a result, the following more restrictive class of models
was proposed in [23] (see also figure (5)):

F(s) =
N

∑
k=1

Ak

sγ −sk
(36)

The corresponding parameters’ vector was then optimized:

θT =
[

A1, s1, · · · AN, sN, γ
]

(37)

In such a case, parameters are estimated recursively according to
(34), the gradient and the hessian are computed using (35), and
the sensitivity functions are obtained in a simpler form as:

∂ŷ
(

t, θ̂
)

∂Ak
= L

−1
(

1
sγ −sk

)

⊗u(t) (38)

∂ŷ
(

t, θ̂
)

∂sk
= L

−1

(

Ak

(sγ −sk)
2

)

⊗u(t) (39)

w
ca

tio
a
bo
se
co
or

di

D

Th
ob

E
le

Ta
co
st
∂ŷ
(

t, θ̂
)

∂γ
= L

−1

(

N

∑
k=1

−
Aksγ ln(s)

(sγ −sk)
2

)

⊗u(t) (40)

Where⊗ stands for convolution operator.
Note the presence of ln(s) in the last sensitivity function

hich makes analytical computation of the derivative compli-
ted.

2.2.2 Method based on continuous-time simula-
n of fractional models Trigeassou et al. [13] take as
building block of fractional models a non integer integrator
unded in the frequency band as shown in (13) and described in
ction 1.5. The differentiation order is estimated by fixing α and
mputingη of (13). Onceα andη known, the differentiation
derγ is deduced according to (14).

For the sake of simplicity, consider the following fractional
fferential system:

Dγy(t)+a0y(t) = b0u(t) (41)

efineX(s) as:

X(s) =
U(s)

sn +a0
(42)

us, the generalized state-space representation of this system is
tained:

{

Dγx(t) = −a0x(t)+u(t)
y(t) = b0x(t)

(43)

quivalently, (43) can be written using continuous-time equiva-
nt state space model (see section 1.5):

{

ẋ1(t) = −a0xN+1(t)+u(t)
y(t) = b0xN+1(t)

(44)

king into account the state space representation of the
ntinuous-time approximation, the following global rational

ate space representation can be written:

{

ẋG = AGxG +BGu
y = CGxG

(45)
7 Copyright c© 2007 by ASME



where:

AG = A +













0 · · · 0 −a0
...

. . . 0
...

...
...

0 · · · 0 0













(46)

BG = B, CT
G = [0 . . . 0 b0 ] (47)

A andB being defined in (15).

Identification algorithm In the case, the fractional behavior is
limited in a frequency band, say[ωA,ωB], then authors fixα and
estimate the parameter vector:

θT = [a0,b0,η] (48)

In all cases the optimized criterion is defined as in (32) and
(33). The coefficients are computed recursively according to (34)
and (35). Sensitivity functions are now obtained by computing
partial derivatives of (13) with respect to each of the parameter
of (48).

2.2.3 Method based on orthogonal functions Re-
cently, Malti et al. [16–18] have synthesized complete orthogo-
nal basis inL2[0,∞[ (Lebesgue space of squared integrable func-
tions). Laguerre, Kautz, and GOB functions are hence extended
to fractional differentiation orders. Thus, any finite energy stable
transfer functionF(s) which belongs to the Hardy spaceH2(C

+)
can be written as a linear combination of fractional orthogonal
functionsGm(s):

F(s) =
∞

∑
m=1

amGm(s) (49)

Usually, (49) is truncated to a given orderN which is justified by
the convergence of Fourier coefficients,am, asm tends to infinity.
F(s) is hence approximated by the finite sum:

F(s) ≈ FM(s) =
M

∑
m=1

amGm(s) (50)

Fractional basis are used in output error identification with
fixed denominator models as described in [24]. Some key para-
meters need first of all to be fixed using prior knowledge such

a
T
ri
w
le
to
b

u
p
[a

w

y
w

S

th
le

A
v

3

c
It
e
in
x

s commensurable order, Laguerre, kautz or all prescribed poles.
hen, orthogonalization procedure is run according to the algo-
thms described in [16–18]. Finally, Fourier coefficients, am,
hich entirely define the system as in (50), are computed using
ast squares. The truncation orderN is fixed to obtain a satisfac-
ry approximation. Akaike and Young information criteriacan
e used.

Assumeu(t),y(t),t ∈ [0,T] input and output data generated
sing a finite energy linear fractional model. The identification
rocedure consists of computing optimal coefficient vectorg =

1,a2, . . . ,aN]T which minimizes the least square error:

J =
1
T

TZ
0

(ε(t))2dt (51)

here

ε(t) = y(t)−
M

∑
m=1

amuGm(t) (52)

(t) anduGm(t) are respectively the system and orthogonal net-
ork outputs:

uGm(t) = Gm(t)⊗u(t)

etting:

uG(t) = [uG1(t) uG2(t) · · · uGM (t)] ,

e optimum estimation of Fourier coefficientsĝ is given by the
ast squares formula:

ĝ =





TZ
0

uG(t)TuG(t)dt





−1 TZ
0

uG(t)Ty(t)dt (53)

ll properties of least squares estimates (persistent excitation,
ariance on estimates) as stated in [25] apply in this context.

Example
To illustrate the use of fractional models in system identifi-

ation, a semi-infinite dimensional thermal system is considered.
is constituted of a long aluminium rod heated by a resistor. To
nsure unidirectional heat transfer, the entire surface ofthe rod is
sulated. The temperature of the rod is measured at a distance
= 5mmfrom the heated end (figure (6)).
8 Copyright c© 2007 by ASME



Figure 6. Insulated long aluminium rod heated by a resistor

The thermal system is considered as a semi-infinite plane
homogenous medium initially at ambient temperature. Losses on
the surface where the thermal flux is applied are neglected. Cois
et al. [23] have shown that the analytical model linking the flux
density applied on the outgoing normal surface of the mediumto
the temperature measured at an abscissax inside the medium has
a commensurable order of 0.5.

The thermal system is considered as a semi-infinite plane
homogenous medium initially at ambient temperature. Losses on
the surface where the thermal flux is applied are neglected. The
model linking the flux density applied on the outgoing normal
surface of the medium to the temperature measured at an abscissa
x inside the medium [3] is analytically given by:

H̃ (x,s) =
T(x,s)
φ(x,s)

=
1

√

λρ Cp

∞
∑

k=0
a′ks

k
2

∞
∑

k=0

∣

∣a′k
∣

∣s
k+1

2

(54)

with

a′k = (−1)k (x/2)k

αk/2k!

λ and α denote the conductivity and the diffusivity of the
medium. Relation (54) highlights that the thermal impedance
of a semi-infinite medium is based on a commensurable order of
0.5.

First of all, the system was identified by applying equation-
error model and more precisely the SVF method. Identification
data are plot on figure (7). The commensurable order was set to
0.5 and the following three parameters model was obtained:

H1(s) =
0.256s0.5−0.002

2.585s1.5+s
(55)

Then, equation error model was applied on the modal rep-
resentation (36) and the commensurable order optimized. The

f
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Figure 7. Estimation data
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Figure 8. Validation data

ollowing five parameters model was obtained:

H2(s) =
0.319

s0.483+0.016
−

0.530
s0.483+0.608

(56)

he optimal commensurable order is close to 0.5 as in the ana-
ytic model [23].

Next, for comparison purposes, a twelve parameters rational
odel was identified:

H3(s) =

−0.01s5 +0.45s4−0.07s3 +1.55s2 +0.03s+10−5

s6 +0.16s5 +13.04s4 +1.09s3 +31.23s2 +1.70s+0.01

The normalized mean squared errors computed on valida-
ion data for both fractional models are close to each other:
MSE(H1) ≈ NMSE(H2) ≈ 2×10−4; whereas the normalized
ean squared error of the rational model is: NMSE(H3) ≈
×10−4.

As shown on validation data of figure (8), the identified
odels give satisfactory results.
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4 Conclusion and outlooks
This paper presents a state of the art of actual achievement

in time-domain system identification using fractional models.
Mainly equation-error and output-error models are detailed. In
the former, differentiation orders are fixed and only model’s pa-
rameters are estimated. In the latter differentiation orders and
model’s coefficients can be estimated. One way for limiting the
number of parameters consists of estimating the commensurable
order and fixing all its multiples. For the time being, only white
additive noise was considered. All model classes includingcol-
ored noise should be extended to fractional differential orders.
Moreover, system identification using stochastic signals is worth
consideration.

Multiple other questions regarding fractional system iden-
tification remain unanswered. One of the most challenging is
how to take into account initial conditions? This question can-
not be answered as easily as in the rational case because a no-
integer derivative of a signal depends on its whole past. Lorenzo
et al. [26] showed that the effect of the past can be considered by
taking into account an initialization function instead of alimited
number of points. Can such a function be estimated?
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