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ABSTRACT 

When a certain amount of oil is injected 

upwardly through a vertical nozzle submerged in 

water, the oil-water interface evolves, for large 

orifices, from a sessile shape, to a cap profile with a 

roll-up border. 

The numerical simulation of such liquid-liquid 

interface evolution was made through the Boundary 

Element Method (BEM), by assuming a potential 

flow of a viscous fluid. At the end of the computed 

process, the velocity field behaviour leads to an 

inward rolling up movement of the cap border, 

simultaneously with the interface necking near the 

orifice level. Such velocity field precedes typically 

a vortex ring formation. 

An olive oil – water couple has been selected, 

because of the appropriate physical properties of 

those liquids: comparable densities, huge difference 

of viscosities, and very small interfacial tension. 

KEYWORDS 
Vortex ring, interfacial tension, boundary 
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NOMENCLATURE 
Fr  [-]  Froude number 

R [m] orifice radius; length scale 

21, RR  [m] local principal radii of curvature 

Re [-]  Reynolds number 

We [-]  Weber number 

dA [m
2
]  axisymmetric surface element 

g [m/s
2
] gravity 

n [m] normal co-ordinate 

p [Pa] pressure 

r [m] radial co-ordinate 

s [m] curvilinear abscissa 

t [s]  time 

v [m/s] velocity vector 

z [m] axial co-ordinate 

s  [m] arc length 

t  [s] time step 

  oil domain in a meridian plane 

   surface; oil-water interface 

  [rad]  azimuthal angle 

ot  [s] time pulse 

  [m
2
/s] velocity potential 

   [Pas] dynamic viscosity of the liquid 

  [kg/m
3
] density of the liquid 

   [N/m] interfacial tension 

Subscripts and Superscripts 

n   normal direction 

o oil

s solid wall of the cylindrical nozzle

z axial direction

w water

* dimensionless variable

ABBREVIATIONS 
BEM Boundary Element Method 

1. INTRODUCTION

 A vortex ring is produced when the linear 

momentum is imparted to the fluid with axial 

symmetry [1]. A familiar example of flow with 

circular vortex lines is the tobacco smoke ring, 

formed by a particular puffing technique. The 

upward injection of a small quantity of coloured 

liquid into a liquid pool [1, plate 20] gives rise to a 

vortex ring that travels away from the orifice: 

within the resulted torus, a roll-up movement is 

developed in cross-section. Similar phenomenon 
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can be obtained by pushing downward some 

amount of liquid throughout a submerged nozzle: 

for such case, the velocity field measured by 

Particle Image Velocimetry near the viscous vortex 

ring core has been compared by Dazin et al. [2] to 

theoretical models derived for thin core vortex rings 

in an inviscid fluid. The velocity field induced by 

an inviscid vortex ring has been analysed in [3]. 

 It is possible to produce a vortex ring, or toroidal 

bubble, by injecting a volume of air from a 

submerged nozzle [1]. The toroidal bubble rebound 

in collapsing bubble with jet formation and impact 

[4], as well as the toroidal bubble entrapped within 

the liquid during a bursting bubble collapse at a free 

surface [5], or during a plunge of a vertical liquid 

jet on the free surface of a pool [6], are also 

associated to vortex rings. 

 Drops falling into a liquid pool produce vortex 

rings that penetrate more deeply into the pool [1, 7]. 

The jet impinging on a cylindrical surface [8], or on 

a convex surface [9] equally leads to vortex rings 

formation. 

 Some complex phenomena also involve vortex 

ring formation: it is the case of the fuel injection 

process that can be accompanied by the 

development of a fountain structure consisting of a 

spray jet and a vortex ring [10], or the case of 

unsteady shear flow induced by vortex ring / wall 

interactions [11]. 

 When a certain amount of oil is injected 

upwardly through a large nozzle orifice submerged 

in water, the oil-water interface evolves from a 

sessile shape, to a cap profile with a roll-up border 

(Figure 1). At the end of the process, the velocity 

field behaviour leads to an inward rolling up 

movement of the cap border, simultaneously with 

the interface necking near the orifice level. It is 

expected that after the complete necking and the 

detachment of the oil drop from the nozzle, the drop 

interface will break up from a cap shape into a 

toroidal shape, the torus being formed from the 

previous cap border roll-up. Such toroidal oil drop 

corresponds to a vortex ring structure, and can be 

added to the previous examples. 

 Within the present paper, the numerical 

simulation of the interface evolution for oil in water 

injection was made through the Boundary Element 

Method (BEM), by assuming a potential flow of a 

viscous fluid [12]. Our computations are not 

performed till the toroidal oil drop formation, 

because of the complex phenomenon related to the 

interface rupture and strong changes of the 

geometrical configuration. But it is highlighted that 

when injecting oil in water from a submerged 

nozzle, for large orifice sizes, the liquid-liquid 

interface rolls up and creates the velocity field that 

can lead to a vortex ring formation. It is showed 

that the phenomenon is strongly dependent on the 

capillary forces, on the viscous forces (introduced 

here only through the normal stress at the 

interface), and on the gravity, the last one being 

important especially when increasing the nozzle 

orifice radius. Within the present study, an olive oil 

– water couple has been selected, because of the 

appropriate physical properties of those liquids, 

namely comparable densities, huge difference of 

viscosities, and very small interfacial tension. 

2.  PROBLEM STATEMENT 

 The free boundary problem is axisymmetric. In a 

meridian plane rOz, the oil domain   (Figure 1) is 

bounded by three surfaces: the oil surface o  in 

cross-section inside the cylindrical nozzle, the 

vertical solid wall s  of the nozzle, and the oil-

water interface  . The unit normal n on the 

boundary points inwards the oil domain. The 

azimuthal angle   is defined between the radial 

unit vector and the tangent unit vector t. 

 
Figure 1. Geometric axisymmetric configuration 

 The curvilinear abscissa s starts from the Oz axis 

inside the nozzle, follows radially the surface o , 

then follows upwards the solid surface s , then the 

interface  , and reaches its maximum value on the 

Oz axis, at the apex of the oil-water interface. 

 The oil flow at the exit of the nozzle is assumed 

to be potential, with a velocity field v . The 

Laplace equation for the velocity potential   is: 

02   . (1) 
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The velocity is defined by its normal component 

nvn   , and tangential component s . 

 The Euler’s equation for the oil motion is 

written: 
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where op  is the oil pressure, and o  the oil 

density. 

 The difference between the values of the stress 

tensor on either side if the oil-water interface is a 

normal force due wholly to the surface tension [1]. 

The component of the surface force normal to the 

interface, namely the normal momentum balance at 

any point of the interface   is written: 
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where o  is the oil dynamic viscosity,   is the oil-

water interfacial tension, 1R  and 2R  are the local 

principal radii of curvature. The water pressure can 

be defined as:     zgpzp www  0  , where

 0wp  is the hydrostatic pressure at the orifice

level, at 0z . Within the balance (3), only the 

normal viscous stress  nvno  2  on the oil side

of the interface has been considered. The normal 

viscous stress on the water side of the interface has 

been neglected, due to the water viscosity, which is 

negligible with respect to the oil viscosity. The oil 

pressure can be expressed from (3) as: 
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 Combining Euler’s equation (2) and the normal 

momentum balance (4) in order to reduce the oil 

pressure term, we obtain the Bernoulli’s equation at 

any point of the interface  : 
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 So, within this type of potential model, viscous 

effects can only be partially considered through the 

boundary condition [12], namely the normal 

momentum balance (4) at any point of the fluid-

fluid interface  . 

We adopt the nozzle orifice radius R as length 

scale, R  as pressure scale,  oR  as 

velocity scale, and the ratio between length and 

velocity as time scale. According to the choice of 

scales, the Weber number takes always the unit 

value 1We . The Froude number is expressed for 

the studied problem as: 

  2
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while the Reynolds number is: 

o

oR
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 Dimensionless variables will be denoted by an 

asterisk. 

 The dimensionless form of the Bernoulli’s 

equation (5), 
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gives the local time derivative of the velocity 

potential,   t . The singularities issued in (8) 

at 0r , are removed by taking into account that 

on the Oz axis, the axisymmetric curvature 

    rR sin1 2 equals the planar curvature 

  sR 11 . The expressions of the 

dimensionless normal gradient of normal velocity 
22   n  on the Oz axis, and outside of it, are 

written [13, 14]: 
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 The global mechanical energy balance can be 

expressed only in surface integrals terms [14]: 

3



    

































 A

We
A

nt
d

1
d

2

1

d

d
 















 






Az
Frt

d
2

1

d

d 2
 
























A

nnRe
d

2
2

2

, 

 

 

 

(11) 

where   so  is the oil domain 

boundary, and Ad  the dimensionless axisymmetric 

surface element. It is highlighted that the right hand 

term of (11), namely the dissipation of the 

mechanical energy due to shear viscosity, depends 

only on the normal component of the velocity, and 

on the normal second derivative of the velocity 

potential. 

3. NUMERICAL METHOD 

 The distorted oil-water interface evolution is an 

axisymmetric transient free-boundary problem that 

is modelled here through a Boundary Element 

Method (BEM). An irrotational flow model is 

appropriate because of the impulsive character of 

the process. Within the model, viscous effects are 

partially included through the normal viscous stress 

at the interface (expressed in terms of the velocity 

potential), as it is allowed for potential flows of 

fluids with constant viscosity [12]. 

 The BEM numerical code (built in Fortran), has 

been successfully used in modelling the highly 

distorted gas-liquid interface evolution, within a 

potential flow of a viscous fluid assumption, both 

for the collapsing bursting bubbles at a free liquid 

surface, terminated by microjet breaking and 

droplets ejection [13-16], and for drops formation 

and ejection from a vertically capillary nozzle, by 

piezoelectric stimulation [17, 18] (Drop-On-

Demand technology). 

 The transient free-boundary problem is 

successively divided into tiny time steps t  . 

There are two types of calculations. 

  At a fixed instant t , the Laplace equation (1) 

is solved through BEM, to obtain the velocity 

potential values )(  t , and the corresponding 

normal component, and tangential component of the 

velocity. Kinetic conditions of Neumann type are 

defined on the solid surface s , where the normal 

velocity vanishes 0   nvn  . Neumann 

type conditions are also defined on the oil surface 

o  inside the nozzle, where the normal velocity 

has an imposed constant value: 
onn vtv  )( . 

During a time pulse 
ot   at the beginning of the 

computation, that is for   ott  0  , the normal 

velocity is 0
onv  (that condition corresponds to 

the injection of a fixed small amount of oil in water, 

during a 
ot   time period). Then, for any moment 

  ott   , the normal velocity vanishes: 0
onv  

(meaning that the oil injection is stopped for 
  ott   ). 

 Kinetic conditions of Dirichlet type are defined 

on the oil-water interface  , where the velocity 

potential )(  t  is known. At the initial moment, 

the interface is considered slightly upward oriented 

(as a non-flat meniscus), and the velocity potential 

is assumed to be )0()0(   tvzt n . For 

any further moment, the velocity potential 

)0(  t  on   is obtained within the BEM. 

  The time progression, made with an explicit 

numerical scheme of 4th order Runge-Kutta type 

[18], allows the connection of two successive steps, 

to determine the new potential values and interface 

position at the following instant )(   tt  . The 

time step t   is selected upon a stability criterion, 

linked to gravity-capillary dispersion equation [19]: 
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(12) 

where 
min s  is the minimum length of a boundary 

element considered on )( t . The temporal 

interface evolution is determined through a 

Lagrangian description of a variable number of 

nodes, unevenly redistributed on the boundary 

)( t  at each time step, with respect to the 

adaptation at surface gradients [16]. 

 In the absence of non-linear analytical tests, the 

evaluation of numerical code accuracy is checked 

through the global mechanical energy balance (11). 

Upon azimuthal integration, the mechanical energy 

balance deals with line integrals of the terms 

computed through the BEM, thus being easily 

implemented in the computational procedure. 
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4. NUMERICAL RESULTS

Within this paper, the BEM simulations point on

the liquid-liquid interface evolution for the case of 

upwards oil injection through a vertical nozzle 

submerged in water. 

 An olive oil – water couple has been selected. 

The physical properties of those liquids are [1]: 

densities 918o  kg/m
3
, and 1000w  kg/m

3 
;

dynamic viscosities 099,0o  Pas, and 

001,0w  Pas; interfacial tension 02,0  N/m, 

at 20ºC. 

 For small orifice sizes, e.g. for 5,2R  mm, the 

oil-water interface shape evolves like the air-liquid 

interface of an emerging bubble, formed at a 

submerged orifice. For an oil-water couple and 

orifice radius 1R  mm, the dimensionless 

numbers are 1We , 86,24Fr  and 368,1Re . 

For an orifice radius 5,2R  mm, the Froude and 

Reynolds numbers are 978,3Fr  and 164,2Re . 

Due to the choice of scales, the Weber number 

takes always the unit value. The viscous and 

capillary effects are dominant for very small 

orifices (say 1R  mm), and the gravity becomes 

less important. So, the oil-water interface is less 

distorted, and continues to grow up till the end of 

the oil injection (for   ott   ), then it detaches 

after a complete necking of the interface near the 

orifice. Within this paper, the oil-interface 

evolution for small orifice sizes is not presented, 

because it does not correspond to a vortex ring 

formation. 

 For large orifice sizes, e.g. for 5R  mm, the 

oil-water interface evolves from a sessile shape, to 

a cap profile with a roll-up border: at the end of the 

computed process, the velocity field behaviour 

leads to an inward rolling up movement of the cap 

border, simultaneously with the interface necking 

near the orifice level. Such velocity field precedes 

typically a vortex ring formation. Further, 

numerical results are presented for large orifice 

radius cases. 

 When increasing the orifice radius, the Froude 

number decreases drastically, so the effect of the 

gravity becomes more and more important. Over 

the whole orifice radius range, the Reynolds 

number keeps very small values, so the viscous 

effects always remain important. 

 The oil-water interface evolution is discussed 

firstly for an orifice radius 5,7R  mm, with the 

following corresponding dimensionless numbers: 

1We , 442,0Fr  and 748,3Re . 

Figure 2. Oil injection in water (superposed 

frames) 5,7R  mm ( 1We , 442,0Fr  and 

748,3Re ) 

Figure 3. Oil injection in water (separate frames) 

5,7R  mm ( 1We , 442,0Fr  and 748,3Re ) 

Figure 4. Velocity of the oil-water interface apex 

versus time, for 5,7R  mm 
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The choice of the value of that radius is due to the 

classical case presented by Batchelor [1, plate 20], 

for a vortex ring formed in water by the injection of 

coloured liquid of almost the same density as water, 

from an orifice of  7,5 mm-radius. 

 In Figure 2, we present superposed frames of the 

interface evolution corresponding to the oil in water 

injection, when applying a velocity 5,2
onv  on 

o  during a time pulse 3 
ot . The same 

evolution, in separate frames at different moments 

]028,3 ;0[t , is presented in Figure 3. 

 The variation of the velocity of the interface apex 

(the node placed on the Oz axis) versus time is 

presented in Figure 4. The moment 3  
ott   is 

marked on the diagram: before that moment, the 

apex velocity decreases monotonously; when the oil 

injection is stopped, there is a drop in apex 

velocity; then, it continues to oscillate due to 

inertial effects. 

 In Figure 5 we present the velocity vectors (with 

their size and direction) in each node of the 

interface, at the same time moments as in Figure 3. 

For 9,1t  the velocity field behaviour leads to an 

inward rolling up movement of the cap border. For 
  ott   , the roll-up is amplified by the interface 

necking that starts near the orifice level. This 

velocity field is supposed to lead to the oil drop 

detachment and vortex ring formation (the present 

computations are not preformed till the complete 

necking and interface rupture). 

 
Figure 5. Velocity vectors in each node of the oil-

water interface at different moments for 5,7R mm 

 
Figure 6. Oil injection in water (superposed 

frames) for 5R  mm 

 
Figure 7. Velocity vectors in each node of the oil-

water interface at different moments for 5R  mm 

 
Figure 8. Oil injection in water (superposed 

frames) for 10R  mm 
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In Figures 6 and 7, we present superposed frames 

of the interface evolution, and the velocity vectors 

in each node of the interface, for the case of an 

orifice with a radius 5R  mm, the oil being 

injected with a velocity 2,2
onv  on o  during a 

time pulse 4 
ot . The corresponding 

dimensionless numbers are: 1We , 994,0Fr  

and 060,3Re . 

As depicted from the last frame of Figure 7 (at 

087,4t ), the velocity field behaviour near the 

orifice corresponds to a slight rolling up movement 

of the cap border, with respect to the previous case 

(see last frame of Figure 5, for 5,7R  mm). 

Figure 9. Velocity vectors in each node of the oil-

water interface at different moments for 10R  mm 

Figure 10. Velocity of the oil-water interface apex 

versus time, for 10R  mm 

 In Figures 8 and 9, we present superposed frames 

of the interface evolution, and the velocity vectors 

in each node of the interface, for the case of an 

orifice with a radius 10R  mm, the oil being 

injected with a normal velocity 3
onv  on o

during a time pulse 2 
ot . The corresponding 

dimensionless numbers are: 1We , 248,0Fr  

and 328,4Re . 

As depicted from the last frame of Figure 9 (at 

050,2t ), the velocity field behaviour near the 

orifice corresponds to a stronger rolling up 

movement of the cap border, with respect to both 

previous cases (see the last frame of Figure 5, for 

5,7R  mm, and the last frame of Figure 7, for 

5R  mm). 

 The variation of the velocity of the interface apex 

upon time, for the orifice with 10R  mm, is 

presented in Figure 10. The moment 2  
ott   

is marked on the diagram: the apex velocity 

decreases before that moment, then, when the oil 

injection is stopped, there is a drop in apex velocity. 

After that velocity dropping, the apex velocity 

continues to decrease, without oscillating like for 

smaller orifice radius cases. Due to the fact that the 

gravity force becomes dominant over the capillary 

and viscous forces for such great orifice radius, 

after stopping the oil injection, the necking of the 

interface will continue and the cap border is 

supposed to continue to roll up simultaneously. 

5. CONCLUSIONS

The interface evolution during the oil injection in

water has been modelled through BEM, in a viscous 

potential flow assumption. For large nozzle orifices, 

the oil-water interface evolves from a sessile shape, 

to a cap profile with a roll-up border. It is supposed 

that the process ends by the complete necking of 

the interface near the orifice, and a vortex ring 

formation. 

 First of all, it must be highlighted that we do not 

dispose of any experimental or numerical evidence 

on the oil injection in water from a submerged 

orifice, not even for other liquid-liquid couples 

characterised by an interfacial tension. Within the 

existing experimental and theoretical evidence 

related to a liquid injection into another liquid, 

there is not a well delimited interface between the 

two liquids: usually, the injected liquid is the same 

(coloured or not) as the surrounding-one. 

 We found that at the end of the computed 

process, the velocity field behaviour leads to an 

inward rolling up movement of the interface cap 

border, simultaneously with the interface necking 

near the orifice level. Such velocity field precedes 

typically a vortex ring formation. It is obviously 
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