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The deformations of a real dielectric droplet subjected to a uniform alternating electric field and immersed in an insulating fluid are 
numerically studied by the Boundary Element Method. The alternating electric field time scale is taken much smaller than the 
hydrodynamic time scale of the droplet shape deformation. The influence of the frequency and the conductivity of the droplet upon the 
critical electric field, beyond which instabilities develop, are compared with the experimental measurements. Numerical results well 
account for experimental data while an unexpected good correspondence with Taylor’s theory is found.
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1. Introduction

1.1. Objective

Applying an electric field onto water droplets immersed
in oil is an efficient process to make them coalesce and thus
extract water from crude oil for instance. In that case,
water droplets can be supposed to behave like electric
dipoles and attract each other to form larger drops.
However, when the electric field reaches a critical value,
it just may cause the opposite effect; instead of coalescing,
droplets may break into smaller ones and the emulsion may
become more difficult to separate. To prevent such a
behavior, many studies on droplet’s deformations were
performed, specially by experimental means [1]. However,
only a few numerical simulations studies involving general
models, have been made to follow droplet’s deformations.
In fact, almost all proposed analysis are local: linear
stability is used or droplets shapes are restricted to
spheroids that are close to spherical forms.
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Hence, we have developed a numerical model that
simulates the behavior of a droplet subjected to a uniform
electric field. This model is based on the Boundary
Element Method (BEM) formulation of the hydrody-
namic’s equations of irrotational fluids in a steady
harmonic electrokinetic regime. In order to validate our
model, the simulation results are compared to Berg et al.
experimental data [1], where more or less conductive
droplets are subjected to an alternating current regime.
The 2D-axisymmetric test configuration consists of a
conductive droplet (water) immersed in a more insulating
liquid (mineral oil) and subjected to a uniform sinusoidal
electric field generated between two plane electrodes
(see Fig. 1).
In response to the applied electric field, Berg et al. found

two specific behaviors: (i) at low electric field magnitude,
spherical droplets distort either to prolate or oblate
spheroids, (ii) for electric field magnitude larger than a
threshold (that we call the critical electric field Ec),
instabilities develop (sub-droplet ejection, thin jet, cloud
of fine droplets, etc.) at the poles following the appearance
of Taylor’s cones [2]. The adjustable parameters in Berg’s
experiments are the magnitude, the frequency and the
waveform of the applied electric field, in one hand, and the
droplet electric conductivity, in the other.
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Fig. 1. Configuration for numerical computations.

Fig. 2. Capillary, fg, and viscous, fv, typical frequency scales with respect

to the droplet radius (v is the oil kinematic viscosity).
In another viewpoint, a comparison is made to
distinguish the effect, on droplet breakup, of a DC electric
field (via Taylor’s theory [2]) from an AC electric field.

The numerical model we developed is expected to
provide a less patchy sight of uncharged droplet instability
phenomena, as spotlighted all this paper along.
1.2. Studied configuration

The studied configuration (see Fig. 1) is likely to
computationally reproduce Berg’s experiments [1]. A water
droplet O(1), of radius r, is placed between two plane
electrodes (G1 and G2 boundaries). The droplet is immersed
in oil Oð2Þ. The boundary G3 is an insulating material. The
electric field applied by the electrodes, is assumed to be
uniform far from the droplet. Hence, the electrode-to-
electrode distance L is chosen at least one order larger than
the droplet radius r. The 2D-axisymmetric configuration
details are shown in Fig. 1 below.

An alternating electric potential is imposed to the left
electrode

~V ðtÞ ¼ ð1� e�t=tÞReðVmaxe
iotÞ, (1)

where o is the angular frequency (o ¼ 2pf and f the
frequency), t is the specific electric field rise time. In any
case, t must be larger than the electric relaxation time te of
any interface. For a tap water droplet immersed in oil,
te ¼ 0.1 ms. The right electrode is grounded.

The time scale of hydrodynamic phenomena, and in
particular of the interface motion, will be used to describe
the whole process. The weak coupling assumption, which
permits to treat the electric field as noninfluenced by the
droplet time evolution, is valid when this time scale t is
much larger than the applied electric field period. As
interface movement is concerned, two main frequencies are
involved; the capillary and the viscous frequencies. For a
water droplet in oil, both are presented in Fig. 2.

Because of high oil viscosity, we do consider that the
droplet dynamics are fundamentally governed by long-
itudinal viscous stresses, so we take the viscous frequency
as a reference for the electric frequency, which has to
satisfy the condition

fbf v (2)

in order that the weak coupling hypothesis is insured.
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2. Mathematical model

The equations, which govern the motion of a multiphase
flow subjected to electric forces and the numerical model
we used to solve this problem, are presented below. Each
phase is assumed to consist in a Newtonian isotropic fluid
with uniform isotropic mechanical and electrical proper-
ties. The fluids are immiscible.
2.1. The electrokinetic model

2.1.1. General equations

Under the assumption of weak coupling between electric
and hydrodynamic effects, the linearity of the electric
system implies that its response is also sinusoidal, i.e.

EðkÞðx; tÞ ¼ Re Ē
ðkÞ
ðxÞeiot

h i
. (3)

Also, the quasi-static approximation, where the coupling
between the electric field and the magnetic one is neglected,
allows us to assume that the electric field derives from an
electric potential V̄

ðkÞ
:

Ē
ðkÞ
¼ �rV̄

ðkÞ
(4)

which implies [3]

r � ēðkÞrV̄
ðkÞ

� �
¼ 0; k ¼ 1; 2, (5)

where ēðkÞ is the complex permittivity of the fluid k, defined
by

ēðkÞ ¼ eðkÞ þ sðkÞ=io (6)

eðkÞ and sðkÞ are, respectively, its permittivity and electric
conductivity. Imposed potential at the left electrode G1

implies that

V̄
ð2Þ
1 ¼ ð1� e�t=tÞVmax (7)

while at the grounded one, G2, we have

V̄
ð2Þ
2 ¼ 0. (8)



The insulating condition at the boundary G3 writes down
as

qV̄
2ð Þ
=qn
���
G3

¼ 0. (9)

n is the outward normal to the boundary G3.
The cross condition through the interface writes as

ēð1ÞĒð1Þ � ēð2ÞĒð2Þ
� �

� n

���
S
¼ 0. (10)

2.1.2. Boundary element applied to electrokinetics

Since the electric properties are assumed uniform, for
each domain OðkÞ, Eq. (5) writes

r2V̄
ðkÞ
¼ 0. (11)

By using the Green second identity, Eq. (11) implies the
following integral equation:

aðkÞðxÞV̄ ðkÞðxÞ ¼
Z
@OðkÞ

GqV̄
ðkÞ
=qn0

ðkÞ
� V̄

ðkÞqG=n0
ðkÞ

� �
dS0,

(12)

where qOðkÞ is the boundary of OðkÞ (when considering
Fig. 1, qOð2Þ ¼ G1 þ G2 þ G3 þ S and qOð1Þ ¼ S). nðkÞ is the
outward normal to qOðkÞ and aðkÞ is given by

aðkÞðxÞ ¼

1 if x 2 OðkÞ;

1=2 if x 2 qOðkÞ;

0 if xeOðkÞ:

8><
>: (13)

G is the Green’s kernel defined by

Gðx;x0Þ ¼ 1=4p x� x0
�� ��. (14)

Differentiating Eq. (12), with respect to the normal to
the boundary qOðkÞ, gives

aðkÞqV̄
ðkÞ
=qn
���
@OðkÞ
¼ � n �

Z
qOðkÞ
r0G qV̄

ðkÞ
=qn0

ðkÞ
dS0

þ n �

Z
qOðkÞ

V̄
ðkÞ
r0 qG=qn0

ðkÞ
dS0. ð15Þ

Let us denote the jump of the normal component, to the

interface, of the electric field by x̄, x̄ ¼ n � Ē
ð1Þ
� Ē

ð2Þ
� ����

S
,

and d̄ the normal component Eð2Þn , to the boundaries G1 and

G2, of the electric field. By using condition (10), the sum,

side by side, of the product of Eq. (15) by ēðkÞ, for k ¼ 1,2,
writes, when considering boundary conditions, as

1
2
x̄ ¼ ēð1Þ � ēð2Þ

� ��
ēð1Þ þ ēð2Þ
� �

�

Z
S

n � r0Gð Þx̄dS0

"

�

Z
G1

n � r0Gð Þd̄þ V
ð2Þ
1 n � r0@G=@n0
� �� �

dS0

�

Z
G2

d̄ n � r0Gð ÞdS0 �

Z
G3

V̄
ð2Þ

n � r0@G=@n0
� �

dS0

#
.

ð16Þ

Once the electric field solved, we can get the mean
electric stress contribution, by integrating the Maxwell
3

stress tensor over one period of the alternating electric
field, which gives

T ðMaxwellÞ
� 	

¼ 1
2
eRe Ē Ē

�
� 1

2
Ē � Ē

�� �
I


 �
. (17)

2.2. Mechanical model

The Newtonian fluid mechanics equations are described
hereafter. Fluid flows are supposed to be irrotational in the
whole volume they occupy. Yet, it remains possible to take
into account a partial effect of the viscosity; at the interface
S, the balance of the normal momentum may consider the
dissipative phenomenon due to the longitudinal deforma-
tion of the underlying fluids. To this effect, is added the
surface tension effect as well as the electric one.

2.2.1. Basic equations

The equation of conservation of mass and the Navier–
Stokes equations, for a Newtonian incompressible fluid k

(k ¼ 1,2), write as

~r � ~uðkÞ ¼ 0, (18)

q~uðkÞ=q~tþ
1

2
~r ~uðkÞ
� �2

¼ ~r ~c
ðkÞ
� 1=rðkÞ � ~r ~pðkÞ þ mðkÞ=rðkÞ � ~r

2
~u,

(19)

where ~uðkÞ, ~pðkÞ, ~c
ðkÞ
, rðkÞ and mðkÞ stand for the velocity, the

pressure, the volume force potential, the density and the
dynamic viscosity of the fluid k, respectively.
At the electrodes, G1 and G2, and the insulating

boundary, G3, a no slip condition is assigned. That is

ujG1þG2þG3
¼ 0. (20)

The impermeability condition at the interface S implies
the continuity of the normal velocity across it

uð1Þn

��
S
¼ uð2Þn

��
S
. (21)

If we suppose the flow irrotational, then the velocity field
derives from a hydrodynamic potential ~f

ðkÞ

~uðkÞ ¼ ~r ~f
ðkÞ
. (22)

Thus, the traditional Bernoulli equation is obtained

q ~f
ðkÞ
=q~t ¼ �

1

2
~uðkÞ
� �2

þ ~c
ðkÞ
� ~pðkÞ=rðkÞ. (23)

In the same manner, introducing (22) into (18) gives

~r
2 ~f
ðkÞ
¼ 0. (24)

The irrotationality hypothesis does not allow to consider
the tangential momentum balance especially on the
boundaries G1, G2 and G3. Rather than (20), the condition
to be satisfied at these boundaries will be

unjG1þG2þG3
¼ ðu � nÞjG1þG2þG3

¼ 0. (25)

Let us denote U the velocity scale, that will be
determined later. The resulting nondimensional quantities



are uðkÞ ¼ ~uðkÞ=U , pðkÞ ¼ ~pðkÞ=rðkÞU2, cðkÞ ¼ ~c
ðkÞ
=U2, t ¼

U ~t=L and fðkÞ ¼ ~f
ðkÞ
=UL.

Hence, the nondimensional form of Eqs. (24) and (23)
will be

r2fðkÞ ¼ 0, (26)

qfðkÞ=qt ¼ �1
2
uðkÞ
� �2

þ cðkÞ � pðkÞ=rðkÞ. (27)

Let us also suppose that both fluids have the same
density r. By subtracting, side by side, Eq. (23), we get

qF=@t ¼ �1
2
uð1Þ
� �2

þ 1
2
uð2Þ
� �2

� pð1Þ � pð2Þ
� ��

r, (28)

where F ¼ ðfð1Þ � fð2ÞÞjS is called the generalized hydro-
dynamic potential.

The normal momentum quantity balance at each point
in the interface S gives [4]

n � Tdyn

 �

� nð1Þ þ grðsÞ � nð1Þ ¼ � n � TMaxwell
� 	
 �

� nð1Þ, (29)

where the symbol ½n � F� ¼
P

k¼1;2n
ðkÞ � FðkÞ is used to

represent the effect of the underlying media to the interface
S, n is the normal vector to the interface and g its surface
tension. 2 ~CM ¼ rðsÞ � n

ð1Þ, where ~CM is the mean curvature
of the interface S. Tensors Tdyn represents the hydro-
dynamic tensor. For a Newtonian fluid in quasi-static
regime, this tensor is given by

Tðdyn; kÞ ¼ � ~pðkÞIþ mðkÞ ~r ~uðkÞ þ ~r ~uðkÞ
� �y� �

. (30)

The superscript y stands for the transpose matrix symbol
and I is the identity tensor. The dissipation contribution
from fluid volume elongation is retained at the interface
(although the fluids are assumed irrotational) in order to
bring in a dumping effect to the fluid underlying layers to
the interface. Moore [5], who considers the motion of a
spherical air bubble in a fluid, shows that the irrotational
solution provides, as the Reynolds number Re ¼ rUL=m
increases, a uniform approximation for normal component
of n �Tdyn.

If we use Eq. (29) in order to exclude the pressure jump
in Eq. (28), we will obtain the equation

qF=qt ¼ 1
2
uð2Þ
� �2

� 1
2
uð1Þ
� �2

� 2CM=We� Neð2Þ Eð2Þn

� �2
� E

ð2Þ
t

� �2� �

�Neð1Þ Eð1Þn

� �2
� E

ð1Þ
t

� �2� 

þ2=Reð2Þ � quð2Þn =qn� 2=Reð1Þ � quð1Þn =qn

�
, ð31Þ

where We ¼ rU2L=g, ReðkÞ ¼ rUL=mðkÞ, NeðkÞ ¼ eðkÞV 2
max=

rU2L2, k ¼ 1,2, and CM ¼ ~CM � L. We remind that,
consequently from (17), we have

EðkÞ
� �2

¼ 1
2
Re Ē

kð Þ
Ē
ðkÞ

� ��h i
; k ¼ 1; 2. (32)
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The velocity scale U can be determined either by setting
We ¼ 1 or Re(2) ¼ 1. As aforementioned, the latter has
been selected.

2.2.2. Boundary element applied to mechanics

The Green’s second identity applied to Eq. (26) gives the
following integral equation:

aðkÞðxÞfðkÞðxÞ ¼
Z
@OðkÞ

G
qfðkÞ

qn0ðkÞ
dS0 �

Z
@OðkÞ

@G

@n0ðkÞ
fðkÞ dS0.

(33)

If we take the sum, side by side, of Eq. (33), we obtain,
for x 2 S,

1

2
fð2Þ þ fð1Þ
� �

ðxÞ
��
S
¼

Z
S

qG=qn0FdS0

�

Z
G1þG2þG3

Gqfð2Þ=qn0 dS0

þ

Z
G1þG2þG3

qG=qn0fð2Þ dS0. ð34Þ

n0 is directed from Oð1Þ to Oð2Þ.
The same sum (of Eq. (33)) gives, for x 2 G1 þ G2 þ G3,

a xð Þf 2ð Þ xð Þ
��
G1þG2þG3

�

Z
G1þG2þG3

qG=qn0 f 2ð Þ dS0

�

Z
S

qG=qn0FdS0 ¼ �

Z
G1þG2þG3

G qfð2Þ=qn0 dS0. ð35Þ

If we assume that the generalized hydrodynamic
potential is known, from Eq. (31), then the system, which
consists of Eqs. (34) and (35), is closed. After resolution,
both hydrodynamics potentials fð1Þ and fð2Þ will be
available.
Differentiating Eq. (34), with respect to the normal n to

the interface S, permits to get the normal velocity on this
interface

unðxÞjS ¼

Z
S

q2G
qn qn0

FdS0 �

Z
G1þG2þG3

qG

qn

qfð2Þ

qn0
dS0

þ

Z
G1þG2þG3

q2G
qn qn0

fð2Þ dS0. ð36Þ

The tangential velocities are deduced by differentiating
the hydrodynamic potentials fðkÞ (k ¼ 1,2) with respect to
curvilinear coordinates

u
ðkÞ
t ¼ rðsÞf

ðkÞ; k ¼ 1; 2. (37)

Once the electric field and the velocity are known, the
generalized hydrodynamic potential F is updated, by time
integrating of Eq. (31), as well as the shape of the interface
S. Consequently, a new resolution is possible for the next
time step.

3. Results: comparison with experiments and Taylor’s theory

The simulation results are compared with the experi-
mental data of Berg et al. [1]. The influence of the



frequency f and the droplet conductivity on the magnitude
Ec of the critical electric field, beyond which the droplet
becomes unstable, is studied. Transient deformation of the
droplet shape is also presented. Among frequencies studied
by Berg et al. we have retained two of them: 50 and
2000Hz. Although Berg et al. have obtained different
results according to the electric applied waveform, we
study only the case where the waveform is sinusoidal. The
water droplet is immersed in a very slightly conductive oil.
Berg added 5 and 50 g/l of NaCl to the droplet in order to
modify its conductivity: these concentrations, respectively
correspond (according to Kohlrausch law) to a conductiv-
ity of 105 and 104 mS/cm. Berg showed that at this order of
magnitude, the droplet conductivity has no effect on its
behavior. This point strengthens the droplet infinite
conductivity hypothesis. To see whether or not this
hypothesis still holds true, we also simulate pure water
droplet to make comparison with tap water conductivity
Table 1

Values of the main parameters used in simulations

Parameter Value Unit

Droplet relative permittivity eð1Þ 78.8 —

External fluid relative permittivity eð2Þ 2.55 —

Droplet conductivity, sð1Þ (tap water) 100 mS/cm

Droplet conductivity, sð1Þ(very pure water) 1 mS/cm

External fluid conductivity sð2Þ (mineral oil) 3� 10�10 mS/cm
Surface tension g of the interface (water–oil) 40 mN/m

Fig. 3. Critical electric field versus droplet radius, (a) f ¼ 2000Hz and

(b) f ¼ 50Hz.
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effect. The different parameters values used in the
simulations are summarized in Table 1. Comparison is
extended finally to the traditional Taylor’s theory of
uncharged droplet stability.

3.1. Frequency effect

Fig. 3(a) illustrates the variations of Ec according to the
droplet radius at f ¼ 2000Hz. Agreement with experiment
is reasonably good.
When f ¼ 50Hz, since hydrodynamic low-frequency

perturbations are excluded from our simulations, the latter
are expected to only give a sufficient condition of droplet
instability. In fact, as shown in Fig. 3(b), the numerical
stability limit is always higher than the stability obtained
from experiment.
Numerical results show, in both cases, the same tendency

as the experiments: as the droplet gets smaller, the required
electric field to deform and make the droplet unstable gets
larger. This behavior is due to the fact that the capillarity
effect increases as the droplet size decreases. As the
frequency increases, small droplets become more stable,
whereas no significant changes are noticeable for bigger
ones. The mechanism that renders droplets more stable as
the frequency gets larger seems to be included in the range
of 50ofo2000Hz for the smallest droplets whilst it stands
at lower frequencies for the biggest ones.

3.2. Effect of droplet conductivity

Fig. 4 displays the variation of Ec for two droplet
conductivities (s ¼ 1 and 100 mS/cm). As mentioned by
Berg et al. [1], we can see, on this figure, that the droplet
conductivity has no significant influence upon Ec. There-
fore, the droplet may be considered as infinitely conductive.

3.3. Equilibrium shapes

In practice, various deformation regimes are observed,
according to the droplet size, frequency and intensity of the
Fig. 4. Effect of conductivity upon the critical electric field for various

droplet radii (f ¼ 2000Hz).



Fig. 5. From left to right, sequence of droplet deformation (r ¼ 500mm
and f ¼ 2000Hz) calculated after applying the electric field. The electric

field is gradually applied.

Fig. 6. From left to right, sequence of droplet deformation (r ¼ 500mm,

f ¼ 2000Hz and E0 ¼ 12 kV=cm) calculated after applying the electric

field. (a) Very slowly applied electric field, t ¼ 0:1 s, and (b) very rapidly

applied electric field t ¼ 1ms.

Fig. 7. Equilibrium shape laws given by Taylor and the computations in

terms of applied electric field root-mean-square. Equivalent droplet radius

r ¼ 500mm and f ¼ 2000Hz.
applied electric field. Fig. 5 points out the droplet forms
obtained from simulations at 2000Hz and for 500 mm
droplet radius. The obtained forms and those recorded by
the experiments [1] match up (even if no time evolution is
examined in these experiments). If the electric field is
applied progressively from 0 to E0, where E0oEc,
(Emax ¼ E0ð1� e�t=tÞ, see Eq. (1), with tb1=f v), then the
droplet deforms in a sequence of near-equilibrium prolate
spheroidal forms.

3.4. Instability regimes

At the same applied frequency and for E04Ec and
tb1=f v, the droplet starts to stretch and suddenly the
geometry changes from a prolate to an oblate spheroid
(Fig. 6(a)). This behavior has been observed in Berg et al.
experiments [1]. If t is reduced, but larger than te, and E0

reaches the critical value Ec then the droplet is deformed
until a cone appears at each droplet’s pole (Fig. 6(b)).

3.5. Taylor’s instabilities

The nonlinear stability analysis (involving high deforma-
tion rates from equilibrium shapes) being presented in
Section 3.1, we focus our attention now on linear stability,
6

which corresponds to small deformations from equili-
brium. In Taylor’s theory of droplets instability [2], the
applied electric field Es is assumed to be continuous.
Whilst, in our simulations, the applied electric field is time
harmonic with an amplitude Emax ¼ Es.
We choose to work at r ¼ 500 mm and f ¼ 2000Hz. At

this frequency, simulations have been compared with
Taylor theory on the evolution of a spheroidal droplet
characterized by its ellipticity with respect to the applied
electric field (Fig. 7). We try to estimate how far the two
stability curves are apart from each other. According to
Taylor’s [2], this law is two-valued. Surprisingly enough,
the AC electric field law that we found is very close to the
DC Taylor results, on the condition that the electric field
root-mean-square is used. As in Taylor’s theory, the upper
curve is shown to be unstable and the lower curve, stable.
These curves merge into a turning point, which corre-
sponds to very close critical electric field values, in both
cases.

4. Conclusions

Numerical simulations on dielectric droplets, more or
less conductive, immersed in a highly insulating fluid, has
been performed. An irrotational two-phase flow model,
subjected to a harmonic electric field, has been solved by
the BEM. The model presented is applied to high electric
frequencies so the electric behavior is weakly coupled with
the hydrodynamic one. The first part of our work consists
in a comparison between the computational results and the
experimental data. The main stability feature is correctly
depicted in terms of variation of the critical electric field
according to the droplet initial radius. In other respects, the
critical electric field increases with respect to frequency (in
the tested frequency range). As water droplet immersed in
oil is considered, droplet conductivity seems to have no
significant effect on the critical electric field as emphasized
by experiment. Some instability regimes may develop
according to the way the electric field is initially applied;



for slowly applied electric field, oblate droplet forms
appear, while for sharply applied electric field, cones
develop at the poles. The second part performs comparison
between numerical results and Taylor’s theory. Although it
was unexpected, close correspondence between both results
was found.
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