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LOCAL VORTEX FORMATION IN BURSTING AIR BUBBLE COLLAPSING PROCESS
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The numerical simulation of an air bubble bursting at a free surface was made in a potential flow of a viscous fluid assumption, through the Boundary Element Method (BEM). Such a collapsing process may involve local vortex formation leading to the air-liquid interface pinching-off.

Within the BEM formulation, the velocity field and the potential field can be expressed in terms of either a distribution of dipoles over the interface, either a distribution of vortices (a sheet vortex) over the interface, due to the equivalence between the dipole and the vortex representation. We highlight that a potential flow is imposed to the liquid, so that the vorticity is confined only at the air-liquid interface, and it cannot diffuse outside the interface. We found vortex configurations attached to some specific regions of the interface, where high velocities appear at points of strong curvature. Those vortex configurations may produce the interface rupture and air entrainment during the parent-bubble collapsing process. Once the velocity field is obtained through BEM over the whole interface (the velocity potential is explicitly given under integral form), it can be extended by subsequent computation to the adjacent liquid, in order to obtain the velocity field.

INTRODUCTION

We consider the bursting phenomenon, related to rising air bubble that reaches a free liquid surface. The liquid film formed between the bubble cap and the free surface is rapidly drained, and finally atomised into tiny droplets. After the liquid film disintegration, the gaping bubble cavity collapses, being finally solved in an unstable ascendant liquid jet that splits up into several drops [1,[START_REF] Georgescu | Jet drops ejection in bursting gas bubble processes[END_REF].

It appears that during the bubble bursting process, some tiny air bubbles (of toroidal or spherical shape) may be entrapped within the surrounding liquid, at the bottom of the collapsing parent bubble. This is due to the fact that the parent bubble collapsing process may involve local vortex formation leading to the interface pinching-off, at the moment where the liquid jet starts to rise. When the liquid jet forms, there are strong changes in interface curvature at the bottom of the parent bubble cavity. It has been shown that the density jump and the strong gradient of curvature are at the origin of creation of the vorticity [START_REF] Canot | Généralisation de la méthode intégrale aux frontieres pour les systèmes fluide-fluide[END_REF][START_REF] Canot | An overview of boundary integral formulations for potential flows in fluid-fluid systems[END_REF].

If the parent bubble interface pinching-off is produced at the bottom of the cavity, near the vertical Oz axis, before the jet formation, then a tiny spherical air bubble detaches and is entrained downwards within the surrounding liquid. Simultaneously, the evolution of the parent bubble interface continues with the ascendant jet formation.

If the parent bubble interface pinching-off is produced at the bottom of the cavity, at the beginning of the jet formation, near the area that encircles the inferior part of the liquid jet, then a tiny toroidal air bubble detaches and is entrained downwards within the surrounding liquid. The evolution of the rising jet continues simultaneously.

The parent bubble size is of millimetres order or less. Due to the rapidity of the bursting phenomenon (microseconds order), as well as to the micronic size of the entrapped air bubbles, the interface pinching-off was not observed experimentally (neither the one leading to spherical bubble, nor the one leading to toroidal bubble).

The bubble interface collapse involves difficulties in numerical modelling, due to strong non-linearities, free boundary conditions, and breaking processes.

So, in numerical simulations, the local interface rupture at the beginning of the jet formation can originate from the propagation of small capillary/ gravity waves [START_REF] Canot | Stability criteria for capillary/ gravity free-surface waves in BEM simulations of viscous potential flows[END_REF]. Such problems can be avoided by using an artificial smoothing of the interface. We will show that stable simulations over large time can be obtained without any artificial smoothing, only by using an optimal time step, defined by a gravitycapillary waves criterion [START_REF] Georgescu | Jet drops ejection in bursting gas bubble processes[END_REF][START_REF] Canot | Stability criteria for capillary/ gravity free-surface waves in BEM simulations of viscous potential flows[END_REF].

Within our numerical simulations of the bursting bubble process [1,[START_REF] Georgescu | Jet drops ejection in bursting gas bubble processes[END_REF][START_REF] Georgescu | Bubble cavity collapse and liquid jet formation simulation in bursting gas bubble process[END_REF][7][START_REF] Canot | Test-case No 21: Gas bubble bursting at a free surface, with jet formation (PN-PE)[END_REF], we consider an irrotational flow model, where viscous effects are incorporated as it is allowed for potential flows of fluids with constant viscosity [START_REF] Joseph | Drag and moment in viscous potential flow[END_REF]. A Boundary Element Method (BEM) is used with a second-order time-evolution scheme. The numerical code precision is evaluated trough a global mechanical energy balance expressed only in surface integrals terms [START_REF] Georgescu | Jet drops ejection in bursting gas bubble processes[END_REF][START_REF] Canot | Bilan d'énergie mécanique pour le suivi d'interface: Modèle potentiel avec prise en compte des contraintes visqueuses normales[END_REF].

In this paper, our simulations point on the parent bubble interface pinching-off, which leads to the formation of a tiny toroidal air bubble. We show that local vortex formation leads to that interface pinchingoff. Within the BEM formulation, the velocity field and the potential field can be expressed in terms of either a distribution of dipoles over the interface, either a distribution of vortices (a sheet vortex [START_REF] Batchelor | An Introduction to Fluid Dynamics[END_REF]) over the interface, due to the equivalence between the dipole and the vortex representation. We highlight that a potential flow is imposed to the liquid, so that the vorticity is confined only at the air-liquid interface, and it cannot diffuse outside the interface. Once the velocity field is obtained through BEM over the whole interface (the velocity potential is explicitly given under integral form), it can be extended by subsequent computation to the adjacent liquid, in order to obtain the velocity field in the liquid domain. Near the interface rupture area, the velocity field within the liquid is typical for a vortex. Finally we present computations that avoid any interface pinching-off at the beginning of the jet formation, by using an appropriate time step criterion.

PROBLEM STATEMENT

The geometric configuration is axisymmetric. In a meridian plane, rOz, the initial geometric condition for the air/liquid interface i Σ corresponds to the bubble gaping cavity joined along the crater line to the free liquid surface [1, 2, and 12], see Figure 1. The bounded axisymmetric liquid domain Ω extends largely over the bubble size, to obtain a negligible influence of the solid walls w Σ (lateral and base surface of a cylindrical pool). The liquid domain boundary is denoted

w i Σ Σ Σ ∪ =
. We take a unit outward normal n on Σ . The angle β is defined between the radial unit vector and the tangent unit vector t. The curvilinear abscissa s starts from the bottom of the bubble cavity, follows the interface i Σ , than the solid surface w Σ , and ends on the Oz axis.

Figure 1. Geometric initial configuration

The impulsive character of the collapse process leads to a potential flow assumption. The Laplace equation for the velocity potential φ is:

0 2 = ∇ φ . ( 1 
)
The viscous effects are taken into account only by the normal viscous stress at the interface:

( ) n v 2 n ∂ ∂ µ
, where µ represents the dynamic viscosity of the liquid, and

n v n ∂ ∂ = φ
is the normal component of the velocity

φ ∇ = v .
We adopt the bubble equivalent radius 0 R as length scale (the radius of a sphere with the same volume); 0 R σ as pressure scale, where σ is the surface tension;

( ) ρ σ 0 R
as velocity scale, and the ratio between length and velocity as time scale. According to the choice of scales, the Weber number takes always the unit value 1 We = , the Froude number is ( )

2 0 R g Fr ρ σ =
, and the Reynolds number is

( ) µ σ ρ 2 1 0 R Re =
. Dimensionless variables will be denoted by an asterisk.

The dimensionless Euler's equation is written:

( ) * * * ∇ - -∇ = ∇ + ∇ z Fr 1 p 2 v t 2 * * ∂ φ ∂ . ( 2 
)
The viscous effects are considered through the normal momentum balance at any point of the interface i Σ :

( )

0 n Re 2 z p p R 1 R 1 We 1 2 * 2 = - + -         + * * * * * * 0 2 1 ∂ φ ∂ , (3) 
where ( ) * * z p is the dimensionless liquid pressure on the interface at * z level, and * 0 p is the dimensionless reference pressure at the free surface level (at

0 z = * ).
A non-penetrability condition at the interface i Σ is also considered.

Combining equations ( 2) and ( 3) to reduce the pressure terms [START_REF] Georgescu | Jet drops ejection in bursting gas bubble processes[END_REF]7], we obtain the Bernoulli's equation:

2 2 2 n Re 2 Fr z R 1 R 1 We 1 2 v t 2 1 * * * * * * * * - -         + + - = ∂ φ ∂ ∂ φ ∂ (4)
The expressions of the normal gradient of normal velocity

2 2 n * * ∂ ∂ φ
are defined in [1] and [START_REF] Georgescu | Jet drops ejection in bursting gas bubble processes[END_REF]. The interface is frozen till the beginning of the cavity collapse, so the initial kinetic conditions correspond to a velocity field equal to zero [1].

NUMERICAL METHOD

The numerical method used in our simulations is detailed in [1,[START_REF] Georgescu | Jet drops ejection in bursting gas bubble processes[END_REF] and [7].

The problem is successively divided into tiny variable time steps * t ∆ , defined by a gravity-capillary waves criterion [START_REF] Canot | Stability criteria for capillary/ gravity free-surface waves in BEM simulations of viscous potential flows[END_REF]: at each time step, with respect to some criteria like the adaptation at surface gradients [START_REF] Canot | An overview of boundary integral formulations for potential flows in fluid-fluid systems[END_REF]: that leads to a concentration of nodes at places where the interface curvature is important, or where two portions of the interface approach one another [7]. On each boundary element, cubic splines define the geometric variables, and cubic Hermite polynomials approximate the field variables.

( ) 2 1 min 3 min 3 s Fr s We 2 t - * * *           + ≤ ∆ π ∆ π ∆ , ( 5 ) 
We recall the basic computation steps that are performed within such a transient free-boundary problem. (  )

P * -φ
, spread over Σ . The integral equation on boundary Σ is written:

( ) ( ) ( ) ( ) ( ) , M ; M 2 n P MP 1 n MP 1 P * P P P P Σ φ π Σ ∂ ∂φ Σ ∂ ∂ φ Σ Σ ∈ = = + + - ∫ ∫ * * * * d d ( 6 
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where MP is the dimensionless distance between the observation point M and the singularity point P. We define kinetic conditions of Dirichlet type on the gas-liquid interface i Σ , where the velocity potential * φ is known, and of Neumann type on the immobile solid surface w Σ , where the normal velocity vanishes:

0 n = ∂ ∂ * * φ
. By solving the integral equation ( 6) for the velocity potential ( ) * * t φ at each point ( )

) t ( z ), t ( r M M * * * * = , we obtain the normal component * * * ∂ ∂ = n v n φ
, and

tangential component * * * ∂ ∂ = s v t φ
of the velocity at each point

Σ ∈ M
. Thus, we define the velocity field ( ) * * t v on the whole surface Σ . Then, this velocity distribution can be extended by subsequent computation to the adjacent liquid, in order to obtain the velocity field within the whole liquid domain Ω .

An overview of boundary integral formulations is presented in [START_REF] Canot | Généralisation de la méthode intégrale aux frontieres pour les systèmes fluide-fluide[END_REF] and [START_REF] Canot | An overview of boundary integral formulations for potential flows in fluid-fluid systems[END_REF], where it is shown that within the BEM formulation, the velocity field and the potential field can be expressed in terms of either a distribution of dipoles over the interface, either a distribution of vortices -a sheet vortex [START_REF] Batchelor | An Introduction to Fluid Dynamics[END_REF] . We highlight that a potential flow is imposed to the liquid, so that the vorticity is confined only at the air-liquid interface, and it cannot diffuse outside the interface [3, 4, and 15].

The second-order limited Taylor series expansion of the velocity potential ( ) * * t φ is written: , includes also some derivatives, namely , all of them having slightly complicated expressions (for example, outside the Oz axis, the last derivative includes 20 terms, obtained by using the Maple software for symbolic computation [1,[START_REF] Georgescu | Jet drops ejection in bursting gas bubble processes[END_REF]). All those derivatives need the normal and tangential derivatives of is the axisymmetric boundary element. Upon azimuthally integration, the mechanical energy balance deals with line integrals of the terms computed through the BEM, being easily implemented in the computational procedure. The dissipation of mechanical energy due to shear viscosity depends only on the normal component of the velocity, and on its normal derivative,

( ) ( ) , t
2 2 n * * ∂ ∂ φ .

NUMERICAL RESULTS

Within this paper, our simulations point on local vortex formation that leads to the parent bubble interface pinching-off. We focus on the interface rupture, which appears at the bottom of the cavity, near the area that encircles the inferior part of the upward liquid jet that starts to form. Following the rupture, a tiny toroidal air bubble detaches, being entrained downwards within the surrounding liquid, while the liquid jet continues its highly-speed upward movement. Near the interface rupture area, the velocity field within the liquid is typical for a vortex.

We exemplify this kind of computation for a parent air bubble of equivalent radius Starting with geometric and kinetic conditions described in section 2, the early collapse behaviour can be described by a velocity distribution on the parent bubble gaping cavity like the one presented in Figure 2.

Figure 2. Velocity distribution on the interface at the beginning of the bubble collapse

As described in section 3, in Figure 2 there is a concentration of nodes at places where the interface curvature is important, for example around the crater border, while nodes are rare on the spherical part corresponding to the bottom of the bubble cavity. As we will see further (see Figures 5678), a concentration of nodes is also used at places where two portions of the interface approach one another, for example around the interface pinching-off line.

In Figure 2, it can be seen that the crater tends to be enlarged (due to strong surface tension forces), the nodes spread over the crater area being submitted to velocity vectors, having radial components of great value, which point in opposite direction with respect to the axis if symmetry. The nodes placed on the inferior part of the cavity tend to move towards the centre of the parent bubble. Following the velocity distribution presented in Figure 2, the collapse process continues with sequences of the parent bubble interface evolution like the ones presented in Figure 3: the bottom of the bubble cavity rises, while the crater border is continuously enlarged.

The jet formation starts as in Figure 4, then it continues to rise slowly like in Figures 5 and6. When the liquid jet forms, there are strong changes in interface curvature at the inferior part of the parent bubble cavity. In Figures 5 and6, it can be seen that the lateral part of the cavity is submitted to an increasing velocity distribution, associated to strong curvature gradient. It has been shown that the density jump and the strong gradient of curvature are at the origin of creation of the vorticity [START_REF] Canot | Généralisation de la méthode intégrale aux frontieres pour les systèmes fluide-fluide[END_REF][START_REF] Canot | An overview of boundary integral formulations for potential flows in fluid-fluid systems[END_REF]. Finally, the velocity distribution characterising the local vortex leads to the interface pinching-off as in Figure 7. Following the rupture, a tiny toroidal air bubble is entrapped within the liquid, being entrained downwards by the subsequent liquid flow. After that, the liquid jet continues to rise with increasing speed. We present in Figure 8 a zoomed image of the interface at the rupture moment. The velocity vectors are typical to a local vortex, enclosing the toroidal bubble.

The mechanical energy balance (8) expressed in percents as ratio between the energy variation and the initial mechanical energy is plotted versus the dimensionless time, during the whole collapse evolution, till the interface pinching-off (see Figure 9). It was shown [START_REF] Georgescu | Jet drops ejection in bursting gas bubble processes[END_REF] that a value of few percents is acceptable for this kind of highly transient freesurface problem Finally we present computations [START_REF] Georgescu | Jet drops ejection in bursting gas bubble processes[END_REF] that avoid any interface pinching-off at the beginning of the jet formation, by using an appropriate time step criterion [START_REF] Canot | Stability criteria for capillary/ gravity free-surface waves in BEM simulations of viscous potential flows[END_REF]. The interface evolution associated to the collapse process, from the initial moment till the first jet drop ejection, is presented in Figure 10 for an air bubble of equivalent radius 2 R 0 = mm, which bursts at the free surface of distilled water. . In figure 11 we present the zoomed image of the jet formation, where the changes in interface curvature are well described. Within this last computation, an optimal variable time step is selected in order to avoid crossing-over of the nodes during the displacement of the interface. The time step selection obeys some extra requirements described in [1] and [START_REF] Georgescu | Jet drops ejection in bursting gas bubble processes[END_REF]. 

CONCLUSIONS

The numerical simulation of an air bubble bursting at a free surface was made in a potential flow of a viscous fluid assumption, through the Boundary Element Method (BEM). Within the BEM formulation, the velocity field and the potential field can be expressed in terms of either a distribution of dipoles, either a distribution of vortices over the interface. A potential flow is imposed to the liquid, so that the vorticity is confined only at the air-liquid interface, and it cannot diffuse outside the interface.

We found vortex configurations attached to some specific regions of the interface, where high velocities appear at points of strong curvature. Those vortex configurations may produce the interface rupture and air entrainment during the parent-bubble collapsing process. In this paper, we point on the parent bubble interface pinching-off, which leads to the formation of a tiny toroidal air bubble. Once the velocity field is obtained through BEM over the whole interface, it can be extended by subsequent computation to the adjacent liquid, in order to obtain the velocity field.

It is shown that computations that avoid any interface pinching-off at the beginning of the jet formation can be performed by using an appropriate time step criterion.
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 89 Figure 8. Vortex around the toroidal bubble at the interface rupture moment
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 10 Figure 10. Interface evolution associated to the collapse process of a parent bubble of 2 mm equivalent radius, for an air/ distilled water coupleThe dimensionless numbers are:
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 11 Figure 11. Zoomed image of the jet formation
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