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Modelling and Robust Position/Force Control of a Piezoelectric
Microgripper

Micky Rakotondrabe, Cédric Clévy and Philippe Lutz

Abstract—This paper deals with the control of a
piezoelectric microgripper based on two piezocan-
tilevers. To avoid the destruction of the manipulated
micro-object and to permit a high accurate position-
ing, the microgripper is controlled on position and on
force. Each piezocantilever is separately modelled and
controlled: while the one is controlled on position, the
second is controlled on force. Because the models are
subjected to uncertainties and the micromanipulation
requires good performances, a H∞ robust controller
is designed for each system. The experiments end the
paper and show that good performances are obtained.

I. Introduction

In micromanipulation, i.e. manipulation of object from
1µm to 1mm sizes, the required accuracy is generally
sub-micrometric. Instead of hinges, active materials are
used to design systems for micromanipulation. In fact,
hinges are characterized by frictions and may decrease
the performances (accuracy) of the micromanipulation.
Among these active materials, piezoelectric materials
are widespread because of their fast response time and
their high resolution. One of the main applications of
piezoelectric materials in microsystems is piezoelectric
microgrippers. A piezoelectric microgripper is based on
two piezoelectric cantilevers (piezocantilevers). It is used
to pick a micro-object, transport and place it with a high
positioning accuracy. Nevertheless, to avoid the destruc-
tion of the micro-object, a control of the manipulation
force is necessary.

In the litterature, many studies have been done on the
modelling and control of a piezocantilever but few con-
cern a whole microgripper. The majority of these studies
especially refer to the deflection of the cantilever: [1] is
an example in the linear approach while [2][3][4][5] takes
into account the nonlinearities of the material. On the
other hand, the control of the force is today a partially
solved problematic because it requires the integration of
a very small sensor, the use of the piezoelectric properties
or a compliant structure. Up to now, very few solutions
are proposed: [6][7][8].

In this paper, we propose to model and control a
piezoelectric microgripper. In order to ensure good per-
formances for the micromanipulation, a H∞ robust con-
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troller is used. The position (directly measured) and
the manipulation force (estimated) are considered as the
references. The paper is organized as follows. First, the
modelling of the microgripper is presented. Then, the
design of the H∞ controller for each piezocantilever is
presented. Finally, the experimental results are presented
and discussed.

II. Modelling

Let the Fig. 1 present the piezoelectric microgripper
manipulating a micro-object. In this figure, Fm is the
manipulation force applied by the two piezocantilevers to
the micro-object. Our objective is to control the position
of the micro-object by means of one piezocantilever and
to maintain a constant value of Fm by means of the
second piezocantilever. Because the adhesion forces [9]
are insignificant relative to the manipulation force range
of our concern (more than millinewton), and because we
experiment objects from 500µm to 1.5mm in size, they
will not be taken into account in this paper.
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Fig. 1. A piezoelectric microgripper manipulating a micropart.

The relation between the applied voltage Ui, the force
Fi applied to the piezocantilever at its tip and the
resulting deflection δi, with i ∈ {l, r}, in the static mode
is [10]:

δi = di · Ui + si · Fi (1)

where di > 0 is the equivalent piezoelectric constant
of the piezocantilever and si > 0 is the equivalent elastic
constant.

However, it has been shown that the transient part of
the (Ui, δi)-transfer and the transient part of the (Fi, δi)-
transfer of a piezocantilever are similar [11]. Thus, we
have:



δi = (di · Ui + si · Fi) ·Di(s) (2)

where Di(s) (such as Di(0) = 1) represents the dy-
namic part and s the Laplace variable.

On the other hand, the relation between the manipu-
lation force Fm and the contraction of the micro-object
is:

(δl − δl0)− (δr − δr0) = so ·Do(s) · Fm (3)

where so > 0 is the elastic constant of the micro-object,
Do(s) (such as Di(0) = 1) is its dynamic characteristic
and δl0 and δr0 are the deflections of the left and right
piezocantilevers before touching the object (Fig. 2).
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Fig. 2. Initial situation: the micro-object is not in contact with
the piezocantilevers.

Noting ∆δ = δl0 − δr0 and replacing Fl = Fr = −Fm

in the (Eq. 2), we have: δl = (dl · Ul − sl · Fm) ·Dl(s)
δr = (dr · Ur − sr · Fm) ·Dr(s)
(δl − δr)−∆δ = so ·Do(s) · Fm

(4)

Without loss of generality, we choose the left piezo-
cantilever for the force Fm actuation while the right one
for the micro-object position actuation. From the set of
equations (Eq. 4), two approaches are possible to model
the microgripper:
• the first approach uses one bivariable system where

the inputs are the two voltages and the outputs are
the deflection δr and the force Fm. It takes into
account the effects of the piezocantilevers deflections
to each other. So, it is possible to design a multivari-
able controller leading to very good performances.
However, this approach needs a precise model,

• the second approach consists in modelling indepen-
dently the two piezocantilevers. While the one is
modelled on force, the second is modelled on deflec-
tion. The advantage is that the two models are easier
than of the first approach. However, since the de-
flection of one cantilever disturbs that of the other,
and vice versa, the design of each feedback controller
should takes into account such disturbances.

In both approaches, the models are dependent on the
characteristics of the micro-object. In this paper, we
choose the second approach because of the simplicity of
the models and of the issued controllers.

A. Model of the voltage/deflection transfer

Here, we model the right piezocantilever. From the
second equation of the set (Eq. 4), we have the nominal
model:

δr = dr ·Dr(s) · (Ur + br) (5)

where br = − sr·Fm

dr
is an input disturbance to be

rejected. Fig. 3 shows the corresponding scheme.
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Fig. 3. Scheme of the nominal model of the right piezocantilever.

B. Model of the voltage/force transfer

The left piezocantilever is modelled in this part. From
the first and last equations of the set (Eq. 4), we have:

Fm =
1

(so + sl)
·Dk(s) · (dl ·Dl(s) · Ul − δr −∆δ) (6)

with:

Dk(s) =
(so + sl)

(Do(s) + Dl(s))
(7)

and Dk(0) = 1.
The (Eq. 6) clearly shows that the model depends on

the characteristics of the micro-object. Nevertheless, it
is not practical to identify the model and to synthesize
a controller at each change of manipulated micro-object.
Thus, we propose to have a nominal model independent
of the micro-object characteristics, i.e. so = 0 and
Dk(s) = 1, and use a robust controller to ensure the
stability and the performances. Such hypothesis will be
verified in the experimental results. Finally, we have the
following nominal model:

Fm =
dl

sl
·Dl(s) · Ul + Fpert (8)

where Fpert = − (δr+∆δ)
sl

is an output disturbance to
be rejected. Fig. 4 shows the corresponding scheme.
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Fig. 4. Scheme of the nominal model of the left piezocantilever.

C. Identification
For our experiments, we use two unimorph piezocan-

tilevers based on a PIC151 piezolayer [12] and a Copper
layer. The sizes of each piezocantilever are: 15mm ×
2mm × 0.3mm (length, width and thickness) where the
thickness of the piezolayer is 0.2mm . The experimental
setup (Fig. 5) is made up of:
• the microgripper,
• two laser sensors (Keyence sensor with 500nm of

accuracy) to measure the deflections of the piezo-
cantilevers,

• an amplifier with two lines for Ul and Ur,
• a computer-DSpace material to acquire the measure-

ments and to generate the input voltages Ul and Ur.
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Fig. 5. Experimental setup.

For each piezocantilever, a harmonic experiment was
performed. Afterwards, the (Ui, δi)-transfer function is
identified in the frequenty domain. A second order model
is assumed to be sufficient for piezocantilevers [13]. We
have:


dr = 0.545

[
µm
V

]
Dr(s) = 1

1.86×10−8·s2+4.1×10−6·s+1

(9)

and 
dl = 0.525

[
µm
V

]
Dl(s) = 1

1.85×10−8·s2+2.72×10−6·s+1

(10)

Fig. 6 shows the results of (Ui, δi)-transfer function for
the right piezocantilever.
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Fig. 6. Magnitude of the right piezocantilever.

Finally, to identify the elastic constant si, a mass
is hung on at the tip of each piezocantilever and the
resulting deflection is measured. We have sr = sl =
1.931× 10−3

[
m
N

]
.

Because the characteristics of the micro-object have
been neglected in the nominal model, the latter is sub-
jected to uncertainties. Such approach let us avoid the
model identification and the controller synthesis of at
each change of micro-object. Therefore, we choose a
robust controller to ensure the stability and performances
robustness face to the uncertainties, we use the H∞
controllers. Moreover, the disturbance rejection will be
taken into account during the controller design.

III. Control of the deflection δr

Let the Fig. 7 be the closed-loop scheme. In the figure,
δr
r indicates the reference input. Two weighting functions

are used: W r
1 for the closed-loop performances and W r

2

for the disturbance rejection.

A. Standard form

Let Pr(s) be the augmented system including the
nominal system and the weighting functions. Fig. 8 shows
the corresponding standard scheme.

The standard H∞ problem consists in finding an op-
timal value γ > 0 and a controller Ki(s) stabilizing the
closed-loop scheme of the Fig. 8 and guaranteeing the
following inequality [14]:
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Fig. 7. The closed-loop scheme with the weighting functions.
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Fig. 8. The standard form.

‖Flow (Pi(s),Ki(s))‖∞ < γ (11)

where Flow(., .) is the lower Linear Fractionar Transfor-
mation and is defined here by Flow (Pr(s),Kr(s)) = or(s)

er(s) .
From the Fig. 7, we have:

or = W r
1 · Sr · δr

r −W r
1 · Sr ·Gr ·W r

2 · ir (12)

where Sr = (1 + Kr ·Gr)
−1 is the sensitivity function.

Using the condition (Ineq. 11) and the (Eq. 12), we
infer:

‖W r
1 · Sr‖∞ < γ

‖W r
1 · Sr ·Gr ·W r

2 ‖∞ < γ
⇔

|Sr| < γ

|W r
1 |

|Sr ·Gr| < γ

|W r
1 ·W r

2 |
(13)

To solve the problem (Ineq. 13), we use the Glover-
Doyle algorithm which is based on the Riccati equations
[15][16]. The issued controller Kr is robust in the fact
that it ensures the stability and the performances even
if the nominal system Gr has an uncertainty relative to
the real plant. The wanted performances are introduced
through the weighting functions.

B. Choice of the weighting functions

The transfer functions 1
W r

1
and 1

W r
1 ·W r

2
are chosen

from the specifications respectively on the tracking per-
formances and on the disturbance rejection. Thus, the
weighting functions W r

1 and W r
2 can be automatically

deduced. The specifications are:
• the maximal response time is 100ms,
• the overshoot is null,
• the maximal statical error is 0.1%,
• finally, the rejection of the disturbance is a highpass

filter with a cutting frequency more than 50Hz.

When the disturbance is a static force, its influence
on the deflection has been chosen to be lower than
1.7

[
µm

10mN

]
.

From the performances specifications, we choose:

1
W r

1

= 10−3 · 3 · s + 1
30× 10−3 · s + 1

(14)

Using the specifications on the disturbance rejection
and using the equivalence br = − sr·Fm

dr
, we choose:

1
W r

1 ·W r
2

= 0.5× 10−7 · 3 · s + 1
3× 10−3 · s + 1

(15)

C. Calculation of the controller

The computed controller has an order of 5. To min-
imize the memory and time consumptions in the com-
puter, the controller order has been reduced to 2 using
the balanced realization technique [17]. We obtain:


γopt = 10.1

Kr =
−15810·(s+4×106)·(s−1.4×104)

(s+1.5×107)·(s+0.3)

(16)

IV. Control of the force Fm

Fig. 9 shows the closed-loop scheme. In the figure, F r
m

indicates the reference input. Two weighting functions
are used: W l

1 for the closed-loop performances and W l
2

for the output disturbance rejection.
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Fig. 9. The closed-loop scheme with the weighting functions.

From the Fig. 9, we have:

ol = W l
1 · Sl · F r

m −W l
1 · Sl ·W l

2 · il (17)

where Sl = (1 + Kl ·Gl)
−1 is the sensitivity function.

Using the condition (Ineq. 11) and the (Eq. 17), we
infer:

∥∥W l
1 · Sl

∥∥
∞ < γ∥∥W l

1 · Sl ·W l
2

∥∥
∞ < γ

⇔
|Sl| < γ

|W l
1|

|Sl| < γ

|W l
1·W l

2|
(18)



A. Choice of the weighting functions

The following specifications are used:
• in order to maintain the micro-object during the

positioning, the response time in force should be
faster than the one of the deflection. For that, we
choose a response time equal to 10ms,

• the overshoot is null,
• the maximal statical error is 1%,
• finally, the rejection of the disturbance is a highpass

filter with a cutting frequency is 5Hz. Such a value
is chosen because the disturbance, which is the
deflection of the other piezocantilever, has a low
bandwidth (response time). When the disturbance is
a static deflection, its influence on the output must
be lower than 0.2

[
mN

40µm

]
.

From the performances specifications, we choose:

1
W r

1

= 10−2 · 3 · s + 1
3× 10−3 · s + 1

(19)

Using the specifications of the disturbance rejection
and using the equivalence Fpert = − (δr+∆δ)

sl
, we choose:

1
W r

1 ·W r
2

= 10−2 · 3 · s + 1
30× 10−3 · s + 1

(20)

B. Calculation of the controller

The computed controller has an order of 5. Once again,
the controller order has been reduced. We obtain:


γopt = 1.02

Kl =
0.06·(s+7.3×108)·(s2+277·s+8.2×107)

(s+1.2×106)·(s+1.9×104)·(s+0.3)

(21)

V. Experimental results

The two controllers given by the (Eq. 16) and the
(Eq. 21) have been implemented to a computer-DSpace
real-time material. The Matlab-Simulink and the Con-
trolDesk softwares were used for that. Since there is no
adequate force sensor, a force estimator has been used [1].
Fig. 10 shows the principle scheme of the experiments.

Experiments with two types of micro-object were per-
formed (Fig. 11): a flexible material (polystyrene) and
a rigid material (rigid plastic). The sizes of the micro-
objects were chosen so that ∆δ ≈ 0. Its width, corre-
sponding to the gap between the two piezocantilevers, is
nearly 1mm.

The results show that the same performances are
obtained for both. Fig. 12 presents the experimental
results with the rigid plastic mini gear. Initially, the
deflection and the force are null. Then, a manipulation
force reference of 5mN is applied. A small effect is seen
on the deflection (t = 1.3s) but is quickly rejected.
Between t = 2s and t = 5s, a series of positive and
negative steps (amplitude: 20µm) in position reference
is applied. As we can see, its influence on the force is
also quickly rejected despite the high amplitude of the
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Fig. 10. Principle scheme of the microgripper control.
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Fig. 11. The microgripper manipulating a mini gear (in rigid
plastic).

diturbance effect. Finally (t = 5.8s), the manipulation
force reference is set to zero. Since the size of the micro-
object is equal to the gap of the microgripper, a negative
deflection reference should be applied to release it. On
the other hand, we can remark that the accuracy is very
high for the deflection and for the force. In fact, the static
errors are very small and are not visible by the sensors.

In order to evaluate the response time, we zoom in
the step reponse of each output (Fig. 13). It can be seen
that the response time is exceeded: tresp ≈ 250ms for
the deflection and tresp ≈ 150ms for the force. This
is explained in the fact that the optimal value of γ is
high for the deflection. For all that, the force response
time still stays lower than the one of the deflection and
the general performances are always suitable for the
micromanipulation task requirements. In addition, ramp
signals are often used as references in micromanipulation
instead of step signals. So, such response times are largely
sufficient.

VI. Conclusion

Piezoelectric materials are very prized in microma-
nipulation due to their rapidity and high resolution.
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One of their application is piezoelectric microgrippers
which are based on two piezocantilevers. A microgripper
permits the pick-transport-and place of micro-objects
with a high positioning accuracy. This paper has pre-
sented the modelling and the control of a piezoelec-
tric microgripper dedicated to manipulate micro-objects.
Both the positioning and the manipulation force were
taken into account. For that, two separated models have
been proposed: while one piezocantilever is modelled
on deflection, i.e. position, the second is modelled on
force. Because the characteristics of the manipulated
micro-objects are neglected in the model, the nominal
model is subjected to uncertainty. To ensure stability and
performances, we have proposed a H∞ controller for each

piezocantilever. Whatever the manipulated micro-object
characteristics are, good performances suitable for the
micromanipulation (disturbances rejection, micrometric
positioning accuracy, submillinewton of force accuracy)
were obtained in the experiments.
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