Test vectors for trilinear forms, when two representations are unramified.

Louise Nyssen

To cite this version:

Louise Nyssen. Test vectors for trilinear forms, when two representations are unramified.. 2009. hal-00182286v2

HAL Id: hal-00182286
 https://hal.science/hal-00182286v2

Preprint submitted on 2 Mar 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Test vectors for trilinear forms, given two unramified representations

Louise Nyssen
lnyssen@math.univ-montp2.fr

March 2, 2009

1 Introduction

Let F be a finite extension of \mathbb{Q}_{p}, with ring of integers \mathcal{O}_{F}, and uniformizing parameter ϖ, whose residual field has q elements. For $G=\mathrm{GL}_{2}(F)$, let $\left(\pi_{1}, V_{1}\right),\left(\pi_{2}, V_{2}\right)$ and $\left(\pi_{3}, V_{3}\right)$ be three irreducible, admissible, infinite dimensional representations of G. Using the theory of Gelfand pairs, Dipendra Prasad proves in [P] that the space of G-invariant linear forms on $V_{1} \otimes V_{2} \otimes V_{3}$ has dimension at most one. He gives a precise criterion for this dimension to be one, that we will explain now.

Let D_{F}^{*} be the group of invertible elements of the quaternion division algebra D_{F} over F. When $\left(\pi_{i}, V_{i}\right)$ is a discrete series representation of G, denote by $\left(\pi_{i}^{\prime}, V_{i}^{\prime}\right)$ the irreducible representation of D_{F}^{*} associated to $\left(\pi_{i}, V_{i}\right)$ by the Jacquet-Langlands correspondence. Again, by the theory of Gelfand pairs, the space of D_{F}^{*}-invariant linear forms on $V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes V_{3}^{\prime}$ has dimension at most one.

Let σ_{i} be the two dimensional representations of the Weil-Deligne group of F associated to the irreducible representations π_{i}. The triple tensor product $\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}$ is an eight dimensional symplectic representation of the Weil-Deligne group, and has local root number $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)= \pm 1$. When $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)=-1$, one can prove that the representations π_{i} 's are all discrete series representations of G.

Theorem 1. (Prasad, Theorem 1.4 of $[\mathbb{H}]$) Let $\left(\pi_{1}, V_{1}\right),\left(\pi_{2}, V_{2}\right),\left(\pi_{3}, V_{3}\right)$ be three irreducible, admissible, infinite dimensional representations of G such that the product of their central characters is trivial. If all the representations V_{i} 's are cuspidal, assume that the residue characteristic of F is not 2. Then
. $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)=1$ if and only if there exists a non-zero G-invariant linear form on $V_{1} \otimes V_{2} \otimes V_{3}$
. $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)=-1$ if and only if there exists a non-zero D_{k}^{*} invariant linear form on $V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes V_{3}^{\prime}$.

Given a non zero G-invariant linear form ℓ on $V_{1} \otimes V_{2} \otimes V_{3}$, or a non-zero D_{k}^{*}-invariant linear form ℓ^{\prime} on $V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes V_{3}^{\prime}$, the goal is to find a vector in $V_{1} \otimes V_{2} \otimes V_{3}$ which is not in the kernel of ℓ, or a vector in $V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes V_{3}^{\prime}$ which is not in the kernel of ℓ^{\prime}. Such a vector is called a test vector. At first sight, it appears to have strong connections with the new vectors v_{1}, v_{2} and v_{3} of the representations π_{1}, π_{2} and π_{3}.

Theorem 2. (Prasad, Theorem 1.3 of [P]) When all the π_{i} 's are unramified principal series representations of $G, v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector for ℓ.

Theorem 3. (Gross and Prasad, Proposition 6.3 of G-P]) When all the π_{i} 's are unramified twists of the special representation of G :

- if $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)=1$, then $v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector for ℓ,
- if $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)=-1$, let R^{\prime} be the unique maximal order in D_{F}. Then the open compact subgroup $R^{\prime *} \times R^{\prime *} \times R^{* *}$ fixes a unique line in $V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes V_{3}^{\prime}$. Any vector on this line is a test vector for ℓ^{\prime}.

The proof by Gross and Prasad of the first statement of this theorem actually contains another result:

Theorem 4. When two of the π_{i} 's are unramified twists of the special representation of G and the third one belongs to the unramified principal series of $G, v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector for ℓ.

But the paper G-P gives evidence that $v_{1} \otimes v_{2} \otimes v_{3}$ is not always a test vector for ℓ. Let $K=\operatorname{GL}\left(\mathcal{O}_{F}\right)$ be the maximal compact subgroup of G. If π_{1} and π_{2} are unramified and if π_{3} has conductor $n \geq 1, \ell$ being G-invariant, v_{1} and v_{2} being K-invariant, one gets a K-invariant linear form

$$
\left\{\begin{array}{rll}
V_{3} & \longrightarrow & \mathbb{C} \\
v & \longmapsto & \ell\left(v_{1} \otimes v_{2} \otimes v\right)
\end{array}\right.
$$

which must be 0 since π_{3} is ramified. Then $\ell\left(v_{1} \otimes v_{2} \otimes v_{3}\right)=0$.
Now Gross and Prasad make the following suggestion. Let I_{n} be the congruence subgroup

$$
I_{n}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in K \quad \right\rvert\, \quad c \equiv 0 \quad \bmod \varpi^{n}\right\}
$$

and R be a maximal order $\mathrm{M}_{2}(F)$ such that $R^{*} \cap K=I_{n}$. If v_{1}^{*} is a R^{*}-invariant vector in V_{1}, the linear form

$$
\left\{\begin{array}{lll}
V_{3} & \longrightarrow & \mathbb{C} \\
v & \longmapsto & \ell\left(v_{1}^{*} \otimes v_{2} \otimes v\right)
\end{array}\right.
$$

is invariant under the action of $R^{*} \cap K=I_{n}$, and one can still hope that $v_{1}^{*} \otimes v_{2} \otimes v_{3}$ is a test vector for ℓ.

The purpose of this paper is to prove that $v_{1}^{*} \otimes v_{2} \otimes v_{3}$ actually is a test vector for ℓ. This is the object of Theorem 齿. The case $n=1$, together with Theorems 2, 3 and 4, complete the study of test vectors when the π_{i} 's have ramification 0 or 1 .

In the long term, the search for test vectors is motivated by the subconvexity problem for L-functions. Roughly speaking, one wants to bound some L-functions along the critical line $\Re(z)=\frac{1}{2}$. A recent and successful idea in this direction has been to relate triple products of automorphic forms to special values of L-functions on the critical line. In B-R 1 and B-R 2 Joseph Bernstein and Andre Reznikov established a so called subconvexity bound the for the L-function of a triple of representations : each representation is attached to the eigenvalue of a certain operator, and the eigenvalue of one representation varies. Philippe Michel and Akshay Venkatesh considered the case when the level of one representation varies. More details about subconvexity and those related techniques can be found in \mathbb{V}] or $\mathrm{M}-\mathrm{V}$. Test vectors are key
ingredients. Bernstein and Reznikov use an explicit test vector. Venkatesh uses a theoretical one, but explains that the bounds would be better with an explicit one (see paragraph 5 of (V]). Unfortunately, the difficulty of finding them increases with the ramification of the representations involved.

There is an extension of Prasad's result in H-S], where Harris and Scholl prove that the dimension of the space of G-invariant linear forms on $V_{1} \otimes V_{2} \otimes V_{3}$ is one when π_{1}, π_{2} and π_{3} are principal series representations, either irreducible or reducible with their unique irreducible subspace, infinite dimensional. They apply the global setting of this to the construction of elements in the motivic cohomology of the product of two modular curves constructed by Beilinson.

I would like to thank Philippe Michel for suggesting this problem, Wen-Ching Winnie Li who invited me to spend one semester at PennState University where I wrote the first draft of this paper, and of course Benedict Gross and Dipendra Prasad for the inspiration. I would also like to thank Paul Broussous and Nicolas Templier for many interesting discussions, and Eric Bahuaud for his help with English.

In a previous version of this paper, I obtained Theorem ${ }^{5}$ under an unpleasant technical condition. I am extremely grateful to Malden Dimitrov, because, thanks to our discussions on the subject, I found the way to remove the condition. In D-N, we are working on a more general version of Theorem 5.

2 Statement of the result

2.1 About induced and contragredient representations

Let (ρ, W) be a smooth representation of a closed subgroup H of G. Let Δ_{H} be the modular function on H. The induction of ρ from H to G is a representation π whose space is the space $\operatorname{Ind}_{H}^{G}(\rho)$ of functions f from G to W satisfying the two following conditions:
(1) $\forall h \in H, \quad \forall g \in G, \quad f(h g)=\Delta_{H}{ }^{-\frac{1}{2}}(h) \rho(h) f(g)$,
(2) there exists an open compact subgroup K_{f} of G such that

$$
\forall k \in K_{f}, \quad \forall g \in G, \quad f(g k)=f(g)
$$

where G acts by right translation. The resulting function will be denoted $\langle\pi(g), f\rangle$ that is

$$
\forall g, g_{0} \in G, \quad\langle\pi(g), f\rangle\left(g_{0}\right)=f\left(g_{0} g\right) .
$$

With the additional condition that f must be compactly supported modulo H, one gets the compact induction denoted by $\operatorname{ind}_{H}^{G}$. When G / H is compact, there is no difference between $\operatorname{Ind}_{H}^{G}$ and $\operatorname{ind}_{H}^{G}$.

Let B the Borel subgroup of upper triangular matrices in G, and let T be the diagonal torus. The character Δ_{T} is trivial and we will use $\delta={\Delta_{B}}^{-1}$ with $\delta\left(\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right)=\left|\frac{a}{d}\right|$ where $|\cdot|$ is the normalised valuation of F. The quotient $B \backslash G$ is compact and can be identified with $\mathbb{P}^{1}(F)$.

For a smooth representation V of G, V^{*} is the space of linear forms on V. The contragredient representation $\widetilde{\pi}$ is given by the action of G on \widetilde{V}, the subspace of smooth vectors in V^{*}. If H is a subgroup of $G, \widetilde{V} \subset \widetilde{V_{\mid H}} \subset V^{*}$.

We refer the reader to [B-Z] for more details about induced and contragredient representations.

2.2 New vectors and ramification

Let (π, V) be an irreducible, admissible, infinite dimensional representation of G with central character ω. To the descending chain of compact subgroups of G

$$
K \supset I_{1} \supset \cdots \supset I_{n} \supset I_{n+1} \cdots
$$

one can associate an ascending chain of vector spaces
$V^{0}=V^{K} \quad$ and $\quad \forall n \geq 1, \quad V^{n}=\left\{v \in V \quad \left\lvert\, \quad \forall\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in I_{n}\right., \quad \pi\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right) v=\omega(a) v \quad\right\}$.
There exists a minimal n such that the vector space V^{n} is not $\{0\}$. It is necessarily one dimensional and any generator of V^{n} is called a new vector of (π, V). The integer n is the conductor of (π, V). The representation (π, V) is said to be unramified when $n=0$. Else, it is ramified.

More information about new vectors can be found in (G].

2.3 The main result

Let $\left(\pi_{1}, V_{1}\right),\left(\pi_{2}, V_{2}\right)$ and $\left(\pi_{3}, V_{3}\right)$ be three irreducible, admissible, infinite dimensional representations of G such that the product of their central characters is trivial. Assume that π_{1} and π_{2} are unramified principal series, and that π_{3} has conductor $n \geq 1$. According to Theorem 1, since π_{1} and π_{2} are not discrete series, there exists a non-zero, G-invariant linear form ℓ on $V_{1} \otimes V_{2} \otimes V_{3}$. We are looking for a vector v in $V_{1} \otimes V_{2} \otimes V_{3}$ which is not in the kernel of ℓ. In order to follow the suggestion of Gross and Prasad we consider

$$
\gamma=\left(\begin{array}{cc}
\varpi & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad R_{n}=\gamma^{-n} \mathrm{M}_{2}\left(\mathcal{O}_{F}\right) \gamma^{n}
$$

One can easily check that

$$
R_{n}^{*}=\gamma^{-n} K \gamma^{n} \quad \text { and } \quad R_{n}^{*} \cap K=I_{n} .
$$

If v_{1}, v_{2} and v_{3} denote the new vectors of π_{1}, π_{2} and π_{3}, the vector

$$
v_{1}^{*}=\pi_{1}\left(\gamma^{-n}\right) \cdot v_{1}
$$

is invariant under the action of R_{n}^{*}. Hence we can write

$$
v_{1}^{*} \in V_{1} R_{n}^{*}, \quad v_{2} \in V_{2}{ }^{K} \quad \text { and } \quad v_{3} \in V_{3} R_{n}^{*} \cap K .
$$

Theorem 5. Under those conditions, $v_{1}^{*} \otimes v_{2} \otimes v_{3}$ is a test vector for ℓ.
The proof will follow the same pattern as Prasad's proof of Theorem 2 in \mathbb{P}, with the necessary changes.

3 Going down Prasad's exact sequence

3.1 Central characters

Let ω_{1}, ω_{2} and ω_{3} be the central characters of π_{1}, π_{2} and π_{3}. Notice that the condition $\omega_{1} \omega_{2} \omega_{3}=1$ derives from the G-invariance of ℓ. Since π_{1} and π_{2} are unramified, ω_{1} and ω_{2} are unramified too, and so is ω_{3} because $\omega_{1} \omega_{2} \omega_{3}=1$. Let η_{i}, for $i \in\{1,2,3\}$ be unramified quasi-characters of F^{*} with $\eta_{i}^{2}=\omega_{i}$ and $\eta_{1} \eta_{2} \eta_{3}=1$. Then

$$
V_{1} \otimes V_{2} \otimes V_{3} \simeq\left(V_{1} \otimes \eta_{1}^{-1}\right) \otimes\left(V_{2} \otimes \eta_{2}^{-1}\right) \otimes\left(V_{3} \otimes \eta_{3}^{-1}\right)
$$

as a representation of G. Hence it is enough to prove Theorem 5 when the central characters of the representations are trivial.

When $n=1$, it is also enough to prove Theorem ${ }^{\text {a }}$ when V_{3} is the special representation Sp of G : take η_{3} to be the unramified character such that $V_{3}=\eta_{3} \otimes \mathrm{Sp}$.

3.2 Prasad's exact sequence

Let us now explain how Prasad finds ℓ. It is equivalent to search for ℓ or to search for a non-zero element in $\operatorname{Hom}_{G}\left(V_{1} \otimes V_{2}, \widetilde{V_{3}}\right)$. Since the central characters of π_{1} and π_{2} are trivial, there are unramified characters μ_{1} and μ_{2} such that for $i=1$ and $i=2$

$$
\pi_{i}=\operatorname{Ind}_{B}^{G} \chi_{i} \quad \text { with } \quad \chi_{i}\left(\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\right)=\mu_{i}\left(\frac{a}{d}\right)
$$

Hence

$$
V_{1} \otimes V_{2}=\operatorname{Res}_{G} \operatorname{Ind}_{B \times B}^{G \times G}\left(\chi_{1} \times \chi_{2}\right)
$$

where G is diagonally embedded in $G \times G$ for the restriction. The action of G on $B \times B \backslash G \times G=$ $\mathbb{P}^{1}(F) \times \mathbb{P}^{1}(F)$ has precisely two orbits. The first is $\left\{(u, v) \in \mathbb{P}^{1}(F) \times \mathbb{P}^{1}(F) \quad \mid \quad u \neq v\right\}$ which is open and can be identified with $T \backslash G$. The second orbit is the diagonal embedding of $\mathbb{P}^{1}(F)$ in $\mathbb{P}^{1}(F) \times \mathbb{P}^{1}(F)$, which is closed and can be identified with $B \backslash G$. Then, we have a short exact sequence of G-modules

$$
\begin{equation*}
0 \rightarrow \operatorname{ind}_{T}^{G}\left(\frac{\chi_{1}}{\chi_{2}}\right) \xrightarrow{\text { ext }} V_{1} \otimes V_{2} \xrightarrow{\text { res }} \operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right) \rightarrow 0 . \tag{1}
\end{equation*}
$$

The surjection res is the restriction of functions from $G \times G$ to the diagonal part of $B \backslash G \times B \backslash G$, that is

$$
\Delta_{B \backslash G}=\{(g, b g) \quad \mid \quad b \in B, \quad g \in G\} .
$$

The injection ext takes a function $f \in \operatorname{ind}_{T}^{G}\left(\frac{\chi_{1}}{\chi_{2}}\right)$ to a function $F \in \operatorname{Ind}_{B \times B}^{G \times G}\left(\chi_{1} \times \chi_{2}\right)$ vanishing on $\Delta_{B \backslash G}$, and is given by the relation

$$
F\left(g,\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) g\right)=f(g)
$$

on the other orbit. Applying the functor $\operatorname{Hom}_{G}\left(\cdot, \widetilde{V_{3}}\right)$, one gets a long exact sequence

$$
\begin{align*}
& 0 \rightarrow \operatorname{Hom}_{G}\left(\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right), \widetilde{V_{3}}\right) \rightarrow \operatorname{Hom}_{G}\left(V_{1} \otimes V_{2}, \widetilde{V_{3}}\right) \rightarrow \operatorname{Hom}_{G}\left(\operatorname{ind}_{T}^{G}\left(\frac{\chi_{1}}{\chi_{2}}\right), \widetilde{V_{3}}\right) \\
& \downarrow \tag{2}\\
& \cdots \ldots \operatorname{Ext}_{G}^{1}\left(\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right), \widetilde{V_{3}}\right)
\end{align*}
$$

3.3 The simple case

The situation is easier when $n=1$ and $\mu_{1} \mu_{2}|\cdot|^{\frac{1}{2}}=|\cdot|^{-\frac{1}{2}}$, as π_{3} is special and there is a natural surjection

$$
\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right) \longrightarrow \widetilde{V_{3}}
$$

whose kernel is the one dimensional subspace of constant functions. Thanks to the exact sequence (1) one gets a surjection Ψ

$$
\begin{array}{rll}
V_{1} \otimes V_{2} & \xrightarrow{\text { res }} & \operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right) \\
\Psi \searrow & \widetilde{V_{3}} & \swarrow
\end{array}
$$

which corresponds to

$$
\ell\left\{\begin{array}{rll}
V_{1} \otimes V_{2} \otimes V_{3} & \longrightarrow \mathbb{C} \\
v \otimes v^{\prime} \otimes v^{\prime \prime} & \longmapsto \Psi\left(v \otimes v^{\prime}\right) \cdot v^{\prime \prime}
\end{array}\right.
$$

The surjection Ψ vanishes on $v_{1}^{*} \otimes v_{2}$ if and only if $\operatorname{res}\left(v_{1}^{*} \otimes v_{2}\right)$ has constant value on $\mathbb{P}^{1}(F) \simeq B \backslash G$. An easy computation proves that $\operatorname{res}\left(v_{1}^{*} \otimes v_{2}\right)$ is not constant : the new vectors v_{1} and v_{2} are functions from G to \mathbb{C} such that

$$
\forall i \in\{1,2\}, \quad \forall b \in B, \quad \forall k \in K, \quad v_{i}(b k)=\chi_{i}(b) \cdot \delta(b)^{\frac{1}{2}}
$$

and

$$
\forall g \in G, \quad v_{1}^{*}(g)=v_{1}\left(g \gamma^{-1}\right) .
$$

Then

$$
\left(v_{1}^{*} \otimes v_{2}\right)\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)=v_{1}\left(\gamma^{-1}\right) v_{2}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)=v_{1}\left(\left(\begin{array}{cc}
\varpi^{-1} & 0 \\
0 & 1
\end{array}\right)\right)=\mu_{1}(\varpi)^{-1}|\varpi|^{-\frac{1}{2}}=\frac{\sqrt{q}}{\mu_{1}(\varpi)}
$$

and

$$
\left(v_{1}^{*} \otimes v_{2}\right)\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)=v_{1}\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\varpi^{-1} & 0 \\
0 & 1
\end{array}\right)\right)=v_{1}\left(\left(\begin{array}{cc}
1 & 0 \\
0 & \varpi^{-1}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)=\frac{\mu_{1}(\varpi)}{\sqrt{q}} .
$$

The representation π_{1} is principal so $\frac{\sqrt{q}}{\mu_{1}(\varpi)} \neq \frac{\mu_{1}(\varpi)}{\sqrt{q}}$ and

$$
\left(v_{1}^{*} \otimes v_{2}\right)\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right) \neq\left(v_{1}^{*} \otimes v_{2}\right)\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right) .
$$

Hence Ψ does not vanish on $v_{1}^{*} \otimes v_{2}$. Now, v_{1}^{*} being R_{1}^{*}-invariant and v_{2} being K-invariant, $\Psi\left(v_{1}^{*} \otimes v_{2}\right)$ is a non-zero I_{1}-invariant element of $\widetilde{V_{3}}$, that is, a new vector for $\widetilde{\pi_{3}}$. Consequently it does not vanish on v_{3} :

$$
\ell\left(v_{1}^{*} \otimes v_{2} \otimes v_{3}\right)=\Psi\left(v_{1}^{*} \otimes v_{2}\right) \cdot v_{3} \neq 0
$$

and $v_{1}^{*} \otimes v_{2} \otimes v_{3}$ is a test vector for ℓ.

3.4 The other case

If $n \geq 2$ or $\mu_{1} \mu_{2}|\cdot|^{\frac{1}{2}} \neq|\cdot|^{-\frac{1}{2}}$ then $\operatorname{Hom}_{G}\left(\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right), \widetilde{V_{3}}\right)=0$ and by Corollary 5.9 of (${ }^{[1]}$

$$
\operatorname{Ext}_{G}^{1}\left(\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right), \widetilde{V_{3}}\right)=0
$$

Through the long exact sequence (2) we get an isomorphism

$$
\operatorname{Hom}_{G}\left(V_{1} \otimes V_{2}, \widetilde{V_{3}}\right) \simeq \operatorname{Hom}_{G}\left(\operatorname{ind}_{T}^{G}\left(\frac{\chi_{1}}{\chi_{2}}\right), \widetilde{V_{3}}\right)
$$

and by Frobenius reciprocity

$$
\operatorname{Hom}_{G}\left(\operatorname{ind}_{T}^{G}\left(\frac{\chi_{1}}{\chi_{2}}\right), \widetilde{V_{3}}\right) \simeq \operatorname{Hom}_{T}\left(\left(\frac{\chi_{1}}{\chi_{2}}\right), \widetilde{V_{3 \mid T}}\right),
$$

where $\widetilde{V_{3 \mid T}}$ is the space of the contragredient representation of $\pi_{3 \mid T}$. By Lemmas 8 and 9 of [W], the latter space is one dimensional. Thus, we have a chain of isomorphic one dimensional vector spaces
$\operatorname{Hom}_{G}\left(V_{1} \otimes V_{2} \otimes V_{3}, \mathbb{C}\right) \quad \tilde{\rightarrow} \quad \operatorname{Hom}_{G}\left(V_{1} \otimes V_{2}, \widetilde{V_{3}}\right) \quad \tilde{\rightarrow} \quad \operatorname{Hom}_{G}\left(\operatorname{ind}_{T}^{G}\left(\frac{\chi_{1}}{\chi_{2}}\right), \widetilde{V_{3}}\right) \quad \tilde{\rightarrow} \quad \operatorname{Hom}_{T}\left(\left(\frac{\chi_{1}}{\chi_{2}}\right), \widetilde{V_{3 \mid T}}\right)$
$\begin{array}{lllllll}\ell & \mapsto & \Psi & \mapsto & \oplus & \varphi\end{array}$
with generators ℓ, Ψ, Φ and φ corresponding via the isomorphisms. Notice that φ is a linear form on V_{3} such that

$$
\begin{equation*}
\forall t \in T, \quad \forall v \in V_{3}, \quad \varphi\left(\pi_{3}(t) v\right)=\frac{\chi_{2}(t)}{\chi_{1}(t)} \varphi(v) \tag{3}
\end{equation*}
$$

which is identified to the following element of $\operatorname{Hom}_{T}\left(\left(\frac{\chi_{1}}{\chi^{2}}\right), \widetilde{V_{3 \mid T}}\right)$

$$
\left\{\begin{array}{ccc}
\mathbb{C} & \longrightarrow & \widetilde{V_{3 \mid T}} \\
z & \longmapsto & z \varphi
\end{array}\right.
$$

Lemma 1. $\varphi\left(v_{3}\right) \neq 0$.
Proof: this is Proposition 2.6 of [G-P] with the following translation :

- the local field F is the same,
- the quadratic extension K / F of Gross and Prasad is $F \times F$ and their group K^{*} is our torus T,
- the infinite dimensional representation V_{1} of Gross and Prasad is our π_{3},
- the one dimensional, unramified representation V_{2} of Gross and Prasad is $\frac{\chi_{1}}{\chi_{2}}$.

Then the representation that Gross and Prasad call V is $\frac{\chi_{1}}{\chi_{2}} \otimes \pi_{3}$ and their condition (1.3) is exactly our condition (33). In order to apply Gross and Prasad's Proposition, we need to check the equality

$$
\varepsilon\left(\sigma \otimes \sigma_{3}\right)=\alpha_{K / F}(-1) \omega(-1)
$$

Basically, it is true because K is not a field. Let us give some details.

- In [G-P], ω is the central character of the representation V_{1} which is trivial for us.
- The character $\alpha_{K / F}$ is the quadratic character of F^{*} associated to the extension K / F by local class-field theory. Here, it is trivial because K is $F \times F$.
- To compute $\varepsilon\left(\sigma \otimes \sigma_{3}\right)$ we will use the first pages of T.

$$
\forall\left(\begin{array}{ll}
x & 0 \\
0 & z
\end{array}\right) \in T \quad \frac{\chi_{1}}{\chi_{2}}\left(\left(\begin{array}{cc}
x & 0 \\
0 & z
\end{array}\right)\right)=\frac{\mu_{1}}{\mu_{2}}(x) \frac{\mu_{2}}{\mu_{1}}(z) \Rightarrow \varepsilon\left(\sigma \otimes \sigma_{3}\right)=\varepsilon\left(\frac{\mu_{1}}{\mu_{2}} \otimes \sigma_{3}\right) \varepsilon\left(\frac{\mu_{2}}{\mu_{1}} \otimes \sigma_{3}\right)
$$

Since the determinant of σ_{3} is the central character of π_{3} which is trivial, σ_{3} is isomorphic to its own contragredient and the contragredient representation of $\frac{\mu_{1}}{\mu_{2}} \otimes \sigma_{3}$ is $\frac{\mu_{2}}{\mu_{1}} \otimes \sigma_{3}$. Formula (1.1.6) of [T] leads to

$$
\varepsilon\left(\sigma \otimes \sigma_{3}\right)=\operatorname{det}\left(\sigma_{3}(-1)\right)=1=\alpha_{K / F}(-1) \omega(-1)
$$

According to G-P , the restriction of $\frac{\chi_{1}}{\chi_{2}} \otimes \pi_{3}$ to the group

$$
M=\left\{\left.\left(\begin{array}{ll}
x & 0 \\
0 & z
\end{array}\right) \quad \right\rvert\, \quad x, y \in \mathcal{O}_{F}^{*}\right\} \times I_{n}
$$

fixes a unique line in V_{3} : it is the line generated by the new vector v_{3}. Still according to Gross and Prasad, a non-zero linear form on V_{3} which satisfies (3) cannot vanish on v_{3}.

We will deduce from lemma that $\ell\left(v_{1}^{*} \otimes v_{2} \otimes v_{3}\right) \neq 0$.

4 Going up Prasad's exact sequence

4.1 From $\varphi\left(v_{3}\right)$ to f

Let f be the element of $\operatorname{ind}_{T}^{G}\left(\frac{\chi_{1}}{\chi_{2}}\right)$ which is the characteristic function of the orbit of the unit in the decomposition of $T \backslash G$ under the action of I_{n}. This means :

$$
f(g)=\left\{\begin{array}{cl}
\frac{\chi_{1}(t)}{\chi_{2}(t)} & \text { if } \quad g=t k \quad \text { with } \quad t \in T \quad \text { and } \quad k \in I_{n} \tag{4}\\
0 & \text { else }
\end{array}\right.
$$

Then, the function

$$
\left\{\begin{array}{rll}
G & \longrightarrow & \mathbb{C} \\
g & \longmapsto & f(g) \varphi\left(\pi_{3}(g) v_{3}\right)
\end{array}\right.
$$

is invariant by the action of T by left translation and we can do the following computation :

$$
\begin{aligned}
(\Phi(f))\left(v_{3}\right) & =\int_{T \backslash G} f(g) \varphi\left(\pi_{3}(g) v_{3}\right) d g \\
& =\int_{(T \cap K) \backslash I_{n}} \varphi\left(\pi_{3}(k) v_{3}\right) d k \\
& =\lambda \cdot \varphi\left(v_{3}\right)
\end{aligned}
$$

where λ is a non-zero constant. Thanks to Lemma 1 we know that $\varphi\left(v_{3}\right) \neq 0$, so

$$
\begin{equation*}
(\Phi(f))\left(v_{3}\right) \neq 0 \tag{5}
\end{equation*}
$$

4.2 From f to F

Now, we are going to compute $F=\operatorname{ext}(f)$ in $V_{1} \otimes V_{2}$. Let a and b be the numbers

$$
a=\frac{\mu_{1}(\varpi)}{\sqrt{q}} \quad b=\frac{\mu_{2}(\varpi)}{\sqrt{q}}
$$

They verify

$$
\left(a^{2}-1\right)\left(b^{2}-1\right) \neq 0
$$

because π_{1} and π_{2} are principal series representations. For the sake of simplicity, we shall use the following notation : for any g in G

$$
g v_{1}^{*}=\left\langle\pi_{1}(g), v_{1}^{*}\right\rangle \quad \text { and } \quad g v_{2}=\left\langle\pi_{2}(g), v_{2}\right\rangle
$$

Lemma 2. The function F is given by the formula

$$
F=A \cdot v_{1}^{\prime} \otimes v_{2}^{\prime}
$$

with

$$
A=\frac{a^{n}}{\left(a^{2}-1\right)\left(b^{2}-1\right)}, \quad v_{1}^{\prime}=a \cdot \gamma^{-(n-1)} v_{1}-\gamma^{-n} v_{1} \quad \text { and } \quad v_{2}^{\prime}=b \cdot \gamma^{-1} v_{2}-v_{2} .
$$

Proof: the function f is described by formula (4), and $\operatorname{ext}(f)$ is described by the short exact sequence (1) using the orbits of the action of G on $B \times B \backslash G \times G$. The function F must vanish on the closed orbit

$$
\Delta_{B \backslash G}=\{(g, b g) \quad \mid \quad b \in B, \quad g \in G\} .
$$

The open orbit can be identified with $T \backslash G$ via the bijection

$$
\left\{\begin{aligned}
T \backslash G & \longrightarrow(B \backslash G \times B \backslash G) \backslash \Delta_{B \backslash G} \\
T g & \longmapsto\left(B g, B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) g\right)
\end{aligned}\right.
$$

through which, the orbit of the unit in $T \backslash G$ under the action of I_{n} corresponds to

$$
\left\{\left.\left(B k, B\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) k\right) \quad \right\rvert\, \quad k \in I_{n}\right\} .
$$

Now, pick any $\left(k, k^{\prime}\right) \in K \times K$. If $k^{\prime} \in B k$, then

$$
k \in I_{n} \Longleftrightarrow k^{\prime} \in I_{n} \quad \text { and } \quad k \in I_{1} \Longleftrightarrow k^{\prime} \in I_{1} .
$$

When $k^{\prime} \notin B k$, write $k=\left(\begin{array}{ll}x & y \\ z & t\end{array}\right)$ and $k^{\prime}=\left(\begin{array}{cc}x^{\prime} & y^{\prime} \\ z^{\prime} & t^{\prime}\end{array}\right)$. There exists $\left(b_{1}, b_{2}\right) \in B \times B$ such that

$$
k=b_{1} k_{0} \quad \text { and } \quad k^{\prime}=b_{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) k_{0} \quad \text { with } \quad k_{0}=\left(\begin{array}{cc}
z^{\prime} & t^{\prime} \\
z & t
\end{array}\right) \in \mathrm{M}_{2}\left(\mathcal{O}_{F}\right)
$$

Then $\left(k, k^{\prime}\right)$ is in the orbit of the unit in $T \backslash G$ under the action of I_{n} if and only if k_{0} is in $T I_{n}$. Because k and k^{\prime} are in K, one can see that

$$
k_{0} \in T I_{n} \quad \Longleftrightarrow \quad k_{0} \in I_{n}
$$

and

$$
\begin{aligned}
k_{0} \in I_{n} & \Longleftrightarrow z \equiv 0 \quad \bmod \varpi^{n} \quad \text { and } \quad z^{\prime} t \in \mathcal{O}_{F}^{*} \\
& \Longleftrightarrow z \equiv 0 \quad \bmod \varpi^{n} \quad \text { and } \quad z^{\prime} \in \mathcal{O}_{F}^{*} \\
& \Longleftrightarrow k \in I_{n} \quad \text { and } \quad k^{\prime} \notin I_{1} .
\end{aligned}
$$

It follows that $\left(k, k^{\prime}\right)$ corresponds to an element of the orbit of the unit in the decomposition of $T \backslash G$ under the action of I_{n} if and only if $k \in I_{n}$ and $k^{\prime} \notin I_{1}$. Then, it will be enough to check that

$$
F\left(k, k^{\prime}\right)= \begin{cases}1 & \text { if } \quad k \in I_{n} \quad \text { and } \quad k^{\prime} \notin I_{1} \tag{6}\\ 0 & \text { else }\end{cases}
$$

This is mere calculation. With $a=\frac{\mu_{1}(\varpi)}{\sqrt{q}}$, we need
Lemma 3. Let i be any element of \mathbb{N}. The values of the function $\gamma^{-i} v_{1}$ on K are given by the formula

$$
\forall k=\left(\begin{array}{ll}
x & y \tag{7}\\
z & t
\end{array}\right) \in K, \quad \gamma^{-i} v_{1}(k)= \begin{cases}a^{i} & \text { if } \quad \operatorname{val}\left(\frac{z}{t}\right) \leq 0 \\
a^{i-2 \operatorname{val}\left(\frac{z}{t}\right)} & \text { if } \quad 1 \leq \operatorname{val}\left(\frac{z}{t}\right) \leq i-1 \\
a^{-i} & \text { if } \quad i \leq \operatorname{val}\left(\frac{z}{t}\right)\end{cases}
$$

Proof : first, recall that the new vector v_{1} is a function from G to \mathbb{C} such that

$$
\forall b \in B, \quad \forall k \in K, \quad v_{1}(b k)=\chi_{1}(b) \cdot \delta(b)^{\frac{1}{2}}
$$

Then, for $k=\left(\begin{array}{ll}x & y \\ z & t\end{array}\right)$ in K, either z or t is in \mathcal{O}_{F}^{*}. The other one is in \mathcal{O}_{F}. Write

$$
k \gamma^{-i}=\left(\begin{array}{cc}
\frac{x}{\varpi^{i}} & y \\
\frac{z}{\varpi^{i}} & t
\end{array}\right)
$$

If val $\frac{z}{t} \leq 0$, then $\operatorname{val} z=0, \operatorname{val}\left(\frac{\varpi^{i} t}{z}\right) \geq 0$ and

$$
k \gamma^{-i}=\left(\begin{array}{cc}
\frac{x t-y z}{z} & \frac{x}{\varpi^{i}} \\
0 & \frac{z}{\varpi^{i}}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & \frac{\varpi^{i} t}{z}
\end{array}\right)
$$

with

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & \frac{\varpi^{i} t}{z}
\end{array}\right) \in K \quad \text { and } \quad\left(\chi_{1} \cdot \delta^{\frac{1}{2}}\right)\left(\begin{array}{cc}
\frac{x t-y z}{z} & \frac{x}{\varpi^{i}} \\
0 & \frac{z}{\varpi^{i}}
\end{array}\right)=\left(\frac{\mu_{1}(\varpi)}{\sqrt{q}}\right)^{i-2 \mathrm{val} z}=a^{i-2 \mathrm{val} z}=a^{i} .
$$

If $1 \leq \operatorname{val} \frac{z}{t} \leq i-1$, then $\operatorname{val} t=0, \operatorname{val}\left(\frac{w^{i} t}{z}\right) \geq 0$ and the computation is quite the same, except that

$$
\left(\chi_{1} \cdot \delta^{\frac{1}{2}}\right)\left(\begin{array}{cc}
\frac{x t-y z}{z} & \frac{x}{\varpi^{i}} \\
0 & \frac{z}{\varpi^{i}}
\end{array}\right)=\left(\frac{\mu_{1}(\varpi)}{\sqrt{q}}\right)^{i-2 \mathrm{val} z}=a^{i-2 \mathrm{val} \frac{z}{t}}
$$

If $i \leq \operatorname{val} \frac{z}{t}$, then val $t=0, \operatorname{val}\left(\frac{\varpi^{i} t}{z}\right) \leq 0$ and

$$
k \gamma^{-i}=\left(\begin{array}{cc}
\frac{x t-y z}{t \varpi^{i}} & y \\
0 & t
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{z}{t \varpi^{2}} & 1
\end{array}\right)
$$

with

$$
\left(\begin{array}{cc}
1 & 0 \\
\frac{z}{t \varpi^{2}} & 1
\end{array}\right) \in K \quad \text { and } \quad\left(\chi_{1} \cdot \delta^{\frac{1}{2}}\right)\left(\left(\begin{array}{cc}
\frac{x t-y z}{t \varpi^{i}} & y \\
0 & t
\end{array}\right)\right)=\left(\frac{\mu_{1}(\varpi)}{\sqrt{q}}\right)^{-i-2 \mathrm{val} t}=a^{-i} .
$$

NB : the case $t=0$ is included in $\operatorname{val} \frac{z}{t} \leq 0$.
We can now finish the proof of Lemma 2. The same computation, with v_{2} and b instead of v_{1} and a, gives the values of $\gamma^{-i} v_{2}$ for any $i \in \mathbb{N}$. It is then easy to compute $F\left(k, k^{\prime}\right)$ as given in Lemma 2, for k and k^{\prime} in K , and to check formula (6).

4.3 Some test-vectors

On the one hand, from the expression of F given by Lemma 2 we deduce

$$
(\Psi(F))\left(v_{3}\right)=A \cdot \ell\left(v_{1}^{\prime} \otimes v_{2}^{\prime} \otimes v_{3}\right)
$$

On the other hand, from the relation $F=\operatorname{ext}(f)$ we deduce

$$
(\Psi(F))\left(v_{3}\right)=(\Phi(f))\left(v_{3}\right)
$$

and from equation 5 in Section 4.1 we get

$$
(\Psi(F))\left(v_{3}\right) \neq 0
$$

Then

$$
\ell\left(v_{1}^{\prime} \otimes v_{2}^{\prime} \otimes v_{3}\right) \neq 0
$$

and $v_{1}^{\prime} \otimes v_{2}^{\prime} \otimes v_{3}$ is a test vector for ℓ. We are going to simplify it. We can deduce from lemma 2 that

$$
F=A \cdot\left\{a b \cdot \gamma^{-(n-1)} v_{1} \otimes \gamma^{-1} v_{2}-a \cdot \gamma^{-(n-1)} v_{1} \otimes v_{2}-b \cdot \gamma^{-n} v_{1} \otimes \gamma^{-1} v_{2}+\gamma^{-n} v_{1} \otimes v_{2}\right\} .
$$

If $n \geq 2$, we write

$$
(\Psi(F))\left(v_{3}\right)=A \cdot\left(a b \cdot\left\langle\gamma^{-1} \psi_{n-2}, v_{3}\right\rangle-a \cdot\left\langle\psi_{n-1}, v_{3}\right\rangle-b \cdot\left\langle\gamma^{-1} \psi_{n-1}, v_{3}\right\rangle+\left\langle\psi_{n}, v_{3}\right\rangle\right)
$$

where, for m in $\{n-1, n-2, n\}$

$$
\psi_{m} \quad\left\{\begin{array}{rll}
V_{3} & \longrightarrow & \mathbb{C} \\
v & \longmapsto & \ell\left(\gamma^{-m} v_{1} \otimes v_{2} \otimes v\right)
\end{array}\right.
$$

Since ℓ is G invariant, ψ_{m} is an element of $\widetilde{V_{3}}$ which is invariant by the action of

$$
R_{m} \cap K=I_{m}
$$

But $\widetilde{\pi_{3}}$ has conductor n so

$$
\psi_{n-2}=\psi_{n-1}=0
$$

and

$$
(\Psi(F))\left(v_{3}\right)=A \cdot \psi_{3}\left(v_{3}\right)=A \cdot \ell\left(\gamma^{-n} v_{1} \otimes v_{2} \otimes v_{3}\right)
$$

then

$$
\ell\left(\gamma^{-n} v_{1} \otimes v_{2} \otimes v_{3}\right) \neq 0
$$

and $\gamma^{-n} v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector for ℓ.
If $n=1$, only the two terms in the middle vanish and we get

$$
(\Psi(F))\left(v_{3}\right)=A \cdot\left(a b \cdot \ell\left(v_{1} \otimes \gamma^{-1} v_{2} \otimes v_{3}\right)+\ell\left(\gamma^{-1} v_{1} \otimes v_{2} \otimes v_{3}\right)\right)
$$

Now, take

$$
g=\left(\begin{array}{cc}
0 & 1 \\
\varpi & 0
\end{array}\right)
$$

On the one hand

$$
g \gamma^{-1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and this matrix is in K so

$$
g \gamma^{-1} v_{1}=v_{1}
$$

On the other hand

$$
\left(\begin{array}{cc}
0 & 1 \\
\varpi & 0
\end{array}\right)=\left(\begin{array}{cc}
\varpi & 0 \\
0 & \varpi
\end{array}\right)\left(\begin{array}{cc}
\varpi^{-1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

The first matrix belongs to the center of G, the second one is precisely γ^{-1} and the third one is in K, so

$$
g v_{2}=\gamma^{-1} v_{2}
$$

Then

$$
\begin{aligned}
(\Psi(F))\left(v_{3}\right) & =A \cdot\left\{a b \cdot \ell\left(g \gamma^{-1} v_{1} \otimes g v_{2} \otimes v_{3}\right)+\ell\left(\gamma^{-1} v_{1} \otimes v_{2} \otimes v_{3}\right)\right\} \\
& =A \cdot\left\{a b \cdot \ell\left(\gamma^{-1} v_{1} \otimes v_{2} \otimes g^{-1} v_{3}\right)+\ell\left(\gamma^{-1} v_{1} \otimes v_{2} \otimes v_{3}\right)\right\} \\
& =A \cdot \ell\left(\gamma^{-1} v_{1} \otimes v_{2} \otimes v_{3}^{\prime}\right)
\end{aligned}
$$

with

$$
v_{3}^{\prime}=a b \cdot\left(g^{-1} v_{3}\right)+v_{3}
$$

The linear form

$$
\psi_{1} \quad\left\{\begin{array}{rll}
V_{3} & \longrightarrow & \mathbb{C} \\
v & \longmapsto & \ell\left(\gamma^{-1} v_{1} \otimes v_{2} \otimes v\right)
\end{array}\right.
$$

is a non zero element of ${\widetilde{V_{3}}}^{I_{1}}$, so it is a new vector in \widetilde{V}_{3}. It is known from Bat a new vector in $\widetilde{V_{3}}$ does not vanish on on $V_{3}^{I_{1}}$ that is, it does not vanish on a new vector of V_{3} :

$$
\ell\left(\gamma^{-1} v_{1} \otimes v_{2} \otimes v_{3}\right) \neq 0
$$

and $\gamma^{-1} v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector for ℓ. This concludes the proof of Theorem 5 .

NB : it is easy to deduce from Theorem that $v_{1} \otimes \gamma^{-n} v_{2} \otimes v_{3}$ also is a test vector for ℓ. Take

$$
g=\left(\begin{array}{cc}
0 & 1 \\
\varpi^{n} & 0
\end{array}\right)
$$

Then

$$
g \gamma^{-n} v_{1}=v_{1} \quad, \quad g v_{2}=\gamma^{-n} v_{2}
$$

and

$$
\ell\left(v_{1} \otimes \gamma^{-n} v_{2} \otimes g v_{3}\right)=\ell\left(g \gamma^{-n} v_{1} \otimes g v_{2} \otimes g v_{3}\right)=\ell\left(\gamma^{-n} v_{1} \otimes v_{2} \otimes v_{3}\right) \neq 0
$$

So the linear form

$$
\left\{\begin{array}{rll}
V_{3} & \longrightarrow & \mathbb{C} \\
v & \longmapsto & \ell\left(v_{1} \otimes \gamma^{-n} v_{2} \otimes v\right)
\end{array}\right.
$$

is not zero. Being I_{n}-invariant, it is a new vector in $\widetilde{V_{3}}$, which does not vanish on v_{3} :

$$
\ell\left(v_{1} \otimes \gamma^{-n} v_{2} \otimes v_{3}\right) \neq 0
$$

References

[B] Daniel Bump, Automorphic Forms and Representations. Cambridge Studies in advanced Mathematic Vol. 55 (1998).
[B-H] Colin J. Busnell and Guy Henniart, The local Langlands conjecture for GL(2). Springer Series : Grundlehren der mathematischen Wissenschaften, Vol. 335 (2007).
[B-Z] Joseph Bernstein and Andrei Zelevinsky, Representations of the group $G L(n, F)$ where F is a non-archimedian local field. Russian Mathematical Surveys 31:3 (1976), 1-68.
[B-R 1] Joseph Bernstein and Andre Reznikov, Estimates of automorphic functions. Moscow Mathematic Journal 4, no. 1 (2004), 19-37.
[B-R 2] Joseph Bernstein and Andre Reznikov, Periods, subconvexity and representation theory. Journal of differential geometry 70 (2005), 129-142.
[C] William Casselman, On some Results of Atkin and Lehner. Mathematische Annalen 201 (1973), 301-314.
[D-N] Mladen Dimitrov et Louise Nyssen, Test vectors for trilinear forms : the case of two principal series. Preprint.
[G-P] Benedict H.Gross and Dipendra Prasad, Test Vectors for Linear forms. Mathematische Annalen 291 (1991), 343-355.
[H-S] Michael Harris and Anthony Scholl, A note on trilinear forms for reducible representations and Beilinson conjectures. Journal of the European Mathematical Society 2001, 1 (2001), 93-104.
[M-V] Philippe Michel and Akshay Venkatesh, Equidistribution, L-functions and Ergodic theory : on some problem of Yu. V. Linnik. In International Congress of Mathematicians 2006, Madrid, Volume II, 421-458. European Mathematical Society, Zurich.
[P] Dipendra Prasad, Trilinear forms for representations of GL(2) and local ε-factors. Composotio Mathematica 75 (1990), 1-46.
[T] J. Tunnell, Local ε-factors and characters of GL(2). American Journal of Mathematics 105 (1983), 1277-1308.
[V] Akshay Venkatesh, Sparse equidistribution problems, period bounds, and subconvexity. Preprint (2005).
[W] Jean-Loup Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie. Compositio Mathematica 54 (1985), 173-242.

