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1 Introduction

Let F be a finite extension of Qp, with ring of integers OF , and uniformizing parameter ̟,
whose residual field has q elements. For G = GL2(F ), let (π1, V1), (π2, V2) and (π3, V3) be
three irreducible, admissible, infinite dimensional representations of G. Using the theory of
Gelfand pairs, Dipendra Prasad proves in [P] that the space of G-invariant linear forms on
V1 ⊗ V2⊗ V3 has dimension at most one. He gives a precise criterion for this dimension to be
one, that we will explain now.

Let D∗
F be the group of invertible elements of the quaternion division algebra DF over

F . When (πi, Vi) is a discrete series representation of G, denote by (π′i, V
′
i ) the irreducible

representation of D∗
F associated to (πi, Vi) by the Jacquet-Langlands correspondence. Again,

by the theory of Gelfand pairs, the space of D∗
F -invariant linear forms on V ′

1 ⊗ V ′
2 ⊗ V ′

3 has
dimension at most one.

Let σi be the two dimensional representations of the Weil-Deligne group of F associated
to the irreducible representations πi. The triple tensor product σ1 ⊗ σ2 ⊗ σ3 is an eight
dimensional symplectic representation of the Weil-Deligne group, and has local root number
ε(σ1 ⊗ σ2 ⊗ σ3) = ±1. When ε(σ1 ⊗ σ2 ⊗ σ3) = −1, one can prove that the representations
πi’s are all discrete series representations of G.

Theorem 1. (Prasad, Theorem 1.4 of [P] ) Let (π1, V1), (π2, V2), (π3, V3) be three irreducible,
admissible, infinite dimensional representations of G such that the product of their central
characters is trivial. If all the representations Vi’s are cuspidal, assume that the residue
characteristic of F is not 2. Then

� ε(σ1 ⊗ σ2 ⊗ σ3) = 1 if and only if there exists a non-zero G-invariant linear form on
V1 ⊗ V2 ⊗ V3

� ε(σ1 ⊗ σ2 ⊗ σ3) = −1 if and only if there exists a non-zero D∗
k invariant linear form on

V ′
1 ⊗ V ′

2 ⊗ V ′
3 .

Given a non zero G-invariant linear form ℓ on V1 ⊗ V2 ⊗ V3, or a non-zero D∗
k-invariant

linear form ℓ′ on V ′
1 ⊗ V ′

2 ⊗ V ′
3 , the goal is to find a vector in V1 ⊗ V2 ⊗ V3 which is not in the

kernel of ℓ, or a vector in V ′
1 ⊗V ′

2 ⊗ V ′
3 which is not in the kernel of ℓ′. Such a vector is called

a test vector. At first sight, it appears to have strong connections with the new vectors v1,
v2 and v3 of the representations π1, π2 and π3.
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Theorem 2. (Prasad, Theorem 1.3 of [P]) When all the πi’s are unramified principal series
representations of G, v1 ⊗ v2 ⊗ v3 is a test vector for ℓ.

Theorem 3. (Gross and Prasad, Proposition 6.3 of [G-P]) When all the πi’s are unramified
twists of the special representation of G :

� if ε(σ1 ⊗ σ2 ⊗ σ3) = 1, then v1 ⊗ v2 ⊗ v3 is a test vector for ℓ,
� if ε(σ1 ⊗ σ2 ⊗ σ3) = −1, let R′ be the unique maximal order in DF . Then the open

compact subgroup R′∗×R′∗×R′∗ fixes a unique line in V ′
1 ⊗ V ′

2 ⊗ V ′
3 . Any vector on this line

is a test vector for ℓ′.

The proof by Gross and Prasad of the first statement of this theorem actually contains
another result:

Theorem 4. When two of the πi’s are unramified twists of the special representation of G
and the third one belongs to the unramified principal series of G, v1 ⊗ v2 ⊗ v3 is a test vector
for ℓ.

But the paper [G-P] gives evidence that v1⊗ v2⊗ v3 is not always a test vector for ℓ. Let
K = GL(OF ) be the maximal compact subgroup of G. If π1 and π2 are unramified and if π3

has conductor n ≥ 1, ℓ being G-invariant, v1 and v2 being K-invariant, one gets a K-invariant
linear form {

V3 −→ C

v 7−→ ℓ(v1 ⊗ v2 ⊗ v)
which must be 0 since π3 is ramified. Then ℓ(v1 ⊗ v2 ⊗ v3) = 0.

Now Gross and Prasad make the following suggestion. Let In be the congruence subgroup

In =
{(

a b
c d

)
∈ K | c ≡ 0 mod̟n

}

and R be a maximal order M2(F ) such that R∗ ∩K = In. If v∗1 is a R∗-invariant vector in
V1, the linear form {

V3 −→ C

v 7−→ ℓ(v∗1 ⊗ v2 ⊗ v)
is invariant under the action of R∗ ∩K = In, and one can still hope that v∗1 ⊗ v2⊗ v3 is a test
vector for ℓ.

The purpose of this paper is to prove that v∗1 ⊗ v2⊗ v3 actually is a test vector for ℓ. This
is the object of Theorem 5. The case n = 1, together with Theorems 2, 3 and 4, complete
the study of test vectors when the πi’s have ramification 0 or 1.

In the long term, the search for test vectors is motivated by the subconvexity problem for
L-functions. Roughly speaking, one wants to bound some L-functions along the critical line
ℜ(z) = 1

2 . A recent and successful idea in this direction has been to relate triple products of
automorphic forms to special values of L-functions on the critical line. In [B-R 1] and [B-R 2]
Joseph Bernstein and Andre Reznikov established a so called subconvexity bound the for the
L-function of a triple of representations : each representation is attached to the eigenvalue of a
certain operator, and the eigenvalue of one representation varies. Philippe Michel and Akshay
Venkatesh considered the case when the level of one representation varies. More details about
subconvexity and those related techniques can be found in [V] or [M-V]. Test vectors are key
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ingredients. Bernstein and Reznikov use an explicit test vector. Venkatesh uses a theoretical
one, but explains that the bounds would be better with an explicit one (see paragraph 5
of [V]). Unfortunately, the difficulty of finding them increases with the ramification of the
representations involved.

There is an extension of Prasad’s result in [H-S], where Harris and Scholl prove that the
dimension of the space of G-invariant linear forms on V1⊗V2⊗V3 is one when π1, π2 and π3 are
principal series representations, either irreducible or reducible with their unique irreducible
subspace, infinite dimensional. They apply the global setting of this to the construction of
elements in the motivic cohomology of the product of two modular curves constructed by
Beilinson.

I would like to thank Philippe Michel for suggesting this problem, Wen-Ching Winnie Li
who invited me to spend one semester at PennState University where I wrote the first draft
of this paper, and of course Benedict Gross and Dipendra Prasad for the inspiration. I would
also like to thank Paul Broussous and Nicolas Templier for many interesting discussions, and
Eric Bahuaud for his help with English.

In a previous version of this paper, I obtained Theorem 5 under an unpleasant technical
condition. I am extremely grateful to Malden Dimitrov, because, thanks to our discussions
on the subject, I found the way to remove the condition. In [D-N], we are working on a more
general version of Theorem 5.

2 Statement of the result

2.1 About induced and contragredient representations

Let (ρ,W ) be a smooth representation of a closed subgroup H of G. Let ∆H be the modular
function on H. The induction of ρ from H to G is a representation π whose space is the space
IndG

H

(
ρ
)

of functions f from G to W satisfying the two following conditions :

(1) ∀h ∈ H, ∀g ∈ G, f(hg) = ∆H
− 1

2 (h)ρ(h)f(g),
(2) there exists an open compact subgroup Kf of G such that

∀k ∈ Kf , ∀g ∈ G, f(gk) = f(g)

where G acts by right translation. The resulting function will be denoted 〈π(g), f〉 that is

∀g, g0 ∈ G, 〈π(g), f〉(g0) = f(g0g).

With the additional condition that f must be compactly supported modulo H, one gets the
compact induction denoted by indG

H . When G/H is compact, there is no difference between
IndG

H and indG
H .

Let B the Borel subgroup of upper triangular matrices in G, and let T be the diagonal

torus. The character ∆T is trivial and we will use δ = ∆B
−1 with δ

((
a b
0 d

))
= |ad | where | · |

is the normalised valuation of F . The quotient B\G is compact and can be identified with
P1(F ).

For a smooth representation V of G, V ∗ is the space of linear forms on V . The contra-
gredient representation π̃ is given by the action of G on Ṽ , the subspace of smooth vectors
in V ∗. If H is a subgroup of G, Ṽ ⊂ Ṽ|H ⊂ V ∗.
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We refer the reader to [B-Z] for more details about induced and contragredient represen-
tations.

2.2 New vectors and ramification

Let (π, V ) be an irreducible, admissible, infinite dimensional representation of G with central
character ω. To the descending chain of compact subgroups of G

K ⊃ I1 ⊃ · · · ⊃ In ⊃ In+1 · · ·

one can associate an ascending chain of vector spaces

V 0 = V K and ∀n ≥ 1, V n =
{
v ∈ V | ∀

(
a b
c d

)
∈ In, π

((a b
c d

))
v = ω(a)v

}
.

There exists a minimal n such that the vector space V n is not {0}. It is necessarily one
dimensional and any generator of V n is called a new vector of (π, V ). The integer n is the
conductor of (π, V ). The representation (π, V ) is said to be unramified when n = 0. Else, it
is ramified.

More information about new vectors can be found in [C].

2.3 The main result

Let (π1, V1), (π2, V2) and (π3, V3) be three irreducible, admissible, infinite dimensional rep-
resentations of G such that the product of their central characters is trivial. Assume that
π1 and π2 are unramified principal series, and that π3 has conductor n ≥ 1. According to
Theorem 1, since π1 and π2 are not discrete series, there exists a non-zero, G-invariant linear
form ℓ on V1 ⊗ V2 ⊗ V3. We are looking for a vector v in V1 ⊗ V2 ⊗ V3 which is not in the
kernel of ℓ. In order to follow the suggestion of Gross and Prasad we consider

γ =

(
̟ 0
0 1

)
and Rn = γ−nM2(OF )γn.

One can easily check that

R∗
n = γ−nKγn and R∗

n ∩K = In.

If v1, v2 and v3 denote the new vectors of π1, π2 and π3, the vector

v∗1 = π1(γ
−n) · v1

is invariant under the action of R∗
n. Hence we can write

v∗1 ∈ V1
R∗

n , v2 ∈ V2
K and v3 ∈ V3

R∗
n∩K .

Theorem 5. Under those conditions, v∗1 ⊗ v2 ⊗ v3 is a test vector for ℓ.

The proof will follow the same pattern as Prasad’s proof of Theorem 2 in [P], with the
necessary changes.
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3 Going down Prasad’s exact sequence

3.1 Central characters

Let ω1, ω2 and ω3 be the central characters of π1, π2 and π3. Notice that the condition
ω1ω2ω3 = 1 derives from the G-invariance of ℓ. Since π1 and π2 are unramified, ω1 and ω2

are unramified too, and so is ω3 because ω1ω2ω3 = 1. Let ηi, for i ∈ {1, 2, 3} be unramified
quasi-characters of F ∗ with η2

i = ωi and η1η2η3 = 1. Then

V1 ⊗ V2 ⊗ V3 ≃
(
V1 ⊗ η−1

1

)
⊗

(
V2 ⊗ η−1

2

)
⊗

(
V3 ⊗ η−1

3

)

as a representation of G. Hence it is enough to prove Theorem 5 when the central characters
of the representations are trivial.

When n = 1, it is also enough to prove Theorem 5 when V3 is the special representation
Sp of G : take η3 to be the unramified character such that V3 = η3 ⊗ Sp.

3.2 Prasad’s exact sequence

Let us now explain how Prasad finds ℓ. It is equivalent to search for ℓ or to search for a

non-zero element in HomG

(
V1⊗V2, Ṽ3

)
. Since the central characters of π1 and π2 are trivial,

there are unramified characters µ1 and µ2 such that for i = 1 and i = 2

πi = IndG
Bχi with χi

((
a b
0 d

))
= µi

(a
d

)
.

Hence
V1 ⊗ V2 = ResG IndG×G

B×B

(
χ1 × χ2

)

whereG is diagonally embedded inG×G for the restriction. The action ofG on B×B\G×G =
P1(F )×P1(F ) has precisely two orbits. The first is {(u, v) ∈ P1(F )×P1(F ) | u 6= v} which
is open and can be identified with T\G. The second orbit is the diagonal embedding of P1(F )
in P1(F ) × P1(F ), which is closed and can be identified with B\G. Then, we have a short
exact sequence of G-modules

0→ indG
T

(χ1

χ2

)
ext−−→ V1 ⊗ V2

res−−→ IndG
B

(
χ1χ2δ

1

2

)
→ 0. (1)

The surjection res is the restriction of functions from G × G to the diagonal part of
B\G×B\G, that is

∆B\G =
{

(g, bg) | b ∈ B, g ∈ G
}
.

The injection ext takes a function f ∈ indG
T

(
χ1

χ2

)
to a function F ∈ IndG×G

B×B

(
χ1 × χ2

)

vanishing on ∆B\G, and is given by the relation

F
(
g,

(
0 1
1 0

)
g
)

= f(g),

on the other orbit. Applying the functor HomG

(
· , Ṽ3

)
, one gets a long exact sequence
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0→ HomG

(
IndG

B

(
χ1χ2δ

1

2

)
, Ṽ3

)
→ HomG

(
V1 ⊗ V2, Ṽ3

)
→ HomG

(
indG

T

(χ1

χ2

)
, Ṽ3

)

↓

· · · ← Ext1G

(
IndG

B

(
χ1χ2δ

1

2

)
, Ṽ3

)
(2)

3.3 The simple case

The situation is easier when n = 1 and µ1µ2| · |
1

2 = | · |− 1

2 , as π3 is special and there is a
natural surjection

IndG
B

(
χ1χ2δ

1

2

)
−→ Ṽ3

whose kernel is the one dimensional subspace of constant functions. Thanks to the exact
sequence (1) one gets a surjection Ψ

V1 ⊗ V2
res−−→ IndG

B

(
χ1χ2δ

1

2

)

Ψց ւ
Ṽ3

which corresponds to

ℓ

{
V1 ⊗ V2 ⊗ V3 −→ C

v ⊗ v′ ⊗ v′′ 7−→ Ψ(v ⊗ v′).v′′

The surjection Ψ vanishes on v∗1 ⊗ v2 if and only if res(v∗1 ⊗ v2) has constant value on
P1(F ) ≃ B\G. An easy computation proves that res(v∗1 ⊗ v2) is not constant : the new
vectors v1 and v2 are functions from G to C such that

∀i ∈ {1, 2}, ∀b ∈ B, ∀k ∈ K, vi(bk) = χi(b) · δ(b)
1

2

and
∀g ∈ G, v∗1(g) = v1(gγ

−1).

Then

(v∗1 ⊗ v2)
((

1 0
0 1

))
= v1

(
γ−1

)
v2

((
1 0
0 1

))
= v1

((
̟−1 0

0 1

))
= µ1(̟)−1|̟|− 1

2 =

√
q

µ1(̟)

and

(v∗1 ⊗ v2)
((

0 1
1 0

))
= v1

((
0 1
1 0

)(
̟−1 0

0 1

))
= v1

((
1 0
0 ̟−1

)(
0 1
1 0

))
=
µ1(̟)√

q
.

The representation π1 is principal so
√

q
µ1(̟) 6=

µ1(̟)√
q and

(v∗1 ⊗ v2)
((

1 0
0 1

))
6= (v∗1 ⊗ v2)

((
0 1
1 0

))
.

Hence Ψ does not vanish on v∗1 ⊗ v2. Now, v∗1 being R∗
1-invariant and v2 being K-invariant,

Ψ(v∗1⊗v2) is a non-zero I1-invariant element of Ṽ3, that is, a new vector for π̃3. Consequently
it does not vanish on v3 :

ℓ(v∗1 ⊗ v2 ⊗ v3) = Ψ(v∗1 ⊗ v2).v3 6= 0

and v∗1 ⊗ v2 ⊗ v3 is a test vector for ℓ.
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3.4 The other case

If n ≥ 2 or µ1µ2| · |
1

2 6= | · |− 1

2 then HomG

(
IndG

B

(
χ1χ2δ

1

2

)
, Ṽ3

)
= 0 and by Corollary 5.9 of

[P]

Ext1G

(
IndG

B

(
χ1χ2δ

1

2

)
, Ṽ3

)
= 0.

Through the long exact sequence (2) we get an isomorphism

HomG

(
V1 ⊗ V2, Ṽ3

)
≃ HomG

(
indG

T

(χ1

χ2

)
, Ṽ3

)
,

and by Frobenius reciprocity

HomG

(
indG

T

(χ1

χ2

)
, Ṽ3

)
≃ HomT

((χ1

χ2

)
, Ṽ3|T

)
,

where Ṽ3|T is the space of the contragredient representation of π3|T . By Lemmas 8 and 9 of
[W], the latter space is one dimensional. Thus, we have a chain of isomorphic one dimensional
vector spaces

HomG

“
V1 ⊗ V2 ⊗ V3, C

”
→̃ HomG

“
V1 ⊗ V2, fV3

”
→̃ HomG

“
indG

T

“
χ1

χ2

”
, fV3

”
→̃ HomT

““
χ1

χ2

”
, gV3|T

”

ℓ 7→ Ψ 7→ Φ 7→ ϕ

with generators ℓ, Ψ, Φ and ϕ corresponding via the isomorphisms. Notice that ϕ is a linear
form on V3 such that

∀t ∈ T, ∀v ∈ V3, ϕ
(
π3(t)v

)
=
χ2(t)

χ1(t)
ϕ(v) (3)

which is identified to the following element of HomT

((
χ1

χ2

)
, Ṽ3|T

)

{
C −→ Ṽ3|T
z 7−→ zϕ

Lemma 1. ϕ(v3) 6= 0.

Proof : this is Proposition 2.6 of [G-P] with the following translation :
- the local field F is the same,
- the quadratic extension K/F of Gross and Prasad is F × F and their group K∗ is our

torus T ,
- the infinite dimensional representation V1 of Gross and Prasad is our π3,
- the one dimensional, unramified representation V2 of Gross and Prasad is χ1

χ2
.

Then the representation that Gross and Prasad call V is χ1

χ2
⊗π3 and their condition (1.3)

is exactly our condition (3). In order to apply Gross and Prasad’s Proposition, we need to
check the equality

ε(σ ⊗ σ3) = αK/F (−1)ω(−1).

Basically, it is true because K is not a field. Let us give some details.
- In [G-P], ω is the central character of the representation V1 which is trivial for us.
- The character αK/F is the quadratic character of F ∗ associated to the extension K/F

by local class-field theory. Here, it is trivial because K is F × F .
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- To compute ε(σ ⊗ σ3) we will use the first pages of [T].

∀
(
x 0
0 z

)
∈ T χ1

χ2

((
x 0
0 z

))
=
µ1

µ2
(x)

µ2

µ1
(z)⇒ ε(σ ⊗ σ3) = ε(

µ1

µ2
⊗ σ3)ε(

µ2

µ1
⊗ σ3)

Since the determinant of σ3 is the central character of π3 which is trivial, σ3 is isomorphic to
its own contragredient and the contragredient representation of µ1

µ2
⊗ σ3 is µ2

µ1
⊗ σ3. Formula

(1.1.6) of [T] leads to

ε(σ ⊗ σ3) = det
(
σ3(−1)

)
= 1 = αK/F (−1)ω(−1).

According to [G-P], the restriction of χ1

χ2
⊗ π3 to the group

M =
{(

x 0
0 z

)
| x, y ∈ O∗

F

}
× In

fixes a unique line in V3 : it is the line generated by the new vector v3. Still according to
Gross and Prasad, a non-zero linear form on V3 which satisfies (3) cannot vanish on v3. �

We will deduce from lemma 1 that ℓ(v∗1 ⊗ v2 ⊗ v3) 6= 0.

4 Going up Prasad’s exact sequence

4.1 From ϕ(v3) to f

Let f be the element of indG
T

(
χ1

χ2

)
which is the characteristic function of the orbit of the unit

in the decomposition of T\G under the action of In. This means :

f(g) =

{
χ1(t)
χ2(t) if g = tk with t ∈ T and k ∈ In
0 else

(4)

Then, the function {
G −→ C

g 7−→ f(g)ϕ
(
π3(g)v3

)

is invariant by the action of T by left translation and we can do the following computation :

(
Φ(f)

)
(v3) =

∫

T\G
f(g)ϕ

(
π3(g)v3

)
dg

=

∫

(T∩K)\In

ϕ
(
π3(k)v3

)
dk

= λ · ϕ(v3).

where λ is a non-zero constant. Thanks to Lemma 1 we know that ϕ(v3) 6= 0, so

(
Φ(f)

)
(v3) 6= 0. (5)
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4.2 From f to F

Now, we are going to compute F = ext(f) in V1 ⊗ V2. Let a and b be the numbers

a =
µ1(̟)√

q
b =

µ2(̟)√
q

They verify
(a2 − 1)(b2 − 1) 6= 0

because π1 and π2 are principal series representations. For the sake of simplicity, we shall use
the following notation : for any g in G

gv∗1 =
〈
π1(g), v

∗
1

〉
and gv2 =

〈
π2(g), v2

〉

Lemma 2. The function F is given by the formula

F = A · v′1 ⊗ v′2

with

A =
an

(a2 − 1)(b2 − 1)
, v′1 = a · γ−(n−1)v1 − γ−nv1 and v′2 = b · γ−1v2 − v2.

Proof : the function f is described by formula (4), and ext(f) is described by the short
exact sequence (1) using the orbits of the action of G on B×B\G×G. The function F must
vanish on the closed orbit

∆B\G =
{

(g, bg) | b ∈ B, g ∈ G
}
.

The open orbit can be identified with T\G via the bijection





T\G −→
(
B\G×B\G

)
\∆B\G

Tg 7−→
(
Bg,B

(
0 1
1 0

)
g
)

through which, the orbit of the unit in T\G under the action of In corresponds to

{(
Bk,B

(
0 1
1 0

)
k
)
| k ∈ In

}
.

Now, pick any (k, k′) ∈ K ×K. If k′ ∈ Bk, then

k ∈ In ⇐⇒ k′ ∈ In and k ∈ I1 ⇐⇒ k′ ∈ I1.

When k′ 6∈ Bk, write k =

(
x y
z t

)
and k′ =

(
x′ y′

z′ t′

)
. There exists (b1, b2) ∈ B × B such

that

k = b1k0 and k′ = b2

(
0 1
1 0

)
k0 with k0 =

(
z′ t′

z t

)
∈ M2(OF ).
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Then (k, k′) is in the orbit of the unit in T\G under the action of In if and only if k0 is in
TIn. Because k and k′ are in K, one can see that

k0 ∈ TIn ⇐⇒ k0 ∈ In

and

k0 ∈ In ⇐⇒ z ≡ 0 mod̟n and z′t ∈ O∗
F

⇐⇒ z ≡ 0 mod̟n and z′ ∈ O∗
F

⇐⇒ k ∈ In and k′ /∈ I1.

It follows that (k, k′) corresponds to an element of the orbit of the unit in the decomposi-
tion of T\G under the action of In if and only if k ∈ In and k′ /∈ I1. Then, it will be enough
to check that

F (k, k′) =

{
1 if k ∈ In and k′ 6∈ I1
0 else

(6)

This is mere calculation. With a = µ1(̟)√
q , we need

Lemma 3. Let i be any element of N. The values of the function γ−iv1 on K are given by
the formula

∀k =

(
x y
z t

)
∈ K, γ−iv1(k) =





ai if val(z
t ) ≤ 0

ai−2 val( z
t
) if 1 ≤ val(z

t ) ≤ i− 1

a−i if i ≤ val(z
t )

(7)

Proof : first, recall that the new vector v1is a function from G to C such that

∀b ∈ B, ∀k ∈ K, v1(bk) = χ1(b) · δ(b)
1

2 .

Then, for k =

(
x y
z t

)
in K, either z or t is in O∗

F . The other one is in OF . Write

kγ−i =

(
x

̟i y
z

̟i t

)
.

If val z
t ≤ 0, then val z = 0, val(̟it

z ) ≥ 0 and

kγ−i =

(xt−yz
z

x
̟i

0 z
̟i

)(
0 −1

1 ̟it
z

)

with

(
0 −1

1 ̟it
z

)
∈ K and (χ1 · δ

1

2 )

(xt−yz
z

x
̟i

0 z
̟i

)
=

(µ1(̟)√
q

)i−2val z
= ai−2val z = ai.
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If 1 ≤ val z
t ≤ i − 1, then val t = 0, val(̟it

z ) ≥ 0 and the computation is quite the same,
except that

(χ1 · δ
1

2 )

(xt−yz
z

x
̟i

0 z
̟i

)
=

(µ1(̟)√
q

)i−2val z
= ai−2val z

t .

If i ≤ val z
t , then val t = 0, val(̟it

z ) ≤ 0 and

kγ−i =

(xt−yz
t ̟i y

0 t

)(
1 0
z

t ̟i 1

)

with (
1 0
z

t ̟i 1

)
∈ K and (χ1 · δ

1

2 )(

(xt−yz
t ̟i y

0 t

)
) =

(µ1(̟)√
q

)−i−2val t
= a−i.

�

NB : the case t = 0 is included in val z
t ≤ 0.

We can now finish the proof of Lemma 2. The same computation, with v2 and b instead
of v1 and a, gives the values of γ−iv2 for any i ∈ N. It is then easy to compute F (k, k′) as
given in Lemma 2, for k and k′ in K, and to check formula (6).

4.3 Some test-vectors

On the one hand, from the expression of F given by Lemma 2 we deduce
(
Ψ(F )

)
(v3) = A · ℓ(v′1 ⊗ v′2 ⊗ v3)

On the other hand, from the relation F = ext(f) we deduce
(
Ψ(F )

)
(v3) =

(
Φ(f)

)
(v3)

and from equation 5 in Section 4.1 we get
(
Ψ(F )

)
(v3) 6= 0

Then
ℓ(v′1 ⊗ v′2 ⊗ v3) 6= 0

and v′1⊗v′2⊗v3 is a test vector for ℓ. We are going to simplify it. We can deduce from lemma
2 that

F = A ·
{
ab · γ−(n−1)v1 ⊗ γ−1v2 − a · γ−(n−1)v1 ⊗ v2 − b · γ−nv1 ⊗ γ−1v2 + γ−nv1 ⊗ v2

}
.

If n ≥ 2, we write
(
Ψ(F )

)
(v3) = A ·

(
ab · 〈γ−1ψn−2, v3〉 − a · 〈ψn−1, v3〉 − b · 〈γ−1ψn−1, v3〉+ 〈ψn, v3〉

)

where, for m in {n − 1, n− 2, n}

ψm

{
V3 −→ C

v 7−→ ℓ(γ−mv1 ⊗ v2 ⊗ v)

11



Since ℓ is G invariant, ψm is an element of Ṽ3 which is invariant by the action of

Rm ∩K = Im

But π̃3 has conductor n so
ψn−2 = ψn−1 = 0

and (
Ψ(F )

)
(v3) = A · ψ3(v3) = A · ℓ(γ−nv1 ⊗ v2 ⊗ v3)

then
ℓ(γ−nv1 ⊗ v2 ⊗ v3) 6= 0

and γ−nv1 ⊗ v2 ⊗ v3 is a test vector for ℓ.

If n = 1, only the two terms in the middle vanish and we get

(
Ψ(F )

)
(v3) = A ·

(
ab · ℓ(v1 ⊗ γ−1v2 ⊗ v3) + ℓ(γ−1v1 ⊗ v2 ⊗ v3)

)

Now, take

g =

(
0 1
̟ 0

)
.

On the one hand

gγ−1 =

(
0 1
1 0

)
.

and this matrix is in K so
gγ−1v1 = v1

On the other hand (
0 1
̟ 0

)
=

(
̟ 0
0 ̟

)(
̟−1 0

0 1

)(
0 1
1 0

)
.

The first matrix belongs to the center of G, the second one is precisely γ−1 and the third one
is in K, so

gv2 = γ−1v2.

Then
(
Ψ(F )

)
(v3) =A ·

{
ab · ℓ(gγ−1v1 ⊗ gv2 ⊗ v3) + ℓ(γ−1v1 ⊗ v2 ⊗ v3)

}

=A ·
{
ab · ℓ(γ−1v1 ⊗ v2 ⊗ g−1v3) + ℓ(γ−1v1 ⊗ v2 ⊗ v3)

}

=A · ℓ
(
γ−1v1 ⊗ v2 ⊗ v′3

)

with
v′3 = ab · (g−1v3) + v3

The linear form

ψ1

{
V3 −→ C

v 7−→ ℓ(γ−1v1 ⊗ v2 ⊗ v)
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is a non zero element of Ṽ3
I1

, so it is a new vector in Ṽ3. It is known from [B] that a new

vector in Ṽ3 does not vanish on on V I1
3 that is, it does not vanish on a new vector of V3 :

ℓ(γ−1v1 ⊗ v2 ⊗ v3) 6= 0

and γ−1v1 ⊗ v2 ⊗ v3 is a test vector for ℓ. This concludes the proof of Theorem 5.

NB : it is easy to deduce from Theorem 5 that v1⊗ γ−nv2⊗ v3 also is a test vector for ℓ.
Take

g =

(
0 1
̟n 0

)
.

Then
gγ−nv1 = v1 , gv2 = γ−nv2

and
ℓ(v1 ⊗ γ−nv2 ⊗ gv3) = ℓ(gγ−nv1 ⊗ gv2 ⊗ gv3) = ℓ(γ−nv1 ⊗ v2 ⊗ v3) 6= 0.

So the linear form {
V3 −→ C

v 7−→ ℓ(v1 ⊗ γ−nv2 ⊗ v)

is not zero. Being In-invariant, it is a new vector in Ṽ3, which does not vanish on v3 :

ℓ(v1 ⊗ γ−nv2 ⊗ v3) 6= 0.
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