HAL
open science

Test vectors for trilinear forms, when two representations are unramified.

Louise Nyssen

To cite this version:

Louise Nyssen. Test vectors for trilinear forms, when two representations are unramified.. 2007. hal-00182286v1

HAL Id: hal-00182286
 https://hal.science/hal-00182286v1

Preprint submitted on 25 Oct 2007 (v1), last revised 2 Mar 2009 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Test vectors for trilinear forms, when two representations are unramified

Louise Nyssen

October 25, 2007

1 Introduction

Let F be a finite extension of \mathbb{Q}_{p}, with ring of integers \mathcal{O}_{F}, and uniformizing parameter π_{F}, whose residual field has q elements. For $G=\mathrm{GL}_{2}(F)$, let $\left(\pi_{1}, V_{1}\right),\left(\pi_{2}, V_{2}\right)$ and $\left(\pi_{3}, V_{3}\right)$ be three irreducible, admissible, infinite dimensional representations of G. Using the theory of Gelfand pairs, Diprenda Prasad proves in [P] that that the space of G-invariant linear forms on $V_{1} \otimes V_{2} \otimes V_{3}$ has dimension at most one. He gives a precise criterion for this dimension to be one, that we will explain now.

Let D_{F}^{*} be the group of invertible elements of the quaternion division algebra D_{F} over F. When $\left(\pi_{i}, V_{i}\right)$ is a discrete series representation of G, denote by $\left(\pi_{i}^{\prime}, V_{i}^{\prime}\right)$ the irreducible representation of D_{F}^{*} associated to $\left(\pi_{i}, V_{i}\right)$ by the Jacquet-Langlands correspondance. Again, by the theory of Gelfand pairs, the space of D_{F}^{*}-invariant linear forms on $V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes V_{3}^{\prime}$ has dimension at most one.

Let σ_{i} be the two dimensional representations of the Weil-Deligne group of F associated to the irreducible representations π_{i}. The triple tensor product $\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}$ is an eight dimensional symplectic representation of the Weil-Deligne group, and has local root number $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)= \pm 1$. When $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)=-1$, one can prove that the representations π_{i} 's are all discrete series representations of G.

Theorem 1. (Prasad, theorem 1.4 of [录]) Let $\left(\pi_{1}, V_{1}\right),\left(\pi_{2}, V_{2}\right),\left(\pi_{3}, V_{3}\right)$ be three irreducible, admissible, infinite dimensional representations of G such that the product of their central characters is trivial. If all the representations V_{i} 's are cuspidal, assume that the residue characteristic of F is not 2. Then
. $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)=1$ if and only if there exists a non zero G-invariant linear form on $V_{1} \otimes V_{2} \otimes V_{3}$
. $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)=-1$ if and only if there exists a non zero D_{k}^{*} invariant linear form on $V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes V_{3}^{\prime}$.

Once you got a non zero G-invariant linear form ℓ on $V_{1} \otimes V_{2} \otimes V_{3}$, or a non zero $D_{k^{-}}^{*}$ invariant linear form ℓ^{\prime} on $V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes V_{3}^{\prime}$, you want to find a vector in $V_{1} \otimes V_{2} \otimes V_{3}$ which is not in the kernel of ℓ, or a vector in $V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes V_{3}^{\prime}$ which is not in the kernel of ℓ^{\prime}. Such a vector is called a test vector. At first sight, it appears to have strong connections with the new vectors v_{1}, v_{2} and v_{3} of the representations π_{1}, π_{2} et π_{3}.
Theorem 2. (Prasad, theorem 1.3 of $[\mathbb{P}]$ When all the π_{i} 's are unramified principal series representations of $G, v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector for ℓ.

Theorem 3. (Gross and Prasad, proposition 6.3 of $G-P$) When all the π_{i} 's are unramified twists of the special representation of G :

- if $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)=1$, then $v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector for ℓ,
- if $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)=-1$, let R^{\prime} be the unique maximal order in D_{F}. Then the open compact subgroup $R^{* *} \times R^{*} \times R^{*}$ fixes a unique line in $V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes V_{3}^{\prime}$. Any vector on this line is a test vector for ℓ^{\prime}.

The proof by Gross and Prasad of the first statement of this theorem, actually contains another result:

Theorem 4. When two of the π_{i} 's are unramified twists of the special representation of G and the third one belongs to the unramified principal series of $G, v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector for ℓ.

But the paper G-P] ends up with an evidence that $v_{1} \otimes v_{2} \otimes v_{3}$ is not always a test vector for ℓ. Let $K=\operatorname{GL}\left(\mathcal{O}_{F}\right)$ be the maximal compact subgroup of G. If π_{1} and π_{2} are unramified and if π_{3} has conductor $n \geq 1, \ell$ being G-invariant, v_{1} and v_{2} being K-invariant, one gets a K-invariant linear form

$$
\left\{\begin{array}{rll}
V_{3} & \longrightarrow & \mathbb{C} \\
v & \longmapsto & \ell\left(v_{1} \otimes v_{2} \otimes v\right)
\end{array}\right.
$$

which must be 0 since π_{3} is ramified. Then $\ell\left(v_{1} \otimes v_{2} \otimes v_{3}\right)=0$.
Now Gross and Prasad make the following suggestion. Let $\Gamma_{0}\left(\pi_{F}^{n}\right)$ be the congruence subgroup

$$
\Gamma_{0}\left(\pi_{F}^{n}\right)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in K \quad c \equiv 0 \quad \bmod \pi_{F}^{n} \quad\right\}
$$

and R be a maximal order $\mathrm{M}_{2}(F)$ such that $R^{*} \cap K=\Gamma_{0}\left(\pi_{F}^{n}\right)$. If v_{2}^{*} is a R^{*}-invariant vector $\operatorname{in} V_{2}$, the linear form

$$
\left\{\begin{array}{lll}
V_{3} & \longrightarrow & \mathbb{C} \\
v & \longmapsto & \ell\left(v_{1} \otimes v_{2}^{*} \otimes v\right)
\end{array}\right.
$$

is invariant under the action of $R^{*} \cap K=\Gamma_{0}\left(\pi_{F}^{n}\right)$, and one can still hope that $v_{1} \otimes v_{2}^{*} \otimes v_{3}$ is a test vector for ℓ. In theorem $𠃌^{5}$ we will prove that $v_{1} \otimes v_{2}^{*} \otimes v_{3}$ is a test vector for ℓ, up to a condition on π_{1} and π_{2}. The case $n=1$ will almost complete the study of test vectorswhen the π_{i} 's have ramification 0 or 1 .

In the long term, the search for test vectors is motivated by the subconvexity problem for L-functions. Roughly speaking, one wants to bound some L-functions along the critical line $\Re(z)=\frac{1}{2}$. A recent and successful idea in this direction has been to relate triple products of automorphic forms to special values of L-functions on the critical line. In B-R 1 and (B-R 2] Joseph Bernstein and Andre Reznikov did this in the eigenvalue aspect, and in [V] Akshay Venkatesh did it in the level aspect. More details about subconvexity and those related techniques will be found in M-V]. Test vectors are key ingredients. Bernstein and Reznikov use an explicit test vector. Venkatesh uses a theoretical one, but explains that the bounds would be better with an explicit one (see paragraph 5 of \mathbb{V}). Unfortunately, the difficulty of finding them increases with the ramification of the representations involved.

There is an extension of Prasad's result in H-S], where Harris and Scholl prove that the dimension of the space of G-invariant linear forms on $V_{1} \otimes V_{2} \otimes V_{3}$ is one when π_{1}, π_{2} and π_{3} are principal series representations, either irreducible or reducible with their unique irreducible
subspace, infinite dimensional. They apply the global setting of this to the construction of elements in the motivic cohomology of the product of two modular curves constructed by Beilinson.

I would like to thank Philippe Michel for suggesting this problem, Wen-Ching Winnie Li who invited me to spend one semester at PennState University where I could write the first draft of this paper, and of course Benedict Gross and Diprenda Prasad for the inspiration. I would also like to thank Paul Broussous and Nicolas Templier for interesting discussions.

2 Strategy

2.1 About induced and contragredient representations

Let (ρ, W) be a smooth representation of a closed subgroup H of G. Let Δ_{H} be the modular function on H. The induction of ρ from H to G is a representation π whose space is the space $\operatorname{Ind}_{H}^{G}(\rho)$ of functions f from G to W satisfying the two following conditions :
(1) $\forall h \in H \quad \forall g \in G \quad f(h g)=\Delta_{H}{ }^{-\frac{1}{2}}(h) \rho(h) f(g)$,
(2) there exists an open compact subgroup K_{f} of G such that

$$
\forall k \in K_{f}, \quad \forall g \in G, \quad f(g k)=f(g)
$$

where G acts by right translation. The resulting function will be denoted $\langle\pi(g), f\rangle$ that is

$$
\forall g, g_{0} \in G \quad\langle\pi(g), f\rangle\left(g_{0}\right)=f\left(g_{0} g\right) .
$$

With the additional condition that f must be compactly supported modulo H, one gets the compact induction denoted by $\operatorname{ind}_{H}^{G}$. When G / H is compact, there is no difference between $\operatorname{Ind}_{H}^{G}$ and $\operatorname{ind}_{H}^{G}$.

Let B the Borel subgroup of upper triangular matrices in G and T be the diagonal torus. Then we will use $\delta=\Delta_{B}{ }^{-1}$ with $\delta\left(\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right)=\left|\frac{a}{d}\right|$ and Δ_{T} is trivial. The quotient $B \backslash G$ is compact and can be identified with $\mathbb{P}^{1}(F)$.

For a smooth representation V of G, V^{*} is the space of linear forms on V. The contragredient representation $\widetilde{\pi}$ is given by the action of G on \widetilde{V}, the subspace of smooth vectors in V^{*}. If H is a subgroup of $G, \widetilde{V} \subset \widetilde{V_{\mid H}} \subset V^{*}$.

More information about induced and contragredient representations will be found in B-Z.

2.2 The main result and the (*)-condition

Let $\left(\pi_{1}, V_{1}\right),\left(\pi_{2}, V_{2}\right)$ and $\left(\pi_{3}, V_{3}\right)$ be three irreducible, admissible, infinite dimensional representations of G such that the product of their central characters is trivial. Assume that π_{1} and π_{2} are unramified principal series, and that π_{3} has conductor $n \geq 1$. Then, according to theorem 1, there exists a non-zero, G-invariant linear form ℓ on $V_{1} \otimes V_{2} \otimes V_{3}$, and we are looking for a vector v in $V_{1} \otimes V_{2} \otimes V_{3}$ which is not in the kernel of ℓ. In order to follow Gross and Prasad suggestion, we will consider

$$
\gamma=\left(\begin{array}{cc}
\pi_{F} & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad R=\gamma^{-n} \mathrm{M}_{2}\left(\mathcal{O}_{F}\right) \gamma^{n} .
$$

One can easily check that

$$
R^{*}=\gamma^{-n} K \gamma^{n} \quad \text { and } \quad R^{*} \cap K=\Gamma_{0}\left(\pi_{F}^{n}\right)
$$

If v_{1}, v_{2} and v_{3} denote the new vectors of π_{1}, π_{2} and π_{3}, the vector

$$
v_{2}^{*}=\pi_{2}\left(\gamma^{-n}\right) \cdot v_{2}
$$

is invariant under the action of R^{*}. Hence we can write

$$
v_{1} \in V_{1}^{K} \quad v_{2}^{*} \in V_{1}^{R^{*}} \quad v_{3} \in V_{3}^{R^{*} \cap K}
$$

According to Gross and Prasad $v_{1} \otimes v_{2}^{*} \otimes v_{3}$ should be a test vector for ℓ, for any $n \geq 1$. There will be a technical condition, denoted (${ }^{*}$) regarding π_{1} and π_{2}. Since they are unramified principal series, for $i=1$ and $i=2$, there are unramified characters μ_{i} and η_{i}, such that

$$
\pi_{i}=\operatorname{Ind}_{B}^{G} \chi_{i} \quad \text { with } \quad \chi_{i}\left(\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\right)=\eta_{i}(a d) \mu_{i}\left(\frac{a}{d}\right)
$$

Then

$$
\chi_{1}\left(\begin{array}{cc}
\pi_{F} & 0 \\
0 & \pi_{F}{ }^{-1}
\end{array}\right)=\mu_{1}\left(\pi_{F}\right)^{2}
$$

The $\left({ }^{*}\right)$-condition is the following : if $n=1$

$$
\mu_{1}\left(\pi_{F}\right)^{2} \neq-1 \quad \text { or } \quad \mu_{2}\left(\pi_{F}\right)^{2} \neq-1
$$

if $n \geq 2$

$$
\begin{array}{ccc}
& \mu_{1}\left(\pi_{F}\right)^{2}=1 \quad \text { or } \quad \forall k \in\{1, \ldots, n\} \quad \mu_{1}\left(\pi_{F}\right)^{2 k} \neq 1 \\
\text { or } \quad \mu_{2}\left(\pi_{F}\right)^{2}=1 \quad \text { or } \quad \forall k \in\{1, \ldots, n\} \quad \mu_{2}\left(\pi_{F}\right)^{2 k} \neq 1 .
\end{array}
$$

We will prove
Theorem 5. If the $\left(^{*}\right)$-condition is satisfied, $v_{1} \otimes v_{2}^{*} \otimes v_{3}$ is a test vector for ℓ.
The proof will follow the same pattern as Prasad's proof of theorem 2 in $\| \mathbb{P}]$, with the necessary changes.

2.3 Central characters

Let ω_{1}, ω_{2} and ω_{3} be the central caracters of π_{1}, π_{2} and π_{3}. Notice that the condition $\omega_{1} \omega_{2} \omega_{3}=1$ derives from the G-invariance of ℓ. Since π_{1} and π_{2} are unramified, ω_{1} and ω_{2} are unramified too, and so is ω_{3} because $\omega_{1} \omega_{2} \omega_{3}=1$. Let η_{i}, for $i \in\{1,2,3\}$ be unramified quasi-characters of F^{*} with $\eta_{i}^{2}=\omega_{i}$ and $\eta_{1} \eta_{2} \eta_{3}=1$. Then

$$
V_{1} \otimes V_{2} \otimes V_{3} \simeq\left(V_{1} \otimes \eta_{1}^{-1}\right) \otimes\left(V_{2} \otimes \eta_{2}^{-1}\right) \otimes\left(V_{3} \otimes \eta_{3}^{-1}\right)
$$

as a representation of G. Hence it is enough to prove theorem 5 when the central characters of the representations are trivial.

When $n=1$, it is also enough to prove theorem 5 when V_{3} is the special representation Sp of G : take η_{3} to be the unramified character such that $V_{3}=\eta_{3} \otimes \mathrm{Sp}$.

2.4 Prasad's exact sequences

Let us now explain how Prasad finds ℓ. It is equivalent to search ℓ or to search a non zero element in $\operatorname{Hom}_{G}\left(V_{1} \otimes V_{2}, \widetilde{V_{3}}\right)$. Since the central characters of π_{1} and π_{2} are trivial, there are unramified characters μ_{1} and μ_{2} such that for $i=1$ and $i=2$

$$
\pi_{i}=\operatorname{Ind}_{B}^{G} \chi_{i} \quad \text { with } \quad \chi_{i}\left(\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\right)=\mu_{i}\left(\frac{a}{d}\right)
$$

Hence

$$
V_{1} \otimes V_{2}=\operatorname{Res}_{G} \operatorname{Ind}_{B \times B}^{G \times G}\left(\chi_{1} \times \chi_{2}\right)
$$

where G is diagonally embedded in $G \times G$ for the restriction. The action of G on $B \times B \backslash G \times G=$ $\mathbb{P}^{1}(F) \times \mathbb{P}^{1}(F)$ has precisely two orbits : the first one is $\left\{(u, v) \in \mathbb{P}^{1}(F) \times \mathbb{P}^{1}(F) \quad \mid \quad u \neq v\right\}$, it is open and can be identified with $T \backslash G$, the second one is the diagonal embedding of $\mathbb{P}^{1}(F)$ in $\mathbb{P}^{1}(F) \times \mathbb{P}^{1}(F)$, it is closed and it can be identified with $B \backslash G$. Then, we have a short exact sequence of G-modules

$$
\begin{equation*}
0 \rightarrow \operatorname{ind}_{T}^{G}\left(\frac{\chi_{1}}{\chi_{2}}\right) \xrightarrow{\text { ext }} V_{1} \otimes V_{2} \xrightarrow{\text { res }} \operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right) \rightarrow 0 \tag{1}
\end{equation*}
$$

The surjection res is the restriction of functions from $G \times G$ to the diagonal part of $B \backslash G \times B \backslash G$, that is

$$
\Delta_{B \backslash G}=\{(g, b g) \quad \mid \quad b \in B, \quad g \in G\} .
$$

The injection ext takes a function $f \in \operatorname{ind}_{T}^{G}\left(\frac{\chi_{1}}{\chi_{2}}\right)$ to a function $F \in \operatorname{Ind}_{B \times B}^{G \times G}\left(\chi_{1} \times \chi_{2}\right)$ vanishing on $\Delta_{B \backslash G}$, given by the relation

$$
F\left(g,\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) g\right)=f(g)
$$

on the other orbit. Applying the functor $\operatorname{Hom}_{G}\left(\cdot, \widetilde{V_{3}}\right)$, one gets a long exact sequence

$$
\begin{align*}
& 0 \rightarrow \operatorname{Hom}_{G}\left(\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right), \widetilde{V_{3}}\right) \rightarrow \operatorname{Hom}_{G}\left(V_{1} \otimes V_{2}, \widetilde{V_{3}}\right) \rightarrow \operatorname{Hom}_{G}\left(\operatorname{ind}_{T}^{G}\left(\frac{\chi_{1}}{\chi_{2}}\right), \widetilde{V_{3}}\right) \\
& \downarrow \tag{2}\\
& \cdots \leftarrow \operatorname{Ext}_{G}^{1}\left(\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right), \widetilde{V_{3}}\right)
\end{align*}
$$

2.5 The simple case

The situation is easier when $n=1$ and $\mu_{1} \mu_{2}|\cdot|^{\frac{1}{2}}=|\cdot|^{-\frac{1}{2}}$. Then π_{3} is special and there is a natural surjection

$$
\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right) \longrightarrow \widetilde{V_{3}}
$$

whose kernel is the one dimensional subspace of constant functions. Thanks to the exact sequence (1) one gets a surjection Ψ

which corresponds to

$$
\ell\left\{\begin{array}{rll}
V_{1} \otimes V_{2} \otimes V_{3} & \longrightarrow & \mathbb{C} \\
v \otimes v^{\prime} \otimes v^{\prime \prime} & \longmapsto & \Psi\left(v \otimes v^{\prime}\right) \cdot v^{\prime \prime}
\end{array}\right.
$$

The surjection Ψ vanishes on $v_{1} \otimes v_{2}^{*}$ if and only if $\operatorname{res}\left(v_{1} \otimes v_{2}^{*}\right)$ has constant value on $\mathbb{P}^{1}(F) \simeq B \backslash G$. Easy computation proves that it is not constant : the new vectors v_{1} and v_{2} are functions from G to \mathbb{C} such that

$$
\forall i \in\{1,2\}, \quad \forall b \in B, \quad \forall k \in K, \quad v_{i}(b k)=\chi_{i}(b) \cdot \delta(b)^{\frac{1}{2}}
$$

and

$$
\forall g \in G, \quad v_{2}^{*}(g)=v_{2}\left(g \gamma^{-1}\right) .
$$

Then

$$
\left(v_{1} \otimes v_{2}^{*}\right)\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)=v_{1}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right) v_{2}\left(\gamma^{-1}\right)=v_{2}\left(\left(\begin{array}{cc}
\pi_{F}^{-1} & 0 \\
0 & 1
\end{array}\right)\right)=\mu_{2}\left(\pi_{F}\right)^{-1}\left|\pi_{F}\right|^{-\frac{1}{2}}=\frac{\sqrt{q}}{\mu_{2}\left(\pi_{F}\right)}
$$

and

$$
\left(v_{1} \otimes v_{2}^{*}\right)\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)=v_{2}\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\pi_{F}-1 & 0 \\
0 & 1
\end{array}\right)\right)=v_{2}\left(\left(\begin{array}{cc}
1 & 0 \\
0 & \pi_{F}^{-1}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)=\frac{\mu_{2}\left(\pi_{F}\right)}{\sqrt{q}} .
$$

The representation π_{2} is principal so $\frac{\sqrt{q}}{\mu_{2}\left(\pi_{F}\right)} \neq \frac{\mu_{2}\left(\pi_{F}\right)}{\sqrt{q}}$ and

$$
\left(v_{1} \otimes v_{2}^{*}\right)\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right) \neq\left(v_{1} \otimes v_{2}^{*}\right)\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right) .
$$

Hence, Ψ does not vanish on $v_{1} \otimes v_{2}^{*}$. Then, v_{1} being K-invariant and v_{2}^{*} being R^{*}-invariant, $\Psi\left(v_{1} \otimes v_{2}^{*}\right)$ is a non zero $\Gamma_{0}\left(\pi_{F}^{n}\right)$-invariant element of $\widetilde{V_{3}}$, that is, a new vector for $\widetilde{\pi_{3}}$, and it does not vanish on v_{3} :

$$
\ell\left(v_{1} \otimes v_{2}^{*} \otimes v_{3}\right)=\Psi\left(v_{1} \otimes v_{2}^{*}\right) \cdot v_{3} \neq 0
$$

Then $v_{1} \otimes v_{2}^{*} \otimes v_{3}$ is a test vector for ℓ.

2.6 The other case

If $n \geq 2$ or $\mu_{1} \mu_{2}|\cdot|^{\frac{1}{2}} \neq|\cdot|^{-\frac{1}{2}}$ then $\operatorname{Hom}_{G}\left(\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right), \widetilde{V_{3}}\right)=0$ and by corollary 5.9 of $\left.\mathbb{\mathbb { P }}\right]$

$$
\operatorname{Exd}_{G}^{1}\left(\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right), \widetilde{V_{3}}\right)=0
$$

Through the long exact sequence (2) we get an isomorphism

$$
\operatorname{Hom}_{G}\left(V_{1} \otimes V_{2}, \widetilde{V_{3}}\right) \simeq \operatorname{Hom}_{G}\left(\operatorname{ind}_{T}^{G}\left(\frac{\chi_{1}}{\chi_{2}}\right), \widetilde{V_{3}}\right)
$$

and by Frobenius reciprocity

$$
\operatorname{Hom}_{G}\left(\operatorname{ind}_{T}^{G}\left(\frac{\chi_{1}}{\chi_{2}}\right), \widetilde{V_{3}}\right) \simeq \operatorname{Hom}_{T}\left(\left(\frac{\chi_{1}}{\chi_{2}}\right), \widetilde{V_{3 \mid T}}\right)
$$

By lemmas 8 and 9 of (W], this latter space is one dimensional. Thus, we have a chain of isomorphic one dimensional vector spaces

$$
\begin{array}{ccc}
\ell & \in & \operatorname{Hom}_{G}\left(V_{1} \otimes V_{2} \otimes V_{3}, \mathbb{C}\right) \\
\downarrow 2 \\
\Psi & \in & \operatorname{Hom}_{G}\left(\begin{array}{l}
\left.V_{1} \otimes V_{2}, \widetilde{V_{3}}\right) \\
\downarrow 2 \\
\\
\Phi
\end{array} \in\right. \\
& \in & \operatorname{Hom}_{G}\left(\operatorname{ind}_{T}^{G}\left(\frac{\chi_{1}}{\chi_{2}}\right), \widetilde{V_{3}}\right) \\
\downarrow 2 & \\
\varphi & \in & \operatorname{Hom}_{T}\left(\left(\frac{\chi_{1}}{\chi_{2}}\right), \widetilde{V_{3 \mid T}}\right)
\end{array}
$$

with generators ℓ, Ψ, Φ and φ corresponding via the isomorphisms. Notice that φ is a linear form on V_{3} such that

$$
\begin{equation*}
\forall t \in T \quad \forall v \in V_{3} \quad \varphi\left(\pi_{3}(t) v\right)=\frac{\chi_{2}(t)}{\chi_{1}(t)} \varphi(v) \tag{3}
\end{equation*}
$$

Lemma 1. $\varphi\left(v_{3}\right) \neq 0$.
Proof : this is proposition 2.6 of G-P with the following translation :

- the local field F is the same,
- the quadratic extension K / F of Gross and Prasad is $F \times F$ and their group K^{*} is our torus T,
- the infinite dimensional representation V_{1} of Gross and Prasad is our π_{3},
- the one dimensional, unramified representation V_{2} of Gross and Prasad is $\frac{\chi_{1}}{\chi_{2}}$.

Then the representation that Gross and Prasad call V is $\frac{\chi_{1}}{\chi_{2}} \otimes \pi_{3}$ and their condition (1.3) is exactly our condition (3). In order to apply Gross and Prasad's proposition, we need to check the equality

$$
\varepsilon\left(\sigma \otimes \sigma_{3}\right)=\alpha_{K / F}(-1) \omega(-1)
$$

Basically, it is true because K is not a field. Let us give some details.

- In $\overline{\mathrm{G}-\mathrm{P}}], \omega$ is the central character of the representation V_{1} which is trivial for us.
- The character $\alpha_{K / F}$ is the quadratic character of F^{*} associated to the extension K / F by local class-field theory. Here, it is trivial because K is $F \times F$.
- To compute $\varepsilon\left(\sigma \otimes \sigma_{3}\right)$ we will use the first pages of T.

$$
\forall\left(\begin{array}{ll}
x & 0 \\
0 & z
\end{array}\right) \in T \quad \frac{\chi_{1}}{\chi_{2}}\left(\left(\begin{array}{cc}
x & 0 \\
0 & z
\end{array}\right)\right)=\frac{\mu_{1}}{\mu_{2}}(x) \frac{\mu_{2}}{\mu_{1}}(z) \Rightarrow \varepsilon\left(\sigma \otimes \sigma_{3}\right)=\varepsilon\left(\frac{\mu_{1}}{\mu_{2}} \otimes \sigma_{3}\right) \varepsilon\left(\frac{\mu_{2}}{\mu_{1}} \otimes \sigma_{3}\right)
$$

Since the determinant of σ_{3} is the central character of π_{3} which is trivial, σ_{3} is isomorphic to its own contragredient, and the contragredient representation of $\frac{\mu_{1}}{\mu_{2}} \otimes \sigma_{3}$ is $\frac{\mu_{2}}{\mu_{1}} \otimes \sigma_{3}$. Then, by formula (1.1.6) of (T],

$$
\varepsilon\left(\sigma \otimes \sigma_{3}\right)=\operatorname{det}\left(\sigma_{3}(-1)\right)=1=\alpha_{K / F}(-1) \omega(-1)
$$

Then, according to $\boxed{G-P}$, the restriction of $\frac{\chi_{1}}{\chi_{2}} \otimes \pi_{3}$ to the group

$$
M=\left\{\left.\left(\begin{array}{ll}
x & 0 \\
0 & z
\end{array}\right) \quad \right\rvert\, \quad x, y \in \mathcal{O}_{F}^{*}\right\} \times \Gamma_{0}\left(\pi_{F}^{n}\right)
$$

fixes a unique line in V_{3} : it is the line generated by the new vector v_{3}. According to Gross and Prasad, a non-zero linear form on V_{3} which satisfies (3) cannot vanish on v_{3}.

We still need to prove that $\ell\left(v_{1} \otimes v_{2}^{*} \otimes v_{3}\right) \neq 0$. For the reason described at the end of section 2.5, it is enough to prove that

$$
\left\{\begin{array}{rll}
V_{3} & \longrightarrow & \mathbb{C} \\
v & \longmapsto & \ell\left(v_{1} \otimes v_{2}^{*} \otimes v\right)
\end{array}\right.
$$

is non zero in $\widetilde{V_{3}}$. In order to do that we want to build a function F in $V_{1} \otimes V_{2}$, of the form

$$
\begin{equation*}
F=\sum_{i \in I} c_{i}\left\langle\left(\pi_{1} \otimes \pi_{2}\right)\left(g_{i}\right), v_{1} \otimes v_{2}^{*}\right\rangle \tag{4}
\end{equation*}
$$

which vanishes on the closed orbit of G in $\mathbb{P}^{1}(F) \times \mathbb{P}^{1}(F)$. Then, F is in the kernel of res so it is the image by ext of a function $f \in \operatorname{ind}_{T}^{G}\left(\frac{\chi_{1}}{\chi_{2}}\right)$. The point is that f must be the characteristic function of the orbit of the unit in the decomposition of $T \backslash G$ under the action of $\Gamma_{0}\left(\pi_{F}^{n}\right)$, which means :

$$
f(g)=\left\{\begin{array}{cl}
\frac{\chi_{1}(t)}{\chi_{2}(t)} & \text { if } g=t k \quad \text { with } \quad t \in T \quad \text { and } \quad k \in \Gamma_{0}\left(\pi_{F}^{n}\right) \tag{5}\\
0 & \text { else }
\end{array}\right.
$$

Then, the function

$$
\left\{\begin{array}{rll}
G & \longrightarrow & \mathbb{C} \\
g & \longmapsto & f(g) \varphi\left(\pi_{3}(g) v_{3}\right)
\end{array}\right.
$$

is invariant by the action of T by left translation and we can do the following computation: on the one hand

$$
\begin{aligned}
(\Psi(F))\left(v_{3}\right) & =(\Phi(f))\left(v_{3}\right) \\
& =\int_{T \backslash G} f(g) \varphi\left(\pi_{3}(g) v_{3}\right) d g \\
& =\int_{(T \cap K) \backslash \Gamma_{0}\left(\pi_{F}^{n}\right)} \varphi\left(\pi_{3}(k) v_{3}\right) d k \\
& =\lambda \cdot \varphi\left(v_{3}\right) .
\end{aligned}
$$

where λ is a non zero constant. Thanks to lemma [we know that $\varphi\left(v_{3}\right) \neq 0$ then

$$
(\Psi(F))\left(v_{3}\right) \neq 0 .
$$

On the other hand, it comes from (7) that

$$
\begin{aligned}
(\Psi(F))\left(v_{3}\right) & =\sum_{i \in I} c_{i} \ell\left(\pi_{1}\left(g_{i}\right) v_{1} \otimes \pi_{2}\left(g_{i}\right) v_{2}^{*} \otimes v_{3}\right) \\
& =\sum_{i \in I} c_{i} \ell\left(v_{1} \otimes v_{2}^{*} \otimes \pi_{3}\left(g_{i}^{-1}\right) v_{3}\right) \\
& =\Psi\left(v_{1} \otimes v_{2}^{*}\right)\left(\sum_{i \in I} c_{i} \pi_{3}\left(g_{i}^{-1}\right) v_{3}\right)
\end{aligned}
$$

then $\Psi\left(v_{1} \otimes v_{2}^{*}\right) \neq 0$ and $v_{1} \otimes v_{2}^{*} \otimes v_{3}$ is a test vector for ℓ.

3 Calculations

3.1 The function F as an element of $V_{1} \otimes V_{2}$

Let a and b be the numbers

$$
a=\frac{\mu_{1}\left(\pi_{F}\right)}{\sqrt{q}} \quad b=\frac{\mu_{2}\left(\pi_{F}\right)}{\sqrt{q}}
$$

They verify

$$
\left(a^{2}-1\right)\left(b^{2}-1\right) \neq 0
$$

because π_{1} and π_{2} are principal series representations. For the sake of simplicity, we shall use the following notations : for any g in G

$$
g v_{1}=\left\langle\pi_{1}(g), v_{1}\right\rangle \quad \text { and } \quad g v_{2}^{*}=\left\langle\pi_{2}(g), v_{2}^{*}\right\rangle
$$

and for a family $\left(g_{i}\right)$ of elements of G, and $\left(c_{i}\right)$ some complex numbers, denote

$$
\left(\sum_{i} c_{i} \cdot g_{i}\right)\left(v_{1} \otimes v_{2}^{*}\right)=\sum_{i} c_{i} \cdot\left\langle\left(\pi_{1} \times \pi_{2}\right)\left(g_{i}\right), v_{1} \otimes v_{2}^{*}\right\rangle .
$$

Lemma 2. As an element of $V_{1} \otimes V_{2}$, the function F is given by the formula

$$
\begin{array}{r}
F=\frac{a^{n}}{\left(a^{2}-1\right)\left(b^{2}-1\right)}\left\{a \cdot b \cdot \gamma^{-(n-1)} v_{1} \otimes \gamma^{-1} v_{2}-a \cdot \gamma^{-(n-1)} v_{1} \otimes v_{2}-b \cdot \gamma^{-n} v_{1} \otimes \gamma^{-1} v_{2}\right. \\
\left.+\gamma^{-n} v_{1} \otimes v_{2}\right\}
\end{array}
$$

Proof: The function F has to be $\operatorname{ext}(f)$, where f is the function described by formula (55), and $\operatorname{ext}(f)$ is described by the short exact sequence (1) using the orbits of the action of G on $B \times B \backslash G \times G$. The function F must vanish on the closed orbit

$$
\Delta_{B \backslash G}=\{(g, b g) \quad \mid \quad b \in B, \quad g \in G\}
$$

The open orbit can be identified with $T \backslash G$ via the bijection

$$
\left\{\begin{array}{rll}
T \backslash G & \longrightarrow & (B \backslash G \times B \backslash G) \backslash \Delta_{B \backslash G} \\
T g & \longmapsto & \left(B g, B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) g\right)
\end{array}\right.
$$

through which, the orbit of the unit in $T \backslash G$ under the action of $\Gamma_{0}\left(\pi_{F}^{n}\right)$ corresponds to

$$
\left\{\left.\left(B k, B\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) k\right) \quad \right\rvert\, \quad k \in \Gamma_{0}\left(\pi_{F}^{n}\right)\right\}
$$

Now, pick any $\left(k, k^{\prime}\right) \in K \times K$. If $k^{\prime} \in B k$, then

$$
k \in \Gamma_{0}\left(\pi_{F}^{n}\right) \Longleftrightarrow k^{\prime} \in \Gamma_{0}\left(\pi_{F}^{n}\right) \quad \text { and } \quad k \in \Gamma_{0}\left(\pi_{F}\right) \Longleftrightarrow k^{\prime} \in \Gamma_{0}\left(\pi_{F}\right)
$$

When $k^{\prime} \notin B k$, write $k=\left(\begin{array}{ll}x & y \\ z & t\end{array}\right)$ and $k^{\prime}=\left(\begin{array}{ll}x^{\prime} & y^{\prime} \\ z^{\prime} & t^{\prime}\end{array}\right)$. There exists $\left(b_{1}, b_{2}\right) \in B \times B$ such that

$$
k=b_{1} k_{0} \quad \text { and } \quad k^{\prime}=b_{2}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) k_{0} \quad \text { with } \quad k_{0}=\left(\begin{array}{cc}
z^{\prime} & t^{\prime} \\
z & t
\end{array}\right) \in \mathrm{M}_{2}\left(\mathcal{O}_{F}\right)
$$

Then $\left(k, k^{\prime}\right)$ is in the orbit of the unit in $T \backslash G$ under the action of $\Gamma_{0}\left(\pi_{F}^{n}\right)$ if and only if k_{0} is in $T \Gamma_{0}\left(\pi_{F}^{n}\right)$. Because k and k^{\prime} are in K, one can see that

$$
k_{0} \in T \Gamma_{0}\left(\pi_{F}^{n}\right) \quad \Longleftrightarrow \quad k_{0} \in \Gamma_{0}\left(\pi_{F}^{n}\right)
$$

and

$$
\begin{aligned}
k_{0} \in \Gamma_{0}\left(\pi_{F}^{n}\right) & \Longleftrightarrow z \equiv 0 \quad \bmod \pi_{F}^{n} \quad \text { and } \quad z^{\prime} t \in \mathcal{O}_{F}^{*} \\
& \Longleftrightarrow z \equiv 0 \quad \bmod \pi_{F}^{n} \quad \text { and } \quad z^{\prime} \in \mathcal{O}_{F}^{*} \\
& \Longleftrightarrow k \in \Gamma_{0}\left(\pi_{F}^{n}\right) \quad \text { and } \quad k^{\prime} \notin \Gamma_{0}\left(\pi_{F}\right) .
\end{aligned}
$$

It follows that $\left(k, k^{\prime}\right)$ corresponds to an element of the orbit of the unit in the decomposition of $T \backslash G$ under the action of $\Gamma_{0}\left(\pi_{F}^{n}\right)$ if and only if $k \in \Gamma_{0}\left(\pi_{F}^{n}\right)$ and $k^{\prime} \notin \Gamma_{0}\left(\pi_{F}\right)$. Then, it will be enough to check that

$$
F\left(k, k^{\prime}\right)= \begin{cases}1 & \text { if } \quad k \in \Gamma_{0}\left(\pi_{F}^{n}\right) \quad \text { and } \quad k^{\prime} \notin \Gamma_{0}\left(\pi_{F}\right) \tag{6}\\ 0 & \text { else }\end{cases}
$$

This is mere calculation. We need, with $a=\frac{\mu_{1}\left(\pi_{F}\right)}{\sqrt{q}}$ as in section 3.1

Lemma 3.

$$
\forall i \in \mathbb{N}, \quad \forall k=\left(\begin{array}{ll}
x & y \tag{7}\\
z & t
\end{array}\right) \in K, \quad \gamma^{-i} v_{1}(k)=\left\{\begin{array}{lll}
a^{i} & \text { if } \quad \operatorname{val}\left(\frac{z}{t}\right) \leq 0 \\
a^{i-2 \operatorname{val}\left(\frac{z}{t}\right)} & \text { if } \quad 1 \leq \operatorname{val}\left(\frac{z}{t}\right) \leq i-1 \\
a^{-i} & \text { if } \quad i \leq \operatorname{val}\left(\frac{z}{t}\right)
\end{array}\right.
$$

Proof : since k is in K, either z or t is in \mathcal{O}_{F}^{*}. The other one is in \mathcal{O}_{F}. Write

$$
k \gamma^{-i}=\left(\begin{array}{cc}
\frac{x}{\pi_{F}{ }^{i}} & y \\
\frac{z}{\pi_{F}{ }^{i}} & t
\end{array}\right)
$$

If val $\frac{z}{t} \leq 0$, then $\operatorname{val} z=0, \operatorname{val}\left(\frac{\pi_{F}{ }^{i} t}{z}\right) \geq 0$ and

$$
k \gamma^{-i}=\left(\begin{array}{cc}
\frac{x t-y z}{z} & \frac{x}{\pi_{F}{ }^{i}} \\
0 & \frac{z}{\pi_{F}{ }^{i}}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & \frac{\pi_{F}{ }^{i} t}{z}
\end{array}\right)
$$

with

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & \frac{\pi_{F}{ }^{i} t}{z}
\end{array}\right) \in K \quad \text { and } \quad\left(\chi_{1} \cdot \delta^{\frac{1}{2}}\right)\left(\begin{array}{cc}
\frac{x t-y z}{z} & \frac{x}{\pi_{F}{ }^{i}} \\
0 & \frac{z}{\pi_{F^{i}}}
\end{array}\right)=\left(\frac{\mu_{1}\left(\pi_{F}\right)}{\sqrt{q}}\right)^{i-2 \mathrm{val} z}=a^{i-2 \mathrm{val} z}=a^{i}
$$

If $1 \leq \operatorname{val} \frac{z}{t} \leq i-1$, then $\operatorname{val} t=0, \operatorname{val}\left(\frac{\pi_{F}{ }^{i} t}{z}\right) \geq 0$ and the computation is quite the same, except that

$$
\left(\chi_{1} \cdot \delta^{\frac{1}{2}}\right)\left(\begin{array}{cc}
\frac{x t-y z}{z} & \frac{x}{\pi_{F}{ }^{i}} \\
0 & \frac{z}{\pi_{F}{ }^{i}}
\end{array}\right)=\left(\frac{\mu_{1}\left(\pi_{F}\right)}{\sqrt{q}}\right)^{i-2 \operatorname{val} z}=a^{i-2 \mathrm{val} \frac{z}{t}}
$$

If $i \leq \operatorname{val} \frac{z}{t}$, then $\operatorname{val} t=0, \operatorname{val}\left(\frac{\pi_{F}{ }^{i} t}{z}\right) \leq 0$ and

$$
k \gamma^{-i}=\left(\begin{array}{cc}
\frac{x t-y z}{t \pi_{F}{ }^{i}} & y \\
0 & t
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{z}{t \pi_{F} i} & 1
\end{array}\right)
$$

with

$$
\left(\begin{array}{cc}
1 & 0 \\
\frac{z}{t \pi_{F^{i}}} & 1
\end{array}\right) \in K \quad \text { and } \quad\left(\chi_{1} \cdot \delta^{\frac{1}{2}}\right)\left(\left(\begin{array}{cc}
\frac{x t-y z}{t \pi_{F^{i}}} & y \\
0 & t
\end{array}\right)\right)=\left(\frac{\mu_{1}\left(\pi_{F}\right)}{\sqrt{q}}\right)^{-i-2 \operatorname{val} t}=a^{-i}
$$

$\mathbf{N B}$: the case $t=0$ is included in val $\frac{z}{t} \leq 0$.
We can now finish the proof of lemma 2. The same computation, with v_{2} and b instead of v_{1} and a, gives the values of $\gamma^{-i} v_{2}$ for any $i \in \mathbb{N}$. It is then easy to compute $F\left(k, k^{\prime}\right)$ as given in lemma 2 , for k and k^{\prime} in K , and to check formula (6).

3.2 The nice modulus \mathcal{M}

We still need to express F obtained from $v_{1} \otimes v_{2}^{*}$ as in formula (4). Let \mathcal{M} denote the $\mathbb{C}[G]$ modulus generated by $v_{1} \otimes v_{2}^{*}$ in $V_{1} \otimes V_{2}$. We want to prove that F is in \mathcal{M}. Thanks to formula (2), it is enough to prove that the three functions

$$
\gamma^{-(n-2)} v_{1} \otimes v_{2} \quad \gamma^{-(n-1)} v_{1} \otimes v_{2} \quad \gamma^{-n} v_{1} \otimes v_{2}
$$

are in \mathcal{M}. We will do that by making Hecke operators act on $v_{1} \otimes v_{2}^{*}$.

4 Hecke operators

4.1 Notations

Let k be an integer greater or equal to 1 . The $k^{\text {th }}$ Hecke operator is

$$
T_{\pi_{F} k}=K\left(\begin{array}{cc}
\pi_{F}{ }^{k} & 0 \\
0 & 1
\end{array}\right) K
$$

The new vector v_{1} is an eigenvector for $T_{\pi_{F} k}$, with eigen value A_{k}. If we decide to take $T_{\pi_{F}{ }^{0}}$ to be the identity operator, then we know that

$$
\left\{\begin{array}{l}
A_{0}=1 \\
A_{1}=\frac{\sqrt{q}}{\mu_{1}\left(\pi_{F}\right)}\left(1+\mu_{1}^{2}\left(\pi_{F}\right)\right)=\frac{1}{a}\left(1+\mu_{1}^{2}\left(\pi_{F}\right)\right) \\
A_{2}=A_{1}^{2}-(q+1) \\
\forall k \geq 2 \quad A_{k+1}=A_{1} A_{k}-q A_{k-1}
\end{array}\right.
$$

The same relations hold for the new vector v_{2} of V_{2}, and we call the eigenvalues B_{k}.
Let $\left\{\tau_{k, i} \quad 1 \leq i \leq q^{k}\right\}$ be a set of representatives of $\mathcal{O}_{F} / \pi_{F}{ }^{k} \mathcal{O}_{F}$ in \mathcal{O}_{F}, such taht $\tau_{k, 1}=0$. The subset of elements which are not invertible modulo $\pi_{F}{ }^{k} \mathcal{O}_{F}$ is $\left\{\pi_{F} \tau_{k-1, j} \quad 1 \leq j \leq q^{k-1}\right\}$. If we choose

$$
\forall i, \quad 1 \leq i \leq q^{k} \quad g_{k, i}=\left(\begin{array}{cc}
\pi_{F}^{k} & \tau_{k, i} \\
0 & 1
\end{array}\right)
$$

then

$$
\forall i, \quad 1 \leq i \leq q^{k-1} \quad\left(\begin{array}{cc}
0 & 1 \\
\pi_{F} & 0
\end{array}\right) g_{k-1, i}=\left(\begin{array}{cc}
0 & 1 \\
\pi_{F}{ }^{k} & \pi_{F} \tau_{k-1, i}
\end{array}\right)
$$

and we can write

$$
T_{\pi_{F} k}=\bigsqcup_{i=1}^{q^{k}} g_{k, i} K \quad \bigsqcup \bigsqcup_{i=1}^{q^{k-1}}\left(\begin{array}{cc}
0 & 1 \\
\pi_{F} & 0
\end{array}\right) g_{k-1, i} K
$$

Then we define an operator T_{k} on $V_{1} \otimes V_{2}$

$$
\forall v \in V_{1} \quad \forall v^{\prime} \in V_{2}, \quad T_{k}\left(v \otimes v^{\prime}\right)=\sum_{i=1}^{q^{k}} g_{k, i}\left(v \otimes v^{\prime}\right)+\sum_{i=1}^{q^{k-1}}\left(\begin{array}{cc}
0 & 1 \\
\pi_{F} & 0
\end{array}\right) g_{k-1, i}\left(v \otimes v^{\prime}\right)
$$

We will also use the truncated operator T_{k}^{*}

$$
\forall v \in V_{1} \quad \forall v^{\prime} \in V_{2}, \quad T_{k}^{*}\left(v \otimes v^{\prime}\right)=\sum_{i=1}^{q^{k}} g_{k, i}\left(v \otimes v^{\prime}\right)
$$

4.2 Trying to put \mathbf{F} in \mathcal{M}

Lemma 4. Let v_{\bullet} denote v_{1} or v_{2}
a) $\forall j, k \in \mathbb{N} \quad\left(\begin{array}{cc}0 & 1 \\ \pi_{F}{ }^{k} & 0\end{array}\right)\left(\gamma^{-j} v_{\bullet}\right)=\gamma^{j-k} v_{\bullet}$
b) $\forall i \in \mathbb{N}, \quad 1 \leq i \leq q \quad \forall j \in \mathbb{N}, \quad j \geq 1 \quad g_{1, i} \gamma^{-j} v_{\bullet}=\gamma^{-(j-1)} v_{\bullet}$

Proof : a) remembering that $v_{\mathbf{0}}$ is invariant by K and by the center of G, we write

$$
\left(\begin{array}{cc}
0 & 1 \\
\pi_{F}{ }^{k} & 0
\end{array}\right) \gamma^{-j}=\left(\begin{array}{cc}
\pi_{F}{ }^{k-j} & 0 \\
0 & \pi_{F}{ }^{k-j}
\end{array}\right)\left(\begin{array}{cc}
\pi_{F} j-k & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The first matrix belongs to the center of G, the second one is precisely γ^{j-k} and the third one is in K.
b) write

$$
g_{1, i} \gamma^{-j}=\left(\begin{array}{cc}
\pi_{F}{ }^{1-j} & \tau_{1, i} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\pi_{F}{ }^{1-j} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \pi_{F}{ }^{j-1} \tau_{1, i} \\
0 & 1
\end{array}\right)
$$

The first matrix is $\gamma^{-(j-1)}$ and the second one is in K because $j-1 \geq 0$.
Lemma 5. $T_{n}\left(v_{1} \otimes \gamma^{-n} v_{2}\right)=A_{n} \cdot v_{1} \otimes v_{2}$
Proof: it is enough to observe that

$$
\forall i, \quad 1 \leq i \leq q^{n} \quad g_{n, i} \gamma^{-n} \in K \quad \text { and } \quad \forall i, \quad 1 \leq i \leq q^{n-1} \quad\left(\begin{array}{cc}
0 & 1 \\
\pi_{F} & 0
\end{array}\right) g_{n-1, i} \gamma^{-n} \in K
$$

Then

$$
\begin{aligned}
T_{n}\left(v_{1} \otimes \gamma^{-n} v_{2}\right) & \\
= & \sum_{i=1}^{q^{n}} g_{n, i}\left(v_{1} \otimes \gamma^{-n} v_{2}\right)+\sum_{i=1}^{q^{n-1}}\left(\begin{array}{cc}
0 & 1 \\
\pi_{F} & 0
\end{array}\right) g_{n-1, i}\left(v_{1} \otimes \gamma^{-n} v_{2}\right) \\
= & \sum_{i=1}^{q^{n}} g_{n, i} v_{1} \otimes\left(g_{n, i} \gamma^{-n}\right) v_{2}+\sum_{i=1}^{q^{n-1}}\left(\begin{array}{cc}
0 & 1 \\
\pi_{F} & 0
\end{array}\right) g_{n-1, i} v_{1} \otimes\left(\left(\begin{array}{cc}
0 & 1 \\
\pi_{F} & 0
\end{array}\right) g_{n-1, i} \gamma^{-n}\right) v_{2} \\
= & \sum_{i=1}^{q^{n}} g_{n, i} v_{1} \otimes v_{2}+\sum_{i=1}^{q^{n-1}}\left(\begin{array}{rr}
0 & 1 \\
\pi_{F} & 0
\end{array}\right) g_{n-1, i} v_{1} \otimes v_{2}
\end{aligned}
$$

because v_{2} is K invariant. Then

$$
T_{n}\left(v_{1} \otimes \gamma^{-n} v_{2}\right)=T_{\pi_{F}}\left(v_{1}\right) \otimes v_{2}=A_{n} \cdot v_{1} \otimes v_{2}
$$

Lemma 6. For any integer ℓ such that $1 \leq \ell \leq n$

$$
T_{1}^{*}\left(v_{1} \otimes \gamma^{-\ell} v_{2}\right)=A_{1} \cdot v_{1} \otimes \gamma^{-(\ell-1)} v_{2}-\gamma^{-1} v_{1} \otimes \gamma^{-(\ell-1)} v_{2}
$$

Proof: by lemman b, we get

$$
\forall i, \quad 1 \leq i \leq q \quad\left(g_{1, i} \gamma^{-\ell}\right) v_{2}=\gamma^{-(\ell-1)} v_{2}
$$

Then

$$
\begin{aligned}
T_{1}^{*}\left(v_{1} \otimes \gamma^{-\ell} v_{2}\right) & =\sum_{i=1}^{q} g_{1, i} v_{1} \otimes\left(g_{1, i} \gamma^{-\ell}\right) v_{2} \\
& =\sum_{i=1}^{q^{n}} g_{1, i} v_{1} \otimes \gamma^{-(\ell-1)} v_{2} \\
& \left.\left.=\left(T_{\pi_{F}} v_{1}\right) \otimes \gamma^{-(\ell-1)}\right) v_{2}-\left(\left(\begin{array}{cc}
0 & 1 \\
\pi_{F} & 0
\end{array}\right) v_{1}\right) \otimes \gamma^{-(\ell-1)}\right) v_{2}
\end{aligned}
$$

Using lemma $\begin{aligned} & \text {. }\end{aligned}$ a with $k=1$ and $j=0$, we get $\left(\begin{array}{cc}0 & 1 \\ \pi_{F} & 0\end{array}\right) v_{1}=\gamma^{-1} v_{1}$ and

$$
T_{1}^{*}\left(v_{1} \otimes \gamma^{-\ell} v_{2}\right)=A_{1} \cdot v_{1} \otimes \gamma^{-(\ell-1)} v_{2}-\gamma^{-1} v_{1} \otimes \gamma^{-(\ell-1)} v_{2}
$$

We will now define a sequence $\left(C_{k}\right)_{k \in \mathbb{N}}$ of complex numbers with the same inductive relation as $\left(A_{k}\right)_{k \in \mathbb{N}}$

$$
C_{0}=0 \quad C_{1}=1 \quad \forall k \in \mathbb{N}, \quad C_{k+2}=A_{1} \cdot C_{k+1}-q \cdot C_{k}
$$

Then
Lemma 7. For any integer k such that $0 \leq k \leq n$

$$
\left(T_{1}^{*}\right)^{k}\left(v_{1} \otimes \gamma^{-n} v_{2}\right)=C_{k+1} \cdot v_{1} \otimes \gamma^{-(n-k)} v_{2}-C_{k} \cdot \gamma^{-1} v_{1} \otimes \gamma^{-(n-k)} v_{2}
$$

Proof: by induction over k. The relation is obvious for $k=0$ and it is lemma 6 for $k=1$. We assume it to be true for some $1 \leq k \leq n-1$ and we apply to it the operator T_{1}^{*}. First, thanks to lemma 6 with $\ell=n-k$ we get

$$
T_{1}^{*}\left(v_{1} \otimes \gamma^{-(n-k)} v_{2}\right)=A_{1} \cdot v_{1} \otimes \gamma^{-(n-k-1)} v_{2}-\gamma^{-1} v_{1} \otimes \gamma^{-(n-k-1)} v_{2} .
$$

Then compute

$$
T_{1}^{*}\left(v_{1} \otimes \gamma^{-(n-k)} v_{2}\right)=\sum_{i=1}^{q}\left(g_{1, i} \gamma^{-1}\right) v_{1} \otimes\left(g_{1, i} \gamma^{-(n-k)}\right) v_{2}
$$

We know that $g_{1, i} \gamma^{-1} \in K$ and by lemma 7.b that $\left(g_{1, i} \gamma^{-(n-k)}\right) v_{2}=\gamma^{-(n-k-1)} v_{2}$ since $n-k \geq 1$. Then

$$
T_{1}^{*}\left(v_{1} \otimes \gamma^{-(n-k)} v_{2}\right)=\sum_{i=1}^{q} v_{1} \otimes \gamma^{-(n-k-1)} v_{2}=q \cdot v_{1} \otimes \gamma^{-(n-k-1)} v_{2}
$$

and

$$
\begin{aligned}
&\left(T_{1}^{*}\right)^{k+1}\left(v_{1} \otimes \gamma^{-n} v_{2}\right) \\
&=C_{k+1} \cdot\left(A_{1} \cdot v_{1} \otimes \gamma^{-(n-k-1)} v_{2}-\gamma^{-1} v_{1} \otimes \gamma^{-(n-k-1)} v_{2}\right)-C_{k} \cdot q \cdot v_{1} \otimes \gamma^{-(n-k-1)} v_{2} \\
&=\left(A_{1} \cdot C_{k+1}-q \cdot C_{k}\right) v_{1} \otimes \gamma^{-(n-k-1)} v_{2}-C_{k+1} \cdot \gamma^{-1} v_{1} \otimes \gamma^{-(n-k-1)} v_{2} \\
&=C_{k+2} \cdot v_{1} \otimes \gamma^{-(n-k-1)} v_{2}-C_{k+1} \cdot \gamma^{-1} v_{1} \otimes \gamma^{-(n-k-1)} v_{2}
\end{aligned}
$$

We need another technical lemma
Lemma 8. Let n be an integer, $n \geq 2$. If $C_{n-1} \neq 0, A_{n}$ and $\left(C_{n+1}-C_{n-1}\right)$ cannot vanish together.

Proof: Let us compute the coefficents C_{k} and the eigenvalues A_{k}. The second degree equation attached to the sequences $\left(C_{k}\right)_{k \in \mathbb{N}}$ and $\left(A_{k}\right)_{k \in \mathbb{N}}$ is $X^{2}-A_{1} \cdot X+q$ and its discriminant is

$$
\frac{q}{\mu_{1}\left(\pi_{F}\right)^{2}} \cdot\left(1-\mu_{1}\left(\pi_{F}\right)^{2}\right)^{2}
$$

If $\mu_{1}\left(\pi_{F}\right)^{2}=1$ then
$\forall k \in \mathbb{N} \quad C_{k}=k\left(\frac{\sqrt{q}}{\mu_{1}\left(\pi_{F}\right)}\right)^{k-1} \quad$ and $\quad \forall k \in \mathbb{N}^{*} \quad A_{k}=\left(\left(1-\frac{1}{q}\right) k+\left(1+\frac{1}{q}\right)\right) \cdot\left(\frac{\sqrt{q}}{\mu_{1}\left(\pi_{F}\right)}\right)^{k}$
In this case, $A_{n} \neq 0$.
If $\mu_{1}\left(\pi_{F}\right)^{2} \neq 1$ then $\forall k \in \mathbb{N}$

$$
C_{k}=\frac{1}{1-\mu_{1}\left(\pi_{F}\right)^{2}} \cdot \frac{\mu_{1}\left(\pi_{F}\right)}{\sqrt{q}} \cdot\left(\left(\frac{\sqrt{q}}{\mu_{1}\left(\pi_{F}\right)}\right)^{k}-\left(\sqrt{q} \cdot \mu_{1}\left(\pi_{F}\right)\right)^{k}\right)
$$

and $\forall k \in \mathbb{N}^{*}$

$$
A_{k}=\frac{1-q \cdot \mu_{1}\left(\pi_{F}\right)^{2}}{1-\mu_{1}\left(\pi_{F}\right)^{2}} \cdot\left(\frac{\sqrt{q}}{\mu_{1}\left(\pi_{F}\right)}\right)^{k}+\frac{q-\mu_{1}\left(\pi_{F}\right)^{2}}{1-\mu_{1}\left(\pi_{F}\right)^{2}} \cdot\left(\sqrt{q} \cdot \mu_{1}\left(\pi_{F}\right)\right)^{k}
$$

Then

$$
\begin{aligned}
C_{k}=0 & \Longleftrightarrow \mu_{1}\left(\pi_{F}\right)^{2 k}=1 \\
C_{n+1}-C_{n-1}=0 & \Longleftrightarrow q \cdot \mu_{1}\left(\pi_{F}\right)^{2 n+2}-\mu_{1}\left(\pi_{F}\right)^{2 n}+\mu_{1}\left(\pi_{F}\right)^{2}-q=0 \\
A_{n}=0 & \Longleftrightarrow \mu_{1}\left(\pi_{F}\right)^{2 n+2}-q \cdot \mu_{1}\left(\pi_{F}\right)^{2 n}+q \cdot \mu_{1}\left(\pi_{F}\right)^{2}-1=0
\end{aligned}
$$

If both A_{n} and $C_{n+1}-C_{n-1}$ vanish, it follows that $\mu_{1}\left(\pi_{F}\right)^{2 n-2}=1$, that is $C_{n-1}=0$.
Now comes the key point
Lemma 9. Let n be a positive integer. If $n=1$ assume $C_{2} \neq 0$ and if $n \geq 2$ assume that $\forall k \in\{2, \cdots, n\} \quad C_{k} \neq 0$. Then $\quad \forall k \in\{0, \cdots, n\} \quad \gamma^{-k} v_{1} \otimes v_{2} \in \mathcal{M}$.

Proof : recall that \mathcal{M} is the $\mathbb{C}[G]$-modulus generated by $v_{1} \otimes v_{2}^{*}=v_{1} \otimes \gamma^{-n} v_{2}$. Then

$$
v_{1} \otimes \gamma^{-n} v_{2} \in \mathcal{M}
$$

and by lemma $4 . a$

$$
\gamma^{-n} v_{1} \otimes v_{2}=\left(\begin{array}{cc}
0 & 1 \\
\pi_{F}^{n} & 0
\end{array}\right)\left(v_{1} \otimes \gamma^{-n} v_{2}\right) \in \mathcal{M}
$$

First, assume that $A_{n} \neq 0$. When $n=1, A_{1} \neq 0$ because $A_{1}=C_{2}$. Then by lemma 5

$$
v_{1} \otimes v_{2}=\frac{1}{A_{n}} \cdot T_{n}\left(v_{1} \otimes \gamma^{-n} v_{2}\right) \in \mathcal{M}
$$

Use lemma 7 for $k=n-1$ to get

$$
\left(T_{1}^{*}\right)^{(n-1)}\left(v_{1} \otimes \gamma^{-n} v_{2}\right)=C_{n} \cdot v_{1} \otimes \gamma^{-1} v_{2}-C_{n-1} \cdot \gamma^{-1}\left(v_{1} \otimes v_{2}\right)
$$

Since $v_{1} \otimes v_{2}$ is in \mathcal{M} and $C_{n} \neq 0, v_{1} \otimes \gamma^{-1} v_{2}$ is in \mathcal{M}. Then using lemma ${ }^{\sigma}$ for $k=n-2$ and the fact that $C_{n-1} \neq 0$ you prove that $v_{1} \otimes \gamma^{-2} v_{2}$ is in \mathcal{M}. By induction, you put $v_{1} \otimes \gamma^{-k} v_{2}$ in \mathcal{M} for any k in $\{1, \cdots, n-1\}$. Then, use lemma . a for each k to get

$$
\left(\begin{array}{cc}
0 & 1 \\
\pi_{F}^{k} & 0
\end{array}\right)\left(v_{1} \otimes \gamma^{-k} v_{2}\right)=\gamma^{-k} v_{1} \otimes v_{2} \in \mathcal{M}
$$

Now, if $A_{n}=0$ and $n \geq 2$, we know by lemma 8 that the assumption $C_{n-1} \neq 0$ implies $C_{n+1}-C_{n-1} \neq 0$. Let us apply $\left(\begin{array}{cc}0 & 1 \\ \pi_{F} & 0\end{array}\right)$ to the formula given by lemma 7 for $k=n-1$

$$
\left(\begin{array}{cc}
0 & 1 \\
\pi_{F} & 0
\end{array}\right)\left(T_{1}^{*}\right)^{(n-1)}\left(v_{1} \otimes \gamma^{-n} v_{2}\right)=C_{n} \cdot\left(\gamma^{-1} v_{1} \otimes v_{2}\right)-C_{n-1} \cdot\left(v_{1} \otimes v_{2}\right) \in \mathcal{M}
$$

Then compare to the formula given by lemma ${ }^{7}$ for $k=n$

$$
\left(T_{1}^{*}\right)^{(n)}\left(v_{1} \otimes \gamma^{-n} v_{2}\right)=C_{n+1} \cdot\left(v_{1} \otimes v_{2}\right)-C_{n} \cdot\left(\gamma^{-1} v_{1} \otimes v_{2}\right) \in \mathcal{M}
$$

Since $C_{n+1}-C_{n-1} \neq 0$, we can deduce that $v_{1} \otimes v_{2}$ is in \mathcal{M}, and finish the proof as in the case $A_{n}=0$.

Now, we know that the function F of lemma 2 is in \mathcal{M} which was precisely what we needed to complete the proof of theorem 5. We still have to explain the link between the fact that the coefficents C_{k} do not vanish and the $\left(^{*}\right)$-condition.

4.3 The (*)-condition again

In theorem 5, it is not assumed that π_{1} has trivial central character. There might be a twist by some unramified character, but it is still true that

$$
\chi_{1}\left(\begin{array}{cc}
\pi_{F} & 0 \\
0 & \pi_{F}{ }^{-1}
\end{array}\right)=\mu_{1}\left(\pi_{F}\right)^{2}
$$

From the proof of lemma 8 , we know that either $\mu_{1}\left(\pi_{F}\right)^{2}=1$ in which case none of the coefficents C_{k} vanishes, or $\mu_{1}\left(\pi_{F}\right)^{2} \neq 1$ and then

$$
\forall k \in \mathbb{N}, \quad C_{k}=0 \quad \Longleftrightarrow \quad \mu_{1}\left(\pi_{F}\right)^{2 k}=1
$$

This explain the part of the $\left(^{*}\right)$-condition which lies on π_{1}. Now, if this condition is not fulfilled, it is possible to switch everything on π_{2} thanks to the following observation

Let $\left(D_{k}\right)_{k \in \mathbb{N}}$ be the sequence of complex numbers defined by

$$
D_{0}=0 \quad D_{1}=1 \quad \forall k \in \mathbb{N}, \quad D_{k+2}=B_{1} \cdot D_{k+1}-q \cdot D_{k}
$$

This is the analogous for the eigenvalues $\left(B_{k}\right)_{k \in \mathbb{N}}$ of the sequence $\left(C_{k}\right)_{k \in \mathbb{N}}$ for the eigenvalues $\left(A_{k}\right)_{k \in \mathbb{N}}$. Then

Lemma 10. $\forall k \in\{0, \cdots, n-1\}$

$$
\left(T_{1}^{*}\right)^{k}\left(\begin{array}{cc}
0 & 1 \\
\pi_{F}{ }^{n} & 0
\end{array}\right)\left(v_{1} \otimes \gamma^{-n} v_{2}\right)=D_{k+1} \cdot \gamma^{-(n-k)} v_{1} \otimes v_{2}-D_{k} \cdot \gamma^{-(n-k)} v_{1} \otimes \gamma^{-1} v_{2}
$$

Proof: Thanks to lemma 4.a for $k=n$

$$
\left(\begin{array}{cc}
0 & 1 \\
\pi_{F}{ }^{n} & 0
\end{array}\right)\left(v_{1} \otimes \gamma^{-n} v_{2}\right)=\gamma^{-n} v_{1} \otimes v_{2}
$$

Then the calculations are the same as in lemma 7 , where v_{1} is replaced by v_{2}, μ_{1} by μ_{2} and each eigenvalue A_{k} by B_{k}.

This leads to the part of the $\left({ }^{*}\right)$-condition which lies on π_{2}. Theorem ${ }^{5}$ is now proved.
It might be interesting to observe that the $\left(^{*}\right)$-condition for $n=1$ can be formulated in terms of Hecke eigenvalues : it means that A_{1} and B_{1} must not vanish together.

References

[B-Z] Joseph Bernstein and Andrei Zelevinsky, Representations of the group $G L(n, F)$ where F is a non-archimedian local field. Russian Mathematical Surveys 31:3 (1976), 1-68.
[B-R 1] Joseph Bernstein and Andre Reznikov, Estimates of automorphic functions. Moscow Mathematic Journal 4, no. 1 (2004), 19-37.
[B-R 2] Joseph Bernstein and Andre Reznikov, Periods, subconvexity and representation theory. Journal of differential geometry 70 (2005), 129-142.
[G-P] Benedict H.Gross and Diprenda Prasad, Test Vectors for Linear forms. Mathematische Annalen 291 (1991), 343-355.
[H-S] Michael Harris and Anthony Scholl, A note on trilinear forms for reducible representations and Beilinson conjectures. Journal of the European Mathematical Society 2001, 1 (2001), 93-104.
[M-V] Philippe Michel and Akshay Venkatesh, Equidistribution, L-functions and Ergodic theory : on some problem of Yu. V. Linnik. Preprint (2005).
[P] Diprenda Prasad, Trilinear forms for representations of GL(2) and local ε-factors. Composotio Mathematica 75 (1990), 1-46.
[T] J. Tunnell, Local ε-factors and characters of GL(2). American Journal of Mathematics 105 (1983), 1277-1308.
[V] Akshay Venkatesh, Sparse equidistribution problems, period bounds, and subconvexity. Preprint (2005).
[W] Jean-Loup Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie. Compositio Mathematica 54 (1985), 173-242.

