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ABSTRACT 

In this paper, we propose a new method to compute the 

parameters of finite approximations of 2-D MA infinite 

models associated with purely indeterministic stationary 

fields, by using spectral factorizations. This method is 

developed in the framework of model based approaches for 

texture analysis and synthesis. The proposed parameter 

estimation method is then exploited to derive a scheme to 

separate the indeterministic and the deterministic components 

of a texture in Wold decomposition based models. Unlike 

existing approaches, the resulting decomposition scheme 

does not require any support detection technique in the 

spectral domain. 

1. INTRODUCTION  

Nowadays, a great deal of interest has been paid to texture 

analysis and synthesis, especially in the fields of image 

compression, image resolution enhancement, etc. [9,10]. In 

that case, when looking at model based approaches, the 

parameter estimation issue must be addressed. 

Among the approaches of image modeling that use random 

processes, one consists in using texture models based on the 

2-D Wold decomposition [1,2]. This result extends the 

original 1-D result [6] which was initially used for time series. 

In this 2-D approach, the texture is represented as a regular 

stationary field that can be decomposed in orthogonal 

components: 

� A purely indeterministic field characterized by a 

continuous spectral density, 

� a deterministic field which is itself decomposed in two 

orthogonal components: an harmonic field corresponding 

to the 2-D harmonics components (i.e. sharp peaks in the 

frequency domain) and an evanescent field which 

represents periodic fields characterized by straight lines in 

the frequency domain. 

In [2], Francos et al. present a generic model for each Wold 

component. It is known  that the most general model for the 

purely indeterministic component is the moving average (MA) 

representation [1]. Then, under some assumptions
1
, an 

autoregressive (AR) representation is suggested in [2]. 

In order to carry out the parameter estimation, the Wold 

components are usually separated. Thus, Francos [2] proposes 

an iterative procedure to detect the support of the 

deterministic field in the texture periodogram. It consists in 

searching the sharpest peaks. For this purpose, a threshold is 

introduced and initially set to the maximal value of the 

periodogram. Then, it is gradually lowered as long as only 

sharp peaks are detected. The purely indeterministic field is 

obtained by subtracting the estimated deterministic field from 

the original texture. However, it is difficult to define a 

stopping rule. In addition, this approach cannot be used for a 

large variety of textures.  

A more robust method for Wold decomposition is presented 

by Liu and Picard in [7]. Their algorithm is based on the 

intrinsic fundamental-harmonic relationships to identify 

harmonic frequencies and on the Hough transform to detect 

spectral evanescent components. This method has the 

drawback of searching of the support of each deterministic 

component individually. 

In this paper, two aspects of the Wold-based models for 

texture analysis are studied: 

� modeling and parameter estimation of the purely 

indeterministic field, 

� separation of the deterministic components and the purely 

indeterministic ones. 

Our contribution is twofold. Firstly, we propose to represent 

the purely indeterministic field as a finite approximation of an 

infinite 2-D MA expansion. The MA parameter estimation is 

then based on the Taylor representation of a two-variable 

analytic function, called outer function, whose square absolute 

value on the bi-torus of this function equals almost 

everywhere the density of the spectral measure of the purely 

                                                 
1
 The purely indeterministic field has an AR representation if its 

spectral density is positive in the unit bicircle and analytic in some 

neighborhood of it.  



indeterministic field. Thus, the proposed MA representation 

differs from the limited order 2-D MA models whose 

parameters are obtained from the truncated correlation 

function by algebraic methods (i.e. as proposed in [8]). 

Secondly, we present a new decomposition scheme. Unlike 

existing approaches, the proposed scheme does not require 

any support detection techniques in the spectral domain. This 

scheme is based on the proposed MA parameter estimation 

method applied to the mixed texture. The estimated 

parameters are then exploited in a filtering and separation 

procedure. 

The remainder of the paper is organized as follows: section 2 

deals with the theoretical background and the proposed MA 

parameter estimation scheme. In section 3, the implementation 

procedure is presented. In section 4, we derive the 

decomposition scheme to separate the deterministic and the 

purely indeterministic sub-fields. An example is provided to 

illustrate the algorithm. 

2. THEORETICAL BACKGROUND  

Let us first recall how infinite MA representations can be 

theoretically associated to purely indeterministic fields. 

Let { } 2),(),( Z∈nmnmy  be any stationary field of zero-mean 

random variables with finite variance, in the Hilbert space 

)(2 Ω= LH , for some probability space Ω , and denote by 

y
µ  the spectral measure of the field y on the bi-torus 

{ }22 1:: =∈= zz CT .  

Given the Helson-Lowdenslager extension [1] of the Wold 

decomposition theorem, the field ),( nmy  is uniquely 

decomposable as the orthogonal sum: 

 ),(),(),( nmvnmwnmy +=  (1) 

where { } 2),(),( Znmnmw ∈  and { } 2),(),( Znmnmv ∈  are respectively 

purely indeterministic and deterministic fields, with their 

spectral measures denoted 
w

µ  and 
v

µ . 

It is known that, if { }),( nmw  is not zero, then wµ  is 

absolutely continuous and vµ  is singular, so that the spectral 

measure of y decomposes as: vy dmd µϕµ += 2 , where ϕ  is 

the spectral density of 
w

µ  with respect to the normalized 

Lebesgue measure 2m  on 2
T . 

The construction of the purely indeterministic ),( nmw  field is 

based on the so-called innovations of the field with respect to 

some fixed total group order ≤  on 2
Z . More precisely, 

consider the field { } 2),(),( Z∈nmnmp  obtained by projecting 

each sample ),( nmy  onto the closed linear span of all the past 

samples )','( nmy , i.e. ),()','( nmnm < . The field 

),(),(),( nmpnmynmi −=  is called the innovation field of 

{ }),( nmy . The innovation field { }),( nmi  is then a white 

process with variance σ2
 given by the Szegö formula: 
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The purely indeterministic field { }),( nmw  is obtained by 

projecting the field { }),( nmy  onto the closed linear span of 

all the samples of the innovation field { } 2),(),( Z∈nmnmi . Since 

the field { }),( nmw  lies in the closed linear span of the 

innovation white field { }),( nmi , the stationarity condition 

implies that each sample of { }),( nmw  is an infinite linear 

combination of innovation samples. Therefore it admits an 

infinite 2-D MA representation: 
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driven by the white noise { }),( nmi , where ),( lka  are some 

square summable coefficients. Thus, the transfer function f 

associated to the model: 
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belongs to )( 22
TL and  must satisfy the relation: 

 ),(),( 21

2

21

2 zzzzf ϕσ =  a.e. 2
T  (5) 

Now, if one replaces in the MA representation (3) the 

innovation process { }),( nmi  by some other white process of 

the same variance, and the coefficients ),( lka  by the 

coefficients ),(' lka of some other function f’ with the same 

modulus on 2
T , the resulting field { }),(' nmw  obviously has 

the same spectral measure 2' dmd w ϕµ =  as { }),( nmw . 

Therefore, { }),( nmw  and { }),(' nmw  are isomorphic. To 

describe the field { }),( nmw , one can make any particular 

choice of MA parameters provided they satisfy (5), and this 

choice affects only the driving white noise.  

For practical purposes (see also [3], [4]), one can assume that 

the representation (3) has all the coefficients in the first 

quadrant of 2
Z . The function f may thus be considered 

analytic, and hence belongs to the Hardy space )( 22 DH .  

With this additional assumption, it is well known [5] that all 

the solutions of the equation (5) are factors of the form 

 ),(),(),( 212121 zzFzzuzzf =  (6) 

where u is any inner function (i.e. u has modulus 1 a.e. on 
2

T ) and F is the unique outer function (see [5]) such that 
22

/σϕ=F  almost everywhere on 2
T . 



A special solution for the equation (5) is therefore the outer 

function F itself (i.e. 1≡u in (6)), which has two advantages: 

the first is that F is bounded and has no zeroes in the unit bi-

disk, meaning that the corresponding MA filter (3) and its 

inverse are both BIBO-stable. The second advantage is that F 

is uniquely determined by the density ϕ , through the formula 

(see [5]): 
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  (7) 

The parameters of the MA model (3), i.e. the Taylor 

coefficients of F , are then easily obtained by the classical 

Cauchy formula. 

3. PROPOSED METHOD 

The proposed method uses the numerical computation of the 

outer factor F described above, through the following 

approach: consider an image representing a texture, regarded 

as a realization of a stationary random field. Under a standard 

ergodicity assumption, the density of the spectral measure of 

the underlying random field can be assimilated to the power 

spectral density (PSD) of the texture. Using the PSD, one can 

perform a discrete computation of a finite set of coefficients 

of the outer function F associated to this density, and hence 

obtain a finite 2-D MA approximation of the MA model (3).  

The proposed estimation method is resumed in the following 

three steps: 

1. Estimation of the PSD ),(ˆ 21 ωωϕ jj

ww ee  of the texture. 

2. Estimation of the outer function: 
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3. Estimation of the Taylor coefficients of the outer 

function 
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by using the Cauchy formula: 
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In practice, the PSD is estimated via the periodogram: 
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where ),( lkY  denotes the NN ×  points 2-D discrete Fourier 

transform (DFT) of ),( lky . 

The discrete version of the outer factor computation is: 
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The Taylor coefficients are then obtained as follows: 
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for some chosen 10 << r . 

In figure 1 an example of reconstruction is presented. The 

original texture (a) is synthesized using a 46×  2-D MA filter 

driven by a white noise field. The reconstruction texture (b) is 

generated using a 46×  2-D MA model as described above 

and an arbitrary white noise
2
. 

4. A NEW DECOMPOSITION SCHEME 

In the following, we derive a decomposition approach to 

separate the deterministic and purely indeterministic 

components of a texture. Equation (1) can be written as 

follows: 

 ),(),(),(

),(),(),(

),()0,0(

nmvlnkmulka

nmvnmwnmy

lk

+−−=

+=

∑
≺

 (14) 

where u denotes a white noise with same variance as the 

innovation field { }),( nmi  and { }),( lka  the MA parameters of 

the purely indeterministic field w. Taking the z transform
3
 of 

equation (14) yields: 
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where F(z1,z2) is the outer factor defined as follows: 
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,
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Now, by filtering the original image with ),( 21

1 zzF − , one 

obtains a field ),( 21 zzYFIL whose z-transform is given by: 

                                                 
2 The 2-D MA model is truncated to 46× given that the other 

coefficients are negligible. 
3
 Capital letters indicate z-transforms for the corresponding fields. 
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i.e. the sum of the z-transform of the white noise u and of 

some deterministic field. Thus, to compute the deterministic 

field v in the original texture, one has to filter out the white 

noise u from (17), and then to restore v by filtering again the 

result with F. See figure 2. 

As mentioned in the theoretical section, the fact that F is an 

outer function (and hence has no zeroes in the bi-disk) insures 

that the inverse filtering (17) is stable. This motivates the 

particular choice of the outer factor 

Step 1: Filter the FFT of the original image with the transfer 

outer function 
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(computed with the discrete equations (12), (13)) 

Step 2: Estimate the variance of the white noise u  
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Step 3: Filter out the white noise. To this end, a binary mask 

is generated, by using the threshold )0,0(uNα  in 

),( 21 zzYFIL . This value is issued from: 

22

21 /),()0,0( NzzUu = . The value α  is an overestimation 

factor that ensures the removal of the white noise. This factor  

 

compensates the variance of the white noise spectrum 

estimate ),(
21

zzU . In practice we choose α  between 4 and 5.  

The resulting mask is dilated by using a standard 4-connected 

structuring element. The dilated mask is used as a filter in the 

spectral domain (see figure 4). 

Step 4: Filter the result of Step 3 with the outer factor F, 

computed as indicated in the previous section, and obtain an 

estimation of the deterministic part of the texture. 

An example is presented in figure 3, illustrating the 

decomposition of a texture into its deterministic and purely 

indeterministic parts. In figure 3, we present the original 

image (a), the deterministic field (b) extracted from (a) at the 

end of Step 4 and the purely indeterministic field (c) obtained 

by subtracting (b) from (a).  

In figure 4, we present intermediary results related to the 

filtering out of noise u in Step 3: (a) the filtered image in 

frequency domain YFIL, (b) binary mask obtained from YFIL 

using the threshold )0,0(uNα , (c) dilated binary mask. 

The dilated binary mask is used as a filter in the frequency 

domain for recovering the deterministic component (i.e. an 

evanescent field). 

6. CONCLUSIONS 

In this paper, we propose to use the outer factor of the spectral 

power density of a texture to compute a 2-D MA model for 

the purely indeterministic part of the texture. The method is 

then used to derive a Wold decomposition scheme to separate 

the purely indeterministic and the deterministic parts of a 

texture. Unlike existing approaches, our decomposition 

scheme does not require any support detection techniques in 

the spectral domain. 

 
(a) Original purely indeterministic field  

 
(b) 2-D MA reconstruction 

Figure 1. Analysis / Synthesis Example.  

 

 
Figure 2. Purely indeterministic / deterministic decomposition scheme 
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(a) Original image Y 

 
(b) Estimated deterministic field V 

 
(c) Estimated purely indeterministic field Y-V 

 
 

 

Figure 3. Wold Decomposition example. First row: spatial domain. Second row: frequency domain (linear scale). 

 

 
(a) Filtered image (frequency domain) 

 
(b) Binary mask obtained by thresholding 

 
(c) Dilation of binary mask  

(with 4 connected structuring element) 

Figure 4. Decomposition algorithm details (Step 3). 
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