
HAL Id: hal-00182180
https://hal.science/hal-00182180

Submitted on 30 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an incremental development of UML
specifications

Boulbaba Ben Ammar, Mohamed Tahar Bhiri, Jeanine Souquières

To cite this version:
Boulbaba Ben Ammar, Mohamed Tahar Bhiri, Jeanine Souquières. Towards an incremental develop-
ment of UML specifications. 2007. �hal-00182180�

https://hal.science/hal-00182180
https://hal.archives-ouvertes.fr

Towards an incremental development of UML

specifications

Boulbaba Ben Ammar1,2, Mohamed Tahar Bhiri2 and Jeanine Souquières1

1 LORIA - Nancy University
615 rue du Jardin Botanique

F-54602 Villers-lès-Nancy, France
{Boulbaba.Ben-Ammar, Jeanine.Souquières}@loria.fr

2 MIRACL Laboratory - Faculté des Sciences de Sfax
B. P. 802 - 3018, Sfax - Tunisia

tahar bhiri@yahoo.fr

Abstract. Specifying complex systems is a difficult task which can-
not be done in one step. Step-by-step development processes have been
studied using formal methods, based on refinement mechanisms. The re-
finement is a key feature for incrementally developing more and more
detailed models, preserving correctness in each step. Our purpose is to
instantiate this process when using UML/OCL notations. We illustrate
it by some development steps of an access control system. At each step,
decisions are formalized in terms of different UML notations, making
evolve an initial model which expresses the fundamental properties of
the system. We show that these properties are preserved by each devel-
opment step.

Key words: Step-by-step development process, UML, OCL, refinement,
verification

1 Introduction

Specifying a complex system is a difficult task which cannot be done in one
step. Step-by-step development processes have been largely studied in formal
approaches, based on refinement mechanisms. Usually, two kinds of refinement
are highlighted, horizontal refinements and vertical refinements. The horizontal
refinement consists in introducing new viewpoints and new details in an existing
model. Each introduction of details to a model leads to a new model which must
be coherent with the previous one. If it is the case, we said that the second model
refines the first one. The vertical refinement consists in going from an abstract
model to a more concrete one, for example by reducing the indeterminism or by
strengthening the guard or the postcondition of operations. The concrete model
is a realization of the abstract model.

The concept of refinement is an important aspect in formal methods, such
as the B method [1] or Object Perfect Developer [6], with the verification of the

2 B. Ben Ammar, M. T. Bhiri and J. Souquières

correctness: a refinement is correct if the properties of the abstract model are
verified by the concrete model. This notion of refinement between two models, an
abstract and a more concrete one, is formally defined and can be mathematically
proven by support tools. Meanwhile, there is a lack of a methodological studies
related to the incremental development of complex system using the refinement
mechanisms [8].

An incremental development is natural and relevant. Nevertheless it is cur-
rently difficult to use it with UML notations [12, 18]. Indeed, a rigorous definition
of the refinement concept doesn’t exist in such notations.

The concept of refinement has been highlighted in several studies. In [19],
rules are proposed to check the behavioral consistency between the behavior of
objects life cycles. The specialization is defined as a refinement incremented by
an extension. Claudia Pons and all. [13, 17, 14, 15] have developed a tool called E-
Platero [16] which supports some refinement development of class diagrams. The
E-Platero tool proposes a relation of refinement equivalent to the one proposed
in Object-Z [7]. Shen and Low [9] propose refinement rules for the generalization
and association relationships. These rules are described on the meta-model as
stereotypes. In [5], the authors define a formal notion of refinement through uni-
fication, explaining the concept of correspondence between specifications, known
as conformance relationships.

The goal of this paper is to present an incremental development of an UML
specification. We start with an abstract initial model. For each refinement step,
we present the taken decisions and how we express them in terms of OCL nota-
tion [11], UML class diagram and invariant on the global system. This develop-
ment case study is widely inspired by Abrial [2].

In section 2, we present some development steps of the access control case
study using the UML/OCL notations. In section 3, we present lessons learn from
this development case study and how the refinement steps can be supported
by refinement patterns. Section 4 concludes this paper and proposes different
perspectives.

2 Access control case study: some development steps

The access control case study is in charge to control the access of authorized
persons to different buildings [3]. The authorization should allow a person, con-
trolled by the system, to enter into certain buildings, and not into others. The
exit of a person of a building is also controlled by the system, in order to know
at any moment who is inside a given building.

2.1 Initial specification

The main goal of the system is to control authorized persons to enter and leave
the buildings and to manage the dynamic situation of the presence of persons in
the buildings.

Towards an incremental development of UML specifications 3

UML class diagram. A first class diagram corresponding to this description is
presented in Fig. 1 in which:

1. the two classes, Person and Building represent the set of persons and the
set of buildings,

2. the two associations represent the authorization and the situation relation-
ship between Person and Building. The multiplicity of the association situa-
tion expresses the fact that, at any moment, a person must be in at least one
building. The parameter unique for the authorization association expresses
the fact that this association cannot be modified.

Person

pass(b:Building)

Building

1

1..*

situation

authorization

{unique}

Fig. 1. Initial model

System properties. The authorizations can be defined as a set of possible couples
(person, building), where each couple links a person to a building in which he is
authorized to enter. This set of couples is expressed as a binary relation between
Person and Building and formalized in OCL as presented in (1).

Context Person
−−the binairy relation is expressed by two nested iterations
def :aut :Set(TupleType(p :Person, b :Building))=

Person ::allInstances→iterate(pr :Person ;
resultset :Set(TupleType(p :Person, b :Building))=Set{}|

pr.authorization→iterate(bt:Building;|resultset.including(tuple{pr,bt})))

(1)

Moreover, the system has to manage the dynamic situation of the persons inside
the buildings. We introduce a new set, sit, linking each person to the building
in which he is located (2):

Context Person
−−sit is a total function, expressed by one iteration
def :sit :Set(TupleType(p :Person, b :Building))=

Person ::allInstances→iterate(pr :Person ;
resultset :Set(TypleType(p :Person, b :Building))=Set{}|

resultset.including(tuple{pr,pr.situation}))

(2)

Some important properties of the model are to be added:

– the set of persons is not empty,

4 B. Ben Ammar, M. T. Bhiri and J. Souquières

– each person is authorized to enter into given buildings and not others,

– the authorization is a permanent assignment,

– at any time, each person can only be in one building,

– any person in a given building is authorized to be there.

These properties can be formalized as shown in (3).

Context Person
inv: Person ::allInstances→notEmpty()

and self.authorization→size()>= 1
and self.authorization→forAll(b|self.authorization→isUnique(b))
and self.situation→size()= 1
and aut→includingAll(sit)

(3)

The property, the set of buildings is not empty, is expressed in (4).

Context Building
inv: Building ::allInstances→notEmpty()

(4)

Method definition. At this level of abstraction, we can observe the method pass
of the class Person which allows the entry of a person into a building. This
event should be able to occur only if the person is authorized to be in the given
building and if it is not already there (5).

Context Person :: pass(b : Building)
pre: aut→includes(tuple{self,b})

and sit→excludes(tuple{self, b})
post: sit→including(tuple{self, b})

(5)

Conclusion. The invariant of the system is obtained by the conjunction of the
invariant of each class of the class diagram, i.e. the invariant of Person (3) and
Building (4). So, it is easy to prove that the unique observable method, pass,
maintains these properties.

2.2 First refinement

A person can go from a building in which he is to another where he is authorized
to enter if these two buildings are connected, i.e. the first one communicates with
the second.

UML class diagram. This communication between buildings is expressed by
a navigable association named communication which links the buildings (see
Fig. 2).

Towards an incremental development of UML specifications 5

Person

pass(b:Building)

Building

1

1..*

situation

authorisation

{unique}

*
communication

Fig. 2. First refinement

System properties. The concept of communication between buildings is defined
as a binary relation between buildings, com, as presented in (6).

Context Building
−−com describes a binary relation
def :com :Set(TupleType(b1 :Building, b2 :Building))=

Building ::allInstances→iterate(b1 :Building ;
resultset :Set(TupleType(b1 :Building, b2 :Building))=Set{}|

b1.communication→iterate(b2:Building ;|
resultset.including(tuple{b1,b2})))

(6)

A constraint stipulating that two buildings which communicate between each
other must be necessarily distinct, has to be introduced (7).

Context Building
inv: −−in addition to the invariant (4)

and self.communication→excludes(self)
(7)

Method definition. To satisfy this first refinement, we have to strengthen the
guard of the method pass as presented in (8).

Context Person :: pass(b : Building)
pre: aut→includes(tuple{self, b})

and self.situation.communication→includes(b)
post: sit→including(tuple{self, b})

(8)

Safety properties. In the current state of the model, if a person is in the building b
and has no authorization to be in any of the buildings which communicates with
b, this person is blocked in b. Therefore, it is necessary to add a supplementary
requirement saying that no person must remain blocked in a building.

This implies that each person p authorized to enter into the building b is
also authorized to go at least into another building c which communicates with
b. Thus, we define a new set of couples (p, b), autSeqcomInv (9), where p is au-
thorized to enter into c (aut→includes(tuple{p, c})), such that b communicates
with c (com→includes(tuple{b, c})). This relation is defined as a sequential com-
position of the relation aut and the inverse of the relation com, denoted comInv

6 B. Ben Ammar, M. T. Bhiri and J. Souquières

(11). This relation is defined by the cartesian product of Person and Building,
denoted personCartbuilding (10).

Context Person
−−sequential composition of aut and comInv

def :autSeqcomInv :Set(TupleType(p :Person, b :Building))=
personCartbuilding→iterate(tuple(x :Person, z :Building) ;

resultset :Set(TupleType(p :Person, b :Building))=Set{}|
if Building ::allInstances→exists(y :Building|aut→includes(tuple{x,y})
and Building ::comInv→includes(tuple{y,z}))

then resultset.including(tuple{x,z}) endif)

(9)

Context Person
−−cartesian product of Person and Building

def :personCartbuilding :Set(TupleType(p :Person, b :Building))=
Person ::allInstances→iterate(pr :Person ;

resultset :Set(TupleType(p :Person, b :Building))=Set{}|
Building ::allInstances→iterate(bt :Building ;|

resultset.including(tuple{pr,bt})))

(10)

Context Building
−−relation inverse of com

def :comInv :Set(TupleType(b1 :Building,b2 :Building))=
Building ::allInstances→iterate(bt1 :Building ;

resultset :TupleType(b1 :Building, b2 :Building)=Set{}|
bt1.communication→iterate(bt2 :Building ;|

resultset.including(tuple{bt2,bt1})))

(11)

A new invariant has to be introduced in the class Person:

Context Person
inv: −−in addition to the invariant (3)

and autSeqcomInv→includesAll(aut)
(12)

Conclusion. The second definition of the method pass given in (8) refines the
definition (5), because the action is identical in both cases and the guard of
the second: aut→includes(tuple{self, b}) and self.situation.communication→ in-
cludes(b), is clearly stronger than the first one: aut→includes(tuple{self,b}) and

sit→excludes(tuple{self, b}).
In other words, if a person is in a building which communicates with b, then

the building where this person finds himself is certainly different from b since b
cannot communicate with itself; therefore the first condition holds.

2.3 Second refinement

A person can go from one building to another one via one-way doors. This leads
us to introduce the origin and destination buildings for each door. Each door is
equipped with two lights, a green one indicating that the person can enter the
building and a red light indicating that he cannot enter.

Towards an incremental development of UML specifications 7

UML class diagram. It is modified as follows:

1. introduction of the class Door which represents the set of doors, with a set
of methods,

2. introduction of two classes GreenLight and RedLight which represent the set
of the green and red lights. As both are a component of the class Door, we
introduce a composition relationship between them and the class Door,

3. introduction of two associations, origin and destination,

4. introduction of the association accepted which represents the person accepted
at a door,

5. removal of communication, the recursive association among buildings. This
association has been refined by the introduction of the one-way doors mod-
eled by the class Door and the two associations origin and destination.

Person

pass(d:Door)

Building

1

1..*

situation

authorization

{unique}

Door

accept(p:Person)

refuse(p:Person)

origin 1
 1 destination

GreenLight

etat::Boolean

off_green()

RedLight

etat::Boolean

off_red()

accepted

0..1

1
 1

Fig. 3. Second refinement

System properties. We define two sets, org (door, origin-building) and dst (door,
destination-building), formalized in (13) and (14).

Context Door
−−org describes a total function
def : org: Set(TupleType(d : Door, b : Building))=

Door ::allInstances→iterate(dr :Door ;
resultset :Set(TupleType(d : Door, b : Building))=Set{}|

resultset.including(tuple{dr,dr.origin}))

(13)

8 B. Ben Ammar, M. T. Bhiri and J. Souquières

Context Door
−−dst describes a total function
def : dst: Set(TupleType(d : Door, b : Building))=

Door ::allInstances→iterate(dr :Door ;
resultset :Set(TupleType(d : Door, b : Building))=Set{}|

resultset.including(tuple{dr,dr.destination}))

(14)

Doors can be physically blocked. A person can only get through a door if it is
accepted and a door can only be accepted for one person at a time. We introduce
a new set, dap, of (person, door) corresponding to the set of pairs linking a person
to the door which is accepted for him, as shown in (15).

Context Person
−−dap describes a partial injection
def : dap: Set(TupleType(p : Person, d : Door))=

Person ::allInstances→iterate(pr :Person ;
resultset :Set(TupleType(p : Person, d : Door))=Set{}|

if pr.accepted→size()=1 then

resultset.including(tuple{pr,pr.accepted}) endif)

(15)

The removal of the association communication requires a revision of the defini-
tion of the set com, by adding a new invariant to the class Building (16): for all
the doors, the buildings of origin and destination represent exactly the pairs of
buildings implied in the relation com. This definition is called a gluing invariant
in formal methods.

Context Building
inv: −−in addition to the invariant (7)

and com = orgInvSeqdst
(16)

orgInvSeqdst(17) is defined as a sequential composition of two functions: orgInv
”the inverse function of org” (19) and dst. This relation is defined by the cartesian
product of Building and Building and is denoted by buildingCartbuilding (18).

Context Building
−−sequential composition of orgInv and dst

def :orgInvSeqdst :Set(TupleType(b1 :Building, b2 :Building))=
buildingCartbuilding→iterate(tuple(x :Building, z :Building) ;

resultset :Set(TupleType(b1 :Building, b2 :Building))=Set{}|
if Door ::allInstances→exists(y :Building|orgInv→includes(tuple{x,y})
and Building ::dst→includes(tuple{y,z}))

then resultset.including(tuple{x,z}) endif)

(17)

Context Building
−−cartesien product of buildings
def :buildingCartbuilding :Set(TupleType(b1 :Building, b2 :Building))=

Building ::allInstances→iterate(b1 :Building ;
resultset :Set(TupleType(b1 :Building, b2 :Building))=Set{}|

Building ::allInstances→iterate(b2 :Building ;|
resultset.including(tuple{b1,b2})))

(18)

Towards an incremental development of UML specifications 9

Context Building
−−inverse function of org

def :orgInv :Set(TupleType(b :Building,d :Door))=
Door ::allInstances→iterate(dr :Door ;

resultset :TupleType(b :Building,d :Door)=Set{}|
resultset.including(tuple{dr.origin,dr})))

(19)

The property, an origin-building and a destination-building is associated to each
door, has to be added to the class Door, formalized as presented in (20).

Context Door
inv: Door.allInstances→notEmpty()

and self.origin→size()= 1
and self.destination→size()= 1
and self.greenLight→size()= 1
and self.redLight→size()= 1

(20)

A new invariant is added in the class Person (21), making clear the condition
for acceptance to a door for a given person. It is defined in terms of two sets,
dapSeqorg, for a door to accept a person, this person should be inside the building
of origin of that door, and dapSeqdst, a person should be authorized to enter the
destination building of that door. These two sets are defined as a sequential
composition of dap and org for the first one and dap and dst for the second one,
and not presented here.

Context Person
inv: −−in addition to the invariant (12)

and aut → includesAll(dapSeqdst)
and sit → includesAll(dapSeqorg)

(21)

Next properties are related to the lights:

– the green light of a door is lit when the person is accepted,

– the red and green lights of a same door cannot be lit simultaneously

and are formalized by the introduction of a new invariant in the class Person
(22) and in the class Door (23).

Context Person
inv: −−in addition to the invariant (21)

and accepted.notEmpty() implies accepted.greenLight.etat
(22)

Context Door
inv: −−in addition to the invariant (20)

and ((greenLight.etat implies not(redLight.etat))
or (redLight.etat implies not(greenLight.etat)))

(23)

10 B. Ben Ammar, M. T. Bhiri and J. Souquières

Method definitions. The predicate admitted, which has a boolean result expresses
the condition of admission of a person. This predicate has to be defined in
the class Door as shown in (26). Such formalization needs the definition of the
domain and the codomain of the partial injection function dap.

Context Person
−−domain of dap partial function
def :dom :Set(Person)=

dap→iterate(c:TupleType(p:Person, d:Door);
resultset:Set(Person)=Set{}|resultset.including(c.p))

(24)

Context Person
−−codomain of dap partial function
def :ran :Set(Door)=

dap→iterate(c:TupleType(p:Person, d:Door);
resultset:Set(Door)=Set{}|resultset.including(c.d))

(25)

Context Door
def :admitted(p : Person): Boolean =

(self.origin = p.situation)
(Person.aut→includes(tuple{p, self.destination}))
(Person.dom→excludes(p))

(26)

In the same way, the methods accept and refuse, which correspond to the dis-
covery of a person wishing to go from one building to another, accept and reject
accordingly. The methods off green and off red, which are presented in the class
GreenLight and RedLight, change the value of the attribute etat to False.

The method pass has to be refined: it can be triggered for a door which green
light is on. The person is allowed to pass and the method results in turning off
the green light.

Context Person :: pass(d : Door)
pre: ran→includes(d)
post: (sit→including(d.person, d.destination)

and ran→excludes(d)

(27)

Conclusion. The method pass is refined by strengthening its precondition and
postconditions. Each new method is considered as a refinement of an operation
which does nothing.

3 Lessons learned

A step by step development, based on refinement mechanisms, presents the fol-
lowing advantages:

– it introduces progressively details and choices,

Towards an incremental development of UML specifications 11

– it strongly motivates the introduction of the different ingredients in the
model.

The formalization of important properties of the system and their refinement
gives a better comprehension of the system. It allows verifications to be done
through out the life cycle of development such as:

1. preservation of the invariant of the system, i.e., each operation must preserve
the invariant.

2. proof of the refinement at each refinement step, i.e., we can verify that the
concrete model satisfies the properties of the previous model.

The verifications carried out by our incremental development are similar to the
proof obligations generated by the tools of formal methods. Therefore, the re-
finement concept defined in the formal methods could be used to develop a UML
specification, using OCL constraints to ensure the trustworthy refinement. This
needs to use mathematical notations such as function and relations. It is to be
noted that the use of these concepts in OCL is very tedious and demands some
assistance for the developers. This approach can be supported by refinement
patterns to provide assistance for the developers. In [4], we have defined several
refinement patterns for the development of a UML specification. These patterns
have been proven by using the B method and could be used as a guide in the
development of UML specifications.

4 Conclusion and perspectives

One of the difficult tasks for developers of object oriented software is to find
the pertinent classes. Some methodological studies bring several propositions
based on different approaches [10]: linguistics, use case, abstract data type and
patterns (design and analysis patterns). In these approaches the relevance of the
founded classes is related to the competence of the developer. However, this task
can be realized easier if the developers employs ”divide and rule” strategy. The
developers start with an initial abstract model then they proceed by refinement.
In each refinement step, the developers should take care of new considerations
and try to extract pertinent classes and relationships. The output of this step
must be coherent with the previous one. The OCL constraints can be used to
ensure the trustworthy application of the refinement. Indeed, the UML language
does not allow the expression of all properties and constraints. However the
handling of the functions and mathematical relations remains obscure. Therefore
it is necessary to extend OCL in order to facilitate its use.

In this paper, we present a case study showing some guidelines to refine
a UML specification. We start from first general model which expresses in an
abstract way the property of the system. Each refinement step subsequently is
guided by the evaluation of the model, by adding new details. A verification of the
preservation of the invariant also ensures the verification of the refinement steps.
This work is widely inspired by the refinement as defined in formal methods such
as B.

12 B. Ben Ammar, M. T. Bhiri and J. Souquières

To verify the preservation of the invariant and operations’ refinement, we
propose to create an environment which supports both UML and OCL notations.
This prototype can verify the reinforcement of the invariant of each class and
the pre/post-conditions of each operation by the user. This prototype must be
able to support refinement patterns to assist users.

We reflect now on the definitions of the refinement patterns:

– refinement pattern of association relationships: it can be used in the first de-
velopment step when the com association is refined by two new associations
org and dst,

– refinement pattern of inheritance relationships: it can be used after the sec-
ond refinement for the classes RedLight and GreenLight which have the same
characteristics so it is possible to factorize them in one super class Light,

– algorithmic refinement pattern: it can be used before the second refinement
when the operation pass changes its signature.

A reflection is to preserve the history of the pattern applications in order to have
a traceability of the development process. In the requirement case, the developers
have the possibility of the back-tracking and reviewing their decisions.

References

1. J.R. Abrial. The B Book - Assigning Programs to Meanings. Cambridge University
Press, 1996. ISBN 0521496195.

2. J.R. Abrial. Event Driven System Construction. Technical report, ClearSy System
Engineering, April 1999.

3. AFADL’2000. Etude de cas : système de contrôle d’accès. In Journées AFADL,
Approches formelles dans l’assistance au développement de logiciels, 2000. actes
LSR/IMAG.

4. B.a Ben-Ammar, M. T. Bhiri, and J. Souquières. Quelques patrons de raffine-
ment pour le développement de diagrammes de classes UML. In Atelier OCM-SI:
6ème atelier sur les Objets, Composants et Modèles dans l’ingénierie des Systèmes
d’Information, 2007.

5. E.A. Boiten and M.C. Bujorianu. Exploring UML refinement through unification.
In J. J”urjens, B. Rumpe, R. France, and E.B. Fernandez, editors, Critical Systems
Development with UML - Proceedings of the UML’03 workshop, number TUM-
I0323, pages 47–62. Technische Universitat Munchen, 2003.

6. D. Crocker. Perfect Developer: A tool for Object-Oriented Formal Specification
and Refinement. FM 2003: the 12th International FME Symposium, September
2003.

7. S. Graeme. The Object-Z specification language. Kluwer Academic Publishers,
Norwell, MA, USA, 2000.

8. M. Guyomard. Spécification et raffinement en B : deux exemples pédagogiques.
ZB2002 4th International B Conference, Education Session Proceedings, Janvier
2002.

9. W. L. Low. Using the Metamodel Mechanism to Support Class Refinement. In
ICECCS ’05: Proceedings of the 10th IEEE International Conference on Engineer-
ing of Complex Computer Systems, pages 421–430. IEEE Computer Society, 2005.

Towards an incremental development of UML specifications 13

10. B. Meyer. Object-oriented software construction (2nd ed.). Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1997.

11. OMG. OCL 2.0 Specification, Final Adopted Specification ptc/03-10-14, October
2003.

12. OMG. UML 2.0 Superstructure Specification, Final Adopted Specification ptc/03-
08-02, August 2003.

13. C. Pons. On the Definition of UML Refinement Patterns. In 2nd MoDeVa work-
shop, Model design and Validation, October 2005.

14. C. Pons. Heuristics on the Definition of UML Refinement Patterns. Springer-Verlag
Berlin Heidelberg, 2006.

15. C. Pons and D. Garcia. An OCL-Based Technique for Specifying and Verifying
Refinement-Oriented Transformations in MDE. In MoDELS, pages 646–660, 2006.

16. C. Pons, R. S. Giandini, G. Pérez, P. Pesce, V. Becker, J. Longinotti, and J. Cen-
gia. Pampero: Precise assistant for the modeling process in an environment with
refinement orientation. In UML Satellite Activities, pages 246–249, 2004.

17. C. Pons, G. A. Perez, R. Giandini, and R. Kutsche. Understanding Refinement
and Specialization in the UML. In 2nd International Workshop on MAnaging
SPEcialization/Generalization HIerarchies (MASPEGHI 2003), October 2003.

18. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Guide. Addison-Wesley, 1998.

19. M. Schrefl and M. Stumptner. Behavior-consistent specialization of object life
cycles. ACM Trans. Softw. Eng. Methodol., 11(1):92–148, 2002.

